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ABSTRACT

Data-centric AI prioritizes data-centric strategies for providing
high-quality input data, since high data quality is fundamental
for ensuring the reliability of AI systems. It recognizes the critical
role of data preparation, an often time-consuming task that is a
significant challenge for data scientists. While various methods
have been proposed to support and automate data preparation,
most focus on optimizing model performance without considering
the high energy and resource requirements for computing complex
pipelines on large-scale datasets.

This paper introduces an approach to designing lightweight
data preparation pipelines: it selectively addresses only the data
quality issues that significantly impact analysis performance. We
present a framework that leverages historical knowledge of previ-
ous pipelines to recommend an effective sequence of preparation
actions for a specific analysis that favors efficiency while preserving
the quality. Our preliminary experiments show that improving only
the most impactful data quality errors leads to high performance
while significantly conserving time and resources.
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1 INTRODUCTION

Data-centric Artificial Intelligence (DCAI) recently spotlighted
the importance of having high-quality data to be processed in AI
pipelines, to ensure the reliability of the final outcomes [4]. This
emphasized the crucial role of data preparation, which encompasses
a range of techniques to systematically enhance data quality (DQ).
Such a phase is very demanding due to the variety of quality errors
and available data preparation techniques in the literature. Data sci-
entists experience difficulties in defining effective pipelines, taking
about 80% of the total pipeline time in preparing data [2].

Several approaches have been developed in recent years to sup-
port this phase: given a new dataset, they aim to automatically
generate a sequence of actions to optimize machine learning (ML)
results [6]. To achieve that, they adopted various techniques, such
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as reinforcement learning [1], ML uncertainty estimation [3], or
exploiting the knowledge related to pipelines performed in the past
[5, 11]. Widespread AutoML approaches also offer the possibility of
automatically performing data preparation [7]. These approaches
aim to facilitate the design of the preparation pipeline with the
sole goal of optimizing the final performance. However, these ap-
proaches are often applied to a vast amount of data, employing
complex ML-based techniques for preparing datasets.

Consequently, the application of such preparation pipelines can
be computationally expensive, requiring a high amount of resources,
consuming a significant amount of energy, and contributing to an
increase in gas emissions and the carbon footprint of AI systems.

To address this problem, green AI has emerged as a concept
that prioritizes energy efficiency and sustainability alongside ML
performance. Few contributions have also started to consider data-
centric strategies for green AI [8], demonstrating that sustainability
can often be achieved with negligible or even absent decline in ML
accuracy [10]. Lightweight pipelines can be designed by carefully se-
lecting a subset of the data, choosing an appropriate dataset size, or
applying feature selection or dimensionality reduction techniques.

In this paper, we present an approach for supporting the design
of lightweight data preparation pipelines. Our approach is based
on identifying the DQ errors that mostly affect the final perfor-
mance, thus prioritizing the data preparation actions that enhance
only the most influential DQ aspects, leaving less impactful errors
unaddressed.

To achieve this goal, we designed a framework, called diana
[9], for suggesting users with the most effective sequence of data
preparation actions to optimize the ML analysis results in a specific
analysis context – the combination of the data profile (the set of
data characteristics that can be extracted through data profiling
from the dataset – dataset profile – and its columns – columns
profiles) and the AI model used.

Pipeline suggestions are given by exploiting a Knowledge Base
(kb) that contains historical data about previously designed pipelines.
By analyzing the most similar data profiles already stored in the kb,
diana can identify the most relevant DQ dimensions and the most
effective improvement actions for the specific analysis context.

This paper presents preliminary results on the potential of our
suggestions in saving energy. We demonstrate that improving only
the most influential DQ dimension yields nearly the same final ML
performance as completing the entire preparation pipeline, while
saving time and resources and ensuring sustainability.

The paper is structured as follows: Section 2 introduces the
general approach, Section 3 depicts preliminary results on the effec-
tiveness and sustainability of the presented approach, and Section
4 presents future work and concludes the paper.
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Figure 1: diana’s general architecture

2 THE DIANA APPROACH

This section presents our approach for adaptive data-centric AI.
Figure 1 shows diana’s general functioning, including the main

steps of the data science pipeline. diana can explore and profile
datasets, such as providing metadata, basic statistics and visualiza-
tions on the datasets’ content, and assess their quality revealing
potential issues that might compromise the analysis results in the
discovery and audit phase; moreover, it allows the user to enter the
type of analysis to be performed in the goal definition.

The targeted analysis and the computed data profile (the new
user’s analysis context) are provided as input to the kb, which is
responsible for generating an optimal sequence of data preparation
actions (along with their suggested execution order) to maximize
the quality of the results.

The diana’s kb includes results of previous pipelines, computed
on several datasets, related to the impact of DQ errors and the
effectiveness of data preparation techniques on ML models. The kb
exploits the information on the collected data profiles that are most
similar to the user’s dataset and provides (i) the order in which the
DQ dimensions should be improved and, for each DQ dimension,
(ii) a suggestion about the best improvement technique to apply for
each column.

The data cleaning phase (a) outputs the most appropriate tech-
niques to perform for designing the pipeline, and (b) executes the
DQ improvement tasks. At the end of the cleaning phase, the user
can proceed with the analysis, i.e., all the steps needed for executing
the ML model.

2.1 Knowledge Base content

To feed the content of the kb, we performed experiments on a large
number of analysis contexts.

For several combinations of dataset-ML algorithms, we extracted
three types of results: [kb1] impact of DQ errors (related to a DQ
dimension, e.g., missing values for completeness, outliers for accu-
racy) on ML performance; [kb2] effectiveness of applying several
data imputation techniques onML performance; [kb3] effectiveness
of several outlier detection techniques in detecting outliers.

The pipeline for enriching the kb is reported in Figure 2. Note
that phases 1 and 4 were performed only for enriching the kb1.

1. Feature 
Selection

2. Dataset 
Pollution

3. Profiles
Computation

4. Data 
Preparation

5. Results
Extraction

6. Results
Storage

Figure 2: kb’s enrichment pipeline

1. Feature Selection We kept only the three most influential
columns employing a univariate statistical test to identify
features most correlated to the target column.

2. Dataset Pollution We created different versions of the origi-
nal dataset, injecting a different percentage (from 10% to
50%, with an increasing step of 10%) of one type of DQ error.
To inject the errors, we followed a uniform distribution.

3. Profiles Extraction We computed the dataset and column
profiles of the considered dataset’s version.

4. Data Preparation For each polluted version, we applied dif-
ferent data preparation techniques to improve the injected
errors.

5. Results ExtractionWe computed the selected ML algorithms
on the final dataset version and extracted the performance.
The polluted/cleaned version is split into train and test sets
(70% and 30%), the train set is used to fit the model, while
the test set is employed for the prediction task through 4-
fold cross-validation. We tuned the hyperparameters on the
original dataset, and the ones achieving higher performance
were used for all computations.

6. Results Storage We stored the experiment results as follows:
[kb1] ratio between ML performance achieved by the pol-
luted version and the original dataset; [kb2] ratio between
ML performance achieved by the final cleaned version and
the original dataset; [kb3] percentage of detected outliers.

Setup.Weperformed the experiments considering twoDQ dimen-
sions, Completeness and Accuracy, thus injecting missing values
and outliers as DQ errors and applying 12 data imputation and 6
outlier detection techniques as data preparation techniques (both
standard and ML-based techniques were considered). We employ
a total of 31 datasets with heterogeneous profiling characteristics
taken from the UCI Machine Learning and Kaggle repositories.

Six classification algorithms were performed using the F1 score
as a performance indicator: decision tree (DT), logistic regression
(LR), k-nearest Neighbors (KNN), random forest (RF), adaboost (AB),
and support vector machine (SVC) implemented by the scikit-learn
library.

Details on the datasets used to enrich the three kbs, the entire
set of profiling metadata extracted for dataset and column profiles,
and the complete list of data preparation tasks are recorded in our
repository.

2.2 Pipeline suggestions

The kb based its suggestions on three ML-based predictors. The
are regression models (KNNRegressor models, with different hyper-
parameters depending on the prediction task) with the following
characteristics:

P1 Trained on: [kb1]. Input: a data profile and an ML model.
Output: expected impact of a DQ dimension on the analysis
performance.
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P2 Trained on: [kb2]. Input: a column profile and an ML model.
Output: expected effectiveness (ML performance) of apply-
ing a data imputation task on that column.

P3 Trained on: [kb3]. Input: a column profile. Output: expected
effectiveness of applying an outlier detection task on that
column.

Our predictors had an average root mean squared error of at
most 13.44% (for the first predictor), while the other errors were
even smaller. Moreover, we were able to predict the correct ranking
for 74,13% of the tested analysis contexts. We were always able to
predict the most relevant methods to apply for each column.

By sorting the results of the predictors, we can suggest an optimal
data preparation pipeline for a specific analysis context.

3 PRELIMINARY RESULTS

In this section, we present the experiments performed to validate
that (i) the proposed pipeline suggestions can lead to better results
for a specific analysis and (ii) good enough is sometimes better.

Improving only the most influential DQ errors in the analysis
context, while leaving other errors unaddressed, can lead to shorter
and more efficient pipelines. We demonstrate that this approach
still achieves high performance, saving computational time and re-
sources required for executing the entire data preparation pipeline.

3.1 Experimental pipeline

We employed 6 new datasets from Kaggle1 with different dimen-
sionalities (number of tuples) and data types (numerical/categorical
columns) to validate our approach:weather, consumer, pet, character,
galaxy, and heart.

We kept only the three most influential columns on classification
based on the mutual information score between the columns and
the target one. More details are available in our public repository.
For each dataset, we perform the following pipeline.

We polluted the dataset, creating different versions of the original
one but injecting a different percentage (from 10% to 50%) of errors
equally distributed. For each polluted version-ML model:

(1) We computed the dataset/column profiles and extract the
suggested pipeline from our predictors.

(2) We computed the suggested pipeline and all the other pos-
sible pipelines on the polluted dataset.

(3) The ML model is executed on the cleaned dataset: it is
split into train and test sets (70% and 30%), the train set
is used to fit the model, while the test set is employed for
the prediction task through 4-fold cross-validation. The
model hyperparameters were tuned on the original dataset
and used for all computations. The performance of the ML
model is extracted each time a DQ dimension is improved.

All the possible pipelines were applied to the polluted dataset.
First, the DQ dimensions were improved in different orders: com-
pleteness → accuracy, and accuracy → completeness. Then, all
possible combinations of data preparation tasks were applied to the
dataset’s columns in all column orders.

For the completeness → accuracy pipeline: (a) a specific combi-
nation of imputation techniques is applied to the dataset’s columns;

1https://www.kaggle.com

(b) a combination of outlier detection techniques is applied to the
numerical columns and the identified outliers are set to null; (c) the
same imputation techniques applied in (a) are executed again to fill
the null values. For the accuracy→ completeness pipeline, only (b)
and (c) are executed.

We performed a total of 176, 580 pipelines for datasets with
three numerical columns, 89, 211 pipelines for datasets with two
numerical columns, and 22, 440 pipelines for datasets with one
numerical column.

3.2 Results and discussion

Preliminary results obtained by applying the validation pipeline for
all tested dataset–ML model combinations are presented as follows.
The goal is to demonstrate that our approach is:

• effective, thus, the suggested pipeline for that analysis con-
text achieves better results than applying all the other com-
binations;

• lightweight, thus, improving only the first DQ dimension of
the suggested ranking still achieves good performance and,
therefore, the other less influential DQ dimensions can be
neglected and not addressed.

To achieve this goal, we need ametric for comparing the achieved
performance 𝑝 of an ML model, executed on the dataset version 𝑑 𝑗 ,
after the improvement of the first dimension 𝑑1 of the ranking, and
after all dimensions, 𝑑1 and 𝑑2, are improved. This metric, called
Δ𝑄 , is computed as follows:

Δ𝑄𝑖 =
𝑝𝑖

𝑝𝑜

Where 𝑝𝑜 is the performance achieved by computing an ML
model on the original dataset𝑑𝑜 , and 𝑝𝑖 is the performance achieved
by the same ML model at step 𝑖: 𝑖 = 1 when only the first DQ
dimension is improved; 𝑖 = 2 when all considered dimensions are
improved.

Table 1 shows the median results (aggregated for all percentages
of injected errors) of Δ𝑄1 (improvement of the first dimension) and
Δ𝑄2 (all pipeline improvement), for all combinations of dataset–ML
models. Moreover, Δ𝑄 values obtained by computing the suggested
pipeline, and executing all the other pipeline combinations are
shown separately. The median results, aggregated for all datasets,
are shown at the bottom of the table. Moreover, Figure 3 reports
the Δ𝑄1 and Δ𝑄2 value distributions over the different models for
the suggested pipeline and all the other pipelines.

From Table 1, we can notice that the suggested pipeline always
achieve higher Δ𝑄 (in both steps 1 and 2) than trying all the other
pipeline combinations (except for Δ𝑄1 in AB, which still obtains a
higher value for Δ𝑄2), validating that our approach is effective. This
is also highlighted by Figure 3, in which the Δ𝑄 values obtained by
running the suggested pipelines are more concentrated at the top
of the violin plots.

Moreover, we can appreciate that the Δ𝑄1 values are always very
close and even higher, i.e., a better performance is achieved after
step 1 than after completing step 2, than the Δ𝑄2 values. This is
also evident by looking at Figure 3, in which the value distribution
of Δ𝑄1 (both for all and suggested pipelines) is almost the same as
the Δ𝑄2 distribution.
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Table 1: Median Δ𝑄1 and Δ𝑄2 results for different combinations of dataset and algorithms

DT LR KNN RF AB SVC
Δ𝑄1 Δ𝑄2 Δ𝑄1 Δ𝑄2 Δ𝑄1 Δ𝑄2 Δ𝑄1 Δ𝑄2 Δ𝑄1 Δ𝑄2 Δ𝑄1 Δ𝑄2

weather suggested 0.8388 0.836 0.8552 0.8698 0.8396 0.8405 0.8438 0.841 0.8561 0.8531 0.4609 0.5865
all 0.815 0.78 0.5592 0.657 0.7651 0.7819 0.8385 0.8124 0.8493 0.8316 0.3143 0.3549

galaxy suggested 0.9802 0.9776 1.1107 1.1104 0.9696 0.9715 0.9735 0.9805 0.9627 0.9735 1.2328 1.2403
all 0.9284 0.9011 0.7415 0.9142 0.8545 0.869 0.9391 0.9207 0.9423 0.918 1.0045 1.0723

character suggested 0.7926 0.813 0.9476 0.9456 0.8234 0.8283 0.7984 0.7997 0.8514 0.8449 0.98 0.9805
all 0.8039 0.7936 0.8714 0.8752 0.8195 0.8076 0.7962 0.792 0.8511 0.8305 0.9466 0.9588

consumer suggested 0.9441 0.9385 1.0049 0.9977 0.9361 0.9325 0.921 0.9239 0.9348 0.9292 0.6352 0.6315
all 0.9268 0.9113 0.9213 0.9171 0.9229 0.9161 0.908 0.8993 0.9427 0.9342 0.5804 0.5685

pet suggested 0.8223 0.8389 0.994 0.9924 0.8761 0.8853 0.8279 0.8258 0.8275 0.8279 1.0143 0.9912
all 0.8178 0.8095 0.9761 0.9572 0.882 0.8567 0.8172 0.8006 0.8768 0.862 1.0146 0.9902

heart suggested 0.815 0.8089 0.9427 0.9269 0.8488 0.8107 0.8224 0.7884 0.8215 0.7671 1.0343 1.0334
all 0.8187 0.8047 0.9363 0.9504 0.8494 0.83 0.8165 0.7894 0.8293 0.8349 1.0173 1.0188

MEDIAN
(all data)

suggested 0.8306 0.8375 0.9708 0.969 0.8625 0.8629 0.8359 0.8334 0.8538 0.849 0.9972 0.9859
all 0.8183 0.8071 0.8964 0.9157 0.852 0.8434 0.8279 0.8065 0.864 0.8485 0.9756 0.9745

This clearly suggests that improving the most influential DQ
dimension results in a significant gain in performance, while subse-
quent improvements of less influential dimensions result in a very
small performance gain.

We also noted that improving less impactful errors can worsen
the final performance: since the algorithm is not sensitive to those
types of errors, correcting them introduces approximate values that
can compromise the final results.

This highlights that “good enough is sometimes better” : improv-
ing the first dimension suggested by our approach always leads to
performance that is at most the same as the performance obtained
by running the total pipeline. This performance can be achieved
even without completing the pipeline execution, saving the en-
ergy and resources needed for all subsequent quality improvement
operations.

4 CONCLUSIONS

We presented an approach for suggesting lightweight preparation
pipelines that favor sustainability while preserving an acceptable
results’ quality. Future work includes actually measuring the con-
sumption of the collected pipelines, in terms of energy, gas emis-
sions, and carbon footprint, if carried out on large amounts of data.
Moreover, the current framework can be extended with more DQ
dimensions, ML algorithms, and data preparation techniques.
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