

A Low Latency Cache for Cloud RDBMs
Guohai Zhang Xin Tang Qingchen Chang Huanchen Zhang Kai Hwang Yuesen Li Runhuai Huang

 Teng Wang Wusheng Zhang Ming Zhang Qingchun Chen Xiaodong Hou Qian Wang

ABSTRACT
In contemporary cloud-based analytical databases, the adoption of
a disaggregated storage model is a prevalent trend. This model
allows the elastic compute layer to access data stored remotely in
block-oriented columnar formats in cloud storage. However, the
high latency and limited bandwidth associated with remote storage,
as well as the limited capacity of local storage, pose significant
challenges. Consequently, the imperative of caching data within the
compute nodes has gained significant attention, sparking a renewed
interest in caching methodologies for enhancing analytical
processes. While existing caching solutions focus on improving
bandwidth based on file or block-level caching with an average file
or block size of tens of MBs, many analytical database scenarios
require handling small files (one table consisting of thousands of
10 KB small files), low latency (response time of 100 ms), and high
concurrency (hundreds of simultaneous accesses). In this paper, we
introduce a new caching system, Gopher, which effectively
addresses these challenges. It empowers storage-disaggregated
cloud databases to deliver performance comparable to MPP
databases while also exploiting the benefits of elastic horizontal
scaling.

VLDB Workshop Reference Format:
Guohai Zhang, Xin Tang, Qingchen Chang, Huanchen Zhang, Kai Hwang,
Yusen Li, Runhuai Huang, Teng Wang, Wusheng Zhang, Ming Zhang,
Qingchun Chen, Xiaodong Hou, Qian Wang. A Low Latency Cache for
Cloud RDBMs. VLDB 2025 Workshop: DATAI.

1 INTRODUCTION
In the era of cloud computing, the evolution of cloud-based
analytical databases has led to the widespread adoption of a
disaggregated storage model [20, 21, 23, 53, 54]. Driven by its
flexibility and cost-effectiveness, this architecture decouples the
compute and storage layers, enabling elastic compute layers to

access remotely-stored data within cloud storage services. Major
cloud databases and big data systems like Snowflake [20], AWS
Redshift [21], Spark [24], and Presto [25] already support direct
querying of cloud storage like AWS S3 [17] and Azure Blob [69].
However, this architecture introduces challenges due to high
latency and bandwidth limitations inherent to remote storage, as
well as constraints posed by local storage capacity.

Consequently, cache systems have garnered significant attention.
Despite the performance gains achieved through conventional
caching methods, they struggle to address two challenges
effectively.

1) While traditional caching technologies [1, 2, 3, 34, 35, 36, 38,
39] can effectively improve read speeds, they often provide limited
benefits for write operations. This is due to the network’s inherently
higher latency and lower throughput compared to local disk access.
Such sluggish write speeds can result in write-intensive processes
suffering from substantial delays and severely degrade the
efficiency of job pipelines, where the successful completion of one
task is contingent upon the quick and reliable processing of its
output by the subsequent task.

2) Although certain caching systems [8, 9, 14] are designed to
enhance both read and write throughput using file or block-level
caching, with typical file or block sizes in the tens of megabytes,
many cloud-based database environments present unique
challenges. These scenarios often involve dealing with copious
amounts of minuscule files. For example, a single database table
might contain thousands of 10 KB files. This imposes strict latency
thresholds of about 100 milliseconds. Additionally, there is a need
to accommodate hundreds of concurrent access requests. To meet
these demands, caching strategies must evolve to efficiently handle
the granular nature of small files while maintaining the speed and
scalability required for demanding cloud database workloads.

In this paper, we present Gopher, a novel caching system that
overcomes the aforementioned challenges. Gopher is a distributed
caching mechanism designed to handle high concurrency and
deliver low-latency access to files of all sizes. Deployed at each
node within the data warehouse’s computational layer, Gopher is
engineered to accelerate I/O operations. To circumvent the
potential limitations of network communication within clusters,
which are common in centralized master-slave distributed systems,
Gopher adopts a decentralized architecture. Each cache instance
operates as an autonomous client/server service, functioning as a
local file system equipped with a two-tier cache for data warehouse
computing services at the node level.

 Xin Tang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy
of this license. For any use beyond those covered by this license, obtain permission
by emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

HashData Ltd.,
China

Chinatelecom
Cloud, China

CUHK(SZ),
China

Tsinghua
University, China

HashData Ltd.,
 China

HashData Ltd.,
China

Chinatelecom
Cloud, China

Chinatelecom
Cloud, China

Chinatelecom
Cloud, China

Chinatelecom
Cloud, China

Chinatelecom
Cloud, China

Chinatelecom
Cloud, China

Chinatelecom
Cloud, China

Gopher stands out as a high-performance, highly available
caching system, offering an architecture that supports file
prefetching, batch read operations, shared memory, optimized
asynchronous writes, concurrent multi-read capabilities, as well as
a suite of advanced features including merging for small files and
rapid cache reconstruction during cluster horizontal scaling. These
features collectively reduce the number of I/O operations and
memory copies, facilitating efficient concurrent analytics
processing and seamless scaling. In our experiments, we observe
that Gopher can significantly enhance the performance of cloud
databases by 4x. It accomplishes this while offering query times
that are comparable to those of MPP databases and enjoying the
advantages of elastic horizontal scaling.

The rest of the paper is organized as follows. Section 2
introduces the background and the motivation of the system design.
Section 3 and 4 elaborate on the system architecture, API, and
caching optimizations. Section 5 presents and discusses
experiments and Section 6 reviews related works. The conclusion
is drawn in Section 7.

2 BACKGROUND
This section introduces the architecture of Teleadb for AnalyticDB
(TeleDB-ADB) cloud-native data warehouse and describes our
target workloads. It provides background information that
motivates the Gopher solution, a low latency cache in the compute
nodes.

2.1 TeleDB-ADB Cloud-Native Data Warehouse
TeleDB-ADB is a data warehouse to support both SQL and
machine learning analytical tasks in the cloud. The system adopts a
cloud-native disaggregated design in which the compute, storage
and metadata services are managed in separated clusters to enable
high elasticity, high availability, and high reliability. Figure 1
illustrates the TeleDB-ADB architecture.

TeleDB-ADB’s storage layer supports data persistency and
retrieval in object storage, UnionStore, and external big data
storage [18, 19]. TeleDB-ADB-managed object storage is the
default storage pool for user table data, temporary data, and query
results. It is elastic and cost-effective, providing 99.999999999%
durability and 99.99% availability SLA, which makes it a natural
choice as the main storage engine for massive data. UnionStore is
the storage engine to support hybrid transactional and analytical
processing. It consists of a WAL service and Page service, which
persist and replay redo logs to support transactional data visits and
time travel. TeleDB-ADB also supports open lakehouse and can
visit external data in HDFS managed by Apache Hive [70] and
Apache Spark [24]. The system uses foreign data wrapper to access
the Hive, Hudi [71], or Iceberg [72] metadata and then performs
data read / write operations in HDFS [19] or other external storage.

The metadata layer is an independent cluster that manages and
serves various metadata for the compute clusters. It consists of a
coordination service, a metadata service, and a metadata storage
service. The coordination service is an etcd [73] cluster that
discovers and allocates the metadata serving. The metadata service
is a cluster of stateless services that provide metadata access,
privilege control, lock management, and distributed transactions,

etc. The metadata storage service is a distributed key-value storage
engine that stores various metadata such as mappings between
tables and storage objects, data dictionary, WAL logs and indexes,
etc. When a metadata request arrives, the coordination service
allocates a metadata service node to handle this request. This node
retrieves the requested metadata from the metadata storage service
and returns them.

The compute layer is the core of the system and can provide
multiple compute clusters to perform data warehouse or machine
learning analytical tasks in scale. Each compute cluster can be
created using different hardware and configurations on demand and
its resources are completely isolated from other clusters. Currently,
the compute layer can support up to 10,000 computer clusters
concurrently. Each compute cluster has a coordinator node (also
called master or head) as the query entrance and coordinator as well
as multiple worker nodes (also called segment) which perform the
heavy-lifting computation. When an analytical task arrives, the
coordinator node generates a distributed execution plan, driving its
worker nodes to complete the task.

We initiated the TeleDB-ADB system implementation in 2016
and it has been deployed to production since 2018. Our largest
production deployment entails more than 148 compute clusters and
30,000 VM nodes. It adeptly oversees in excess of one million
tables and 19 PB data, processing more than 10 million queries and
jobs daily, which is one of the largest cloud data warehouse
deployments worldwide. Our customer benefits substantially from
the inherent attributes of our cloud-native architecture, witnessing
a reduction of 20% in duplicated jobs, 51% in redundant data, and
an optimization of over 30% in hardware resource utilization.
While deploying the system to a large production environment has
given us a deep experience of the benefits of a cloud-native
architecture, it has also revealed the urgent need for a new caching
system for cloud analytical database workloads. These
requirements are elaborated in the next section.

2.2 Target Workload Properties
The integration of a disaggregated storage model demonstrates
substantial elasticity and scalability advantages yet brings high
latency and restricted bandwidth associated with remote storage to
the system. In response to these inherent challenges, we implement
a cache system in the compute layer to manage read and write

Figure 1: TeleDB-ADB Cloud Database Architecture.

operations. This cache is strategically designed to optimize
analytical workloads for data warehouse, data lake, and AI/ML
processing, which have the following properties:

• Massive small file access: In addition to a large file sequential
access and large file random access, millions of 16 KB files are
generated in large-scale production environments, which need
to be managed carefully to ease disk and network I/O overheads.

• High concurrency: The cache needs to support large volume of
concurrent jobs. In one of our large production environments,
the system processes over 9 million queries and 1 million ETL
jobs daily. During its peak business hours, the system faces the
demand of over 8000 concurrent queries, imposing significant
strain on the cache (500 concurrent jobs per node) to handle
data read/write gracefully with fixed I/O capacity.

• Low latency: Latency stands as a pivotal factor influencing
real-time analysis, fast data retrieval, AI/ML processing, and
other time-sensitive jobs. These tasks expect query responses
like MPP processing, which requires the cache to significantly
reduce overall response delays, aiming for a substantial
decrease in latency by 2x and more. Such enhancements
empower expedited decision-making processes and facilitate
seamless execution of real-time analytics, thereby elevating
operational efficiency and responsiveness in various
applications.

• Seamless access to diverse storage infrastructure: Large
enterprise users store data in diverse infrastructure such as local
and remote HDFS, S3, and FTP storage, etc to utilize historical
IT investments. Building modern analytic and AI pipelines
requires the cache being able to flexibly exchange data with
different storage systems, minimizing data silos and redundant.

• Shared memory support for query operator pipelining: Shared
memory becomes critical when dealing with large amounts of
data in parallel operations. Supporting data pipelines through
shared memory enables rapid transmission and processing of
data at different processing stages, reducing unnecessary data
copying and transmission time to the local or remote storage,
thereby improving processing efficiency and overall system
performance.

3 GOPHER DESIGN OVERVIEW
In this section, we present a comprehensive overview of the Gopher
system, elucidating its architecture, API functionalities, and
providing practical examples to illustrate its application and usage.

3.1 System Architecture
Gopher is a distributed cache system that supports high concurrent
and low latency access to massive small and large files. It is
deployed to each node at the data warehouse computer layer to
accelerate computing I/O access (Figure 2-a). In order to avoid
potential intra-cluster network communication constraints which
we have observed in other centralized master-slave distributed
cache systems, the cache adopts a decentralized design in which
each cache instance is a self-contained client/server service, acting
as a local file system with two-level caches for data warehouse
computing services at the node. Figure 2-b illustrates the main
components of Gopher.

1) The metadata service is the core of the cache system. It
manages metadata such as task status, file name, or block ID and
interfaces with other modules to facilitate access data for clients.
To gracefully handle massive I/O requests, the metadata service
employs a working thread pool which consists of separated child
thread pools. These pools handle long-executing commands and
manage disk space asynchronously, ensuring efficient resource
utilization.

2) The user file system stores destination storage information
such as target file systems, ports, and buckets, etc.

3) The block manager and file manager offer data access for
blocks and files, respectively. They utilize stream reads and writes
to process large files in a small memory buffer, improving I/O
efficiency and reducing memory usage.

4) The cache manager implements a two-level cache, a memory
pool as well as an SSD cache, to productively utilize the limited
cache space and improve data access speed. The memory pool
supports zero-copy processing, facilitating shared memory access
to enhance runtime efficiency. The SSD cache stores data swapped
out by the memory pool. As a non-volatile storage medium, the

Figure 2: Gopher Cache System Architecture.

SSD cache can be used to restore computing states when the node
accidentally crashes.

5) The persistent storage module incorporates network
transmission libraries such as liboss2, libhdfs3 and libftp to
complete network connection and transmission tasks to S3 object
storage, HDFS and local storage, an expanding list of storage
options.

6) The session manager utilizes epoll multiplexing to handle
connections from multiple clients simultaneously. The client
implementation involves the cache system APIs as well as stream
objects such as FileInStream and File OutStream to stream read and
write data efficiently. The flatbuf protocol is employed to provide
high-performance and reusable serialization and deserialization.

As a high-performance and highly available caching system,
Gopher supports multiple key features such as file prefetching,
batch read, shared memory, asynchronous write optimization,
concurrent multiple reads, and small file memory merging, etc.
These features can practically reduce I/O operations and memory
copies, supporting efficient concurrent processing and rapid
scaling-out. Detailed cache optimizations are described in Section
3.3 and 4.

3.2 API
Gopher provides a comprehensive set of client interfaces to manage
files and directories, ranging from basic file operations to advanced
cache management. The interfaces include C, C++, and Java
implementation for flexible invocations. C is the primary interface
as it is convenient for direct database calls. Figure 3 shows common
interfaces in C for different types of operations.

a) User operations are client interfaces to establish and terminate
a connection with Gopher and the remote persistent storage. For
instance, the connect() method (line 2) passes the destination
persistent storage information in parameter configure to ask Gopher

to set up a connection with the remote storage system and returns a
handle to a file system managed by Gopher.

b) File operations are standard file operations that open, read,
write, and close files. Parameter sync in the closeFile() method
(line 8-9) is to specify whether to synchronize the file to the remote
storage immediately.

c) Batch operations are to accelerate reading files smaller than 8
MB. For instance, the prefetch() method (line 16-17) instructs
Gopher to prefetch files specified in fileList. The batchRead()
method (line 18-19) multiple files into the buffer which is normally
set to 8 MB.

d) Memory object operations are methods to instruct storing
intermediate results in the memory directly instead of writing to
temporary files. These I/O optimizations are discussed in detail in
Section 4.3.

In addition to the operations mentioned above, Gopher also
provides interfaces to support administrative tasks, UUID handling,
and other functionalities, servicing as a comprehensive file system
for clients. These interfaces have not been detailed here because
they are less directly related to the subject of caching.

3.3 Examples
This section uses an example of reading and writing a sequence of
files with various sizes from an object storage service (OSS) to
illustrate the cache system’s I/O process. This process supports
reads, synchronous writes, and asynchronous writes.

The client calls connect() and disconnect() to establish and
terminate a connection with the cache system. Once receiving the
OSS connection information from the client, the cache system
persists it in the user file system, initializing a working pool at the
metadata service to start the interaction with OSS using libraries in
the persistent storage module. These allocated resources will be
freed when the I/O process completes, and the connection
terminates.

3.3.1 Reads

There is a strong correlation between file size and I/O efficiency,
and we have observed that a database process reaches good input
utilization when it is given a buffer of at least 1 MB or a whole data
block. Hence, we first sort the list of files to read based on their file
sizes and apply separate read policies according to their sizes.

1) Files less than 1MB. Files smaller than 1 MB are all read in
batch. The client calls prefetch() to request the list of files and then
calls batchRead() to read the file data. On the other hand, upon
receiving the list of small files, the cache system allocates a 16 MB
buffer at its two-level cache, reading files from OSS to the buffer.
When either the 16 MB buffer is filled or the batch accumulates
100 small files, a new stream of small files will be returned to the
client.

2) Files between 1 MB and 8 MB. Unlike files smaller than 1
MB, the process of transferring files between 1 MB and 8 MB from
OSS to the cache and then from the cache to the client occurs
asynchronously. As soon as a file is cached in the buffer, a fresh
stream is initiated to the client, even as the cache continues to
retrieve additional files from OSS.

1. /* a. User Operations */
2. gopherFS connect(gopherConfig configure);
3. int disconnect(gopherFS fs);
4.
5. /* b. File Operations */
6. gopherFile openFile(gopherFS fs, const char *path,
7. int flag, toOffset block_size);
8. int closeFile(gopherFS fs, gopherFile file,
9. bool sync);
10. tSize read(gopherFS fs, gopherFile file,
11. void *buffer, tSize length);
12. tSize write(gopherFS fs, gopherFile file,
13. const void *buffer, tSize length);
14.
15. /* c. Batch Operations */
16. int prefetch(gopherFS fs, int num,
17. const char **fileList);
18. int batchRead(gopherFS fs, int num,
19. const char **fileList, void *buffer);
20.
21. /* d. Memory Object Operations */
22. int createObject(gopherFS fs, const char* object_id,
23. int64_t data_size, char** data);
24. int sealObject(gopherFS fs, const char* object_id);
25. int getObject(gopherFS fs, const char* object_id,
26. int64_t timeout_ms, const char** data);
27. int releaseObject(gopherFS fs, const char* object_id);
28. int deleteObject(gopherFS fs, const char* object_id);

Figure 3: Gopher Client Interface Examples.

3) Files more than 8MB. Files exceeding 8 MB in size are moved
from OSS to the cache and then served to the client in 8 MB blocks
in turn. These data blocks can also be prefetched when we set a
block-prefetch configuration flag in Gopher. When the client issues
a read() request specifying the file’s offset and the desired data
length, the cache system verifies if the requested block is already
stored. If not, it initiates the download of subsequent blocks in the
file and forwards the block to the client once it has been retrieved.

3.3.2 Synchronous Writes

To perform synchronous writes, the client first calls openFile() to
create and specify the block size of the file in the cache. Then it
invokes write() to ask the cache system to allocate a memory space
with the given block size, writing file contents to the memory.
When the block is filled, the cache system allocates a new block in
memory to the client to continue writing and send the filled block
to OSS in the background. When the file is completely written, the
client calls closeFile() to terminate the write process. As writing
data to OSS takes much longer than writing to the local cache, the
working thread pool supports simultaneously writing multiple
blocks to OSS in parallel to accelerate writing.

3.3.3 Asynchronous Writes

The asynchronous write feature can further expedite the writing
process of sequential files by only verifying the file writes at the
time of transaction completion. For instance, the database performs
10 inserts during a transaction and instructs the client to write 10
files. When the client calls the closeFile() after writing the first file
to the cache, the cache system immediately returns write
completion, allowing the client to start writing the next file even
though writing to OSS is still in progress. On the server side,
Gopher writes and aggregates these files in the memory pool and
asynchronously sends them to the persistent storage in batch in
parallel. Write completion will be verified when the transaction
ends and summit() is called. If any file write is unsuccessful, the
entire transaction will be rolled back. Otherwise, the database will
proceed to the next transaction. The asynchronous writes feature
transforms a sequential database write process to writing cached
blocks to OSS in parallel, thereby substantially accelerating the
write process.

4 CACHING OPTMIZATIONS
This section discusses caching optimizations in addition to file
prefetching and asynchronous writes covered in section 3, such as
small-file merging and rapid cache reconstruction. We design and
implement these innovative features in Gopher, enhancing its
functionality as a high-performance compute layer cache within an
elastic cloud environment.

4.1 Merging Small Files into Blocks
Large-scale analytical computing clusters inevitably deal with
massive numbers of small files. As the cluster grows and the
number of nodes increases, the same data is divided into more
segments, resulting in smaller segments that are then distributed
evenly across the compute nodes. Consequently, the files processed
on each node continue to decrease in size. In some of our large
production environments, which house over 10,000 virtual

machines and handle several million queries daily, we have
identified millions of files less than 16KB. These files generate
significant I/O pressure, creating a bottleneck that impacts overall
performance. To address this challenge, we have developed a small
file merging and caching strategy to improve the system’s
efficiency.

The mechanism of merging small files into blocks operates as
follows. Files smaller than 16KB are identified and distinguished
from other files, encapsulated into 8MB cached data blocks. The
data block structure is self-descriptive, containing metadata such as
file names, start offsets, file lengths and bitmap locations at the
block footer. Interfaces for block-level read, write, delete, and
lookup are provided for rapid data access. By accessing just a single
data block, the client gains all the necessary information to access
500 files or more, resulting in a highly efficient process.

In addition, data locality, multi-threading, and two-level caches
are utilized to enhance data access optimization.

1) To better support range reads, files are aggregated based on
data locality rather than random distribution. Files that are
frequently accessed together or belong to the same table are
arranged into the same block as much as possible. When these files
need to be read, the number of data blocks to load reduces
significantly.

2) For file updates and deletes, we utilize an append-only
method that allows for non-blocking operations. Background
threads in the working pool will batch-process the cleanup of
outdated files asynchronously.

3) The local SSD pool is utilized as a large volume L2 cache.
The cache manager first assigns memory space in the memory pool
to support fast data block access. When the memory usage reaches
the upper limit, the cache manager moves the least recently used
blocks to the local SSD pool instead of destroying them. When files
in these blocks are needed again, we can reload the blocks to the
memory rather than reconstructing them via fetching hundreds of
files from the remote storage. By combining small files into data
blocks and employing the optimization measures above within the
cache, the utilization of I/O resources is effectively balanced,
substantially reducing high I/O issues and thereby enhancing the
stability and performance of the system.

Figure 4: Cached Data Block for Small Files.

4.2 Rapid Cache Reconstruction in Cluster
Horizontal Scaling

Horizontal scaling is a common occurrence for analytical systems
in massive production environment, which may significantly affect
the computing cluster performance. As the priorities of business
requests change over the course of the day, different compute
clusters scale out and in accordingly. For example, during daytime
business hours, interactive queries are frequent and server
resources are primarily allocated to clusters that support those
queries. At night, when the company needs to consolidate and
analyze daily business data, computing resources are shifted to
clusters that support batch jobs. Driven by dynamic changes in
business requirements, compute clusters are scaled out and in
multiple times a day to adapt to workload changes. However, the
compute nodes that get assigned new data partitions after the
horizontal scaling often become the shortboards of a barrel due to
the nature of missing or mismatch of local caches. We have
observed that, in large-scale production environments, retrieving
massive files from the remote persistent storage to reconstruct the
cache can take anywhere from half an hour to several hours,
severely impacting the cluster. To address this challenge, we
developed a feature that allows the cache to be rapidly
reconstructed after the cluster horizontally scales.

The mechanism of rapid cache reconstruction is as follows. Data
in the persistent storage is evenly distributed among nodes in a
computer cluster in the unit of data logical partitions according to a
consistent hash algorithm. When a scaling occurs, the mapping
between the data and the compute nodes is changed. For instance,
if a cluster of 128 compute nodes is scaled out to 256 nodes, the
mapping between the data in the persistent storage and the compute
nodes changes from 1:128 to 1:256. The node that newly joins the
cluster can use the consistent hash algorithm to calculate and
identify the node where its data logical partitions mapped, sending
cache synchronization requests to it. The two nodes transfer the
cached data in the unit of a data block which is introduced in 4.1
and can encapsulate hundreds of small files through a multi-thread
communication module in the cache system. File MD5’s are
examined to ensure data consistency. If there is an exception in the
transmission process, the communication module will restart the
cache synchronization until all the requested cache data is
synchronized successfully. At this time, the cache system in the old
node will mark the transferred cached blocks invalid, and its
background thread will perform cleanup, releasing local cache
resources to allocate for new tasks. Since it is a many-to-many
communication process among nodes within the same cluster, the
cache reconstruction is highly efficient and usually completes in
seconds.

4.3 Memory-First Intermediate Result Sharing
The execution plans of analytical query jobs are usually complex,
involving sequential executions of multiple operators. The output
of one operator is the input of the next one. Substantial intermediate
results are generated and saved in this process. In traditional
database processing, these intermediate results are typically stored
as temporary files cached on disk, which may encounter several
potential bottlenecks:

1) Disk caching requires data to be written from memory to disk
and then read from disk to memory, a process that involves disk I/O
and memory copying, which has a significant impact on
performance.

2) When the upstream operator is writing a temporary file, the
downstream operator needs to wait until the file is completely
written, which will hinder the execution of the downstream job,
wasting the CPU and other system resources allocated to the
downstream operator.

3) In the cloud database scenario, as the number of compute
nodes increases, the data partition range controlled by each node is
narrower, resulting in the temporary files saved by each node being
smaller in size but greater in number. This creates greater pressure
on file metadata management, serialization, and deserialization.

In an effort to support intermediate results between different
operators in the execution plan effectively, we’ve introduced a new
option to store intermediate results as in-memory objects in
addition to saving them as temporary files. By prioritizing in-
memory objects for caching, we can reduce the overhead associated
with disk writes and memory copies, enhance collaboration
between upstream producers and downstream consumer operators,
and reduce the costs involved in managing many small files.

Figure 3.d illustrates the client interfaces to manipulate an in-
memory object that supports zero-copy write-once-read-many,
allowing multiple operators to perform efficient concurrent reads.
Line 22-23 is the createObject() method which allocates memory
resource and creates an in-memory object, returning the object ID
and memory address (specified in the parameter data) to the client.
Once obtaining the memory address, the upstream operator writes
to the memory. Upon completion of writing, it invokes the
sealObject() method (line 24) as a signal to the cache system that
the in-memory object has been fully written to and ready for
reading. On the other hand, the downstream operators invoke the
getObject() method (line 25-26) to read data in the in-memory
object and call the releaseObject() method (line 27) upon
completion of reading. When all the downstream operators finish
reading, the deleteObject() method (line 28) is called by the client
or the cache background process to release the memory resources.

In a similar vein, temporary files are written and read in the same
way as normal files. Clients use file operations in Figure 3.b to open
and close files, writing and reading data.

This hybrid method to cache intermediate results as in-memory
objects or temporary files provides clients the flexibility to choose
either the memory pool or the SSD cache pool to transmit
intermediate results from one operator to the next efficiently. The
client can take the actual data sizes and latency needs into
consideration, dynamically opt for the most suitable cache, thereby
enhancing I/O resource utilization and overall query performance.
Below are the intermediate result sharing strategies in TeleDB-
ADB database, which exemplifies the advantage of this hybrid
caching technique.

1) When the intermediate result is less than 8MB, the client will
create an in-memory object to save the intermediate result. Caching
these data in memory uses only limited memory resources as well
as avoiding frequent disk I/O’s. In addition, since memory objects
support zero-copy write-once-read-many operations, downstream
operators can directly read memory objects that have been sealed

by the upstream operator without having to apply for additional
memory, copy data, and perform serialization or deserialization
again. This significantly improves the efficiency of reading
intermediate results.

2) When the intermediate result is greater than 8 MB, the client
can decide whether to store the data in memory or SSD cache pool
based on whether the downstream operators consume the
intermediate result immediately. 2-a) Intermediate results need to
be consumed immediately. In this case, the client uses the in-
memory object interface to cache intermediate results, writing to
multiple in-memory objects. Instead of waiting until all the data is
written into the temporary file, the downstream operator can start
reading the data once any in-memory object is sealed without
additional disk I/O or memory copy. Collaboration between
operators and system utilization are both more efficient. 2-b)
Intermediate results are not immediately consumed. In this case, the
client invokes the file operation interfaces to write the intermediate
results to the SSD cache directly, which reduces the number of data
copying, faster than first writing to the memory and then placing it
on the disk.

5 EXPERIMENTAL EVALUATIONS
In this section, we evaluated Gopher’s general performance and
various features using a collection of experiments that employ the
TPC-H benchmark and real-world data workloads. The
experiments demonstrate that Gopher excels as a cache system,
delivering low latency, high concurrency, and robust throughput
when handling data warehouse and machine learning system files
of various sizes in the elastic cloud environment.

Unless specified, the experimental configuration is as follows:
the TeleDB-ADB database is established to include a compute
cluster and a storage cluster. The compute cluster is composed of 1
master node and 8 segmented nodes, with a total local storage
capacity of 100 GB. Each node is equipped with 8 core CPUs and
16GB memory resources. For the Gopher caching system, 8 CPU
and 16 GB memory are assigned at each node for the cache system.
The storage cluster supports s3 I/O interfaces, responsible for
persisting the database data. Servers are connected with 30Gbps
network.

5.1 End-to-End Evaluation
In this section, we evaluate Gopher’s performance in managing
database and machine learning workloads through the TPC-H,

slowly changing dimensions, and unstructured data file read/write
tests.

5.1.1 TPC-H

We utilize the TPC-H 100GB benchmark to evaluate Gopher’s
efficiency as a cloud database cache. This standard data warehouse
workload generates files in the file size range of 0 to 453 MB for
Gopher to process. Three experiment control groups are set up to
evaluate the results. In the first and second group, the TeleDB-ADB
cloud-native database executes the TPC-H benchmark, with and
without using Gopher, respectively. In the third group, a
Greenplum database (version 6.2) which employs a traditional
MPP architecture that stores data locally is configured with the
same CPU, memory, and disk resources to execute the TPC-H test.
This group acts as a performance baseline for commercial data
warehouses.

Figure 5 visualizes the experiment results. The x-axes denote the
22 queries of TPC-H. The y-axis in Figure 5-a denotes the
performance comparison between the TeleDB-ADB cloud-native
database that does not use its compute node local storage as a
compute layer cache (TeleDB-ADB w/o Cache) and the Greenplum
MPP database (Greenplum) in percentage. The y-axis in Figure 5-
b shows the performance comparison between the TeleDB-ADB
database that employs Gopher to cache data in its compute nodes
(TeleDB-ADB w/ Gopher) and the Greenplum MPP database
(Greenplum), also denoted in percentage.

The test results reveal that Gopher can enhance storage-
disaggregated database query performance significantly to process
data warehouse workloads and serve enterprise-level critical
missions. In the scenario without a compute cache (Figure 5-a), all
22 queries experienced a drastic slowdown, with performance
declining by as much as 70.5% to 7x, and an average performance
degradation of 4x. The performance downgrade is due to an
architecture change where data is now stored in remote storage
instead of the local server. As a result, the database must fetch this
data via the network, which is slower and less stable compared to
reading data from local SSD storage.

In the scenario where Gopher is used, the query runtime for the
TeleDB-ADB cloud-native database improves by a factor of 4. As
Figure 5-b illustrates, the query times are very similar to those of
Greenplum, with individual query difference varying from a
decrease of 52.9% to an increase of 41.2%, resulting in an overall
difference less than 8.1%. The significant improvement is due to
two key factors. First, the overall architecture incorporates a cache
layer within the compute nodes, establishing a multi-tier cache

Figure 5: TPC-H Experiment Results for Greenplum vs TeleDB-ADB w/o Cache, and Greenplum vs TeleDB-ADB w/ Gopher.

system that allows data to be stored in memory, SSD disks, and
remote storage. This system facilitates smooth swapping between
different storage layers and ensures that data is served to the query
job as required, maintaining efficient performance. Second, in
addition to this robust architecture, we have implemented a range
of caching features, including file pre-fetching, asynchronous
writes, and zero-copy. These features further optimize Gopher’s
resource utilization, throughput, and hit rates. The effectiveness of
these features is thoroughly evaluated and discussed in section 5.2.

5.1.2 Slowly Changing Dimensions

To accurately evaluate its performance in real-world business
contexts, we use slowly changing dimensions (SCD), a technique
commonly employed by banks to manage changes in account
transactions, as the database operations to assess Gopher. The
streamlined bank transaction scenario we simulate is as follows:

• A regional bank serves 1 million customers, each with a single
account.

• The bank's financial transactions encompass four primary
operations: account opening, closure, deposit, and withdrawal.

• Every day over a 360-day period:

o 20,000 new customers open accounts and 20,000 existing
customers close theirs.

o 100,000 customers deposit $100 and another 100,000
withdraw $100.

• To simplify the experiment setup, all accounts are initially
credited with sufficient funds and each account performs at
most one of the four operations above.

The database system captures these daily business transactions and
maintains a detailed historical record. It is vital for the bank’s
ongoing operations and supports various business needs, such as
generating financial reports, managing customer relationships, and
conducting audits.

The database technical operations that support this bank
transaction business scenario are as described follows:

• A database table, Accounts, records the bank’s client account
information (Figure 6), with each row representing a customer
account and a total of 1 million rows.

• Over a 360-day cycle, daily operations include:

o Insert 20,000 rows.

o Delete 20,000 rows.

o Update 200,000 rows, with half increasing the balance by 100
and the other half decreasing the balance by 100.

• All data changes are written to the table as appends. Both old
and new records are retained and distinguished by the
start_date and end_date fields as shown in Figure 7.

• To continuously support its mission-critical tasks, the database
routinely performs a vacuum every 7 days, cleaning up and
optimizing its storage space to ensure it remains in an optimal
state.

Similar to 5.1.1, we conduct this experiment with three control
groups. First, we use a TeleDB-ADB cloud-native database without
employing compute-side storage as a cache (TeleDB-ADB w/o
Cache). Second, we utilize a TeleDB-ADB database that employs
Gopher as its compute layer cache (TeleDB-ADB w/ Gopher).
Finally, we include a Greenplum MPP database (Greenplum). Each
of these three groups is configured with identical server resources
and runs on 10 concurrent processes.

Figure 8 illustrates the test results. The x-axes denote the 360
days and the y-axes denote the update (line 1-29 in Figure 7) and
query (line 31-39 in Figure 7) time, respectively.

The experiment results show that Gopher exhibits excellent
performance advantages in complex database operations in the long
term. SCD tables, due to their necessity to manage multiple
versions of data, are complex to update and can generate a large
number of small files, a common issue in database management.
For instance, in our simplified bank transaction scenario, executing
operations from line 1-29 in Figure 8 every day to update 220,000
rows of data results in hundreds of files less than 8 KB. Despite
regular vacuum optimizes storage space, the number of small files
remains significant, leading to frequent I/O operations and
inefficient use of storage space, which decrease database
performance and resource efficiency. Additionally, as the SCD
version maintenance continues, the version history becomes
extensive and the data volume increases significantly. For instance,
the database is needed to handle files over 10GB in size in this

1. Table accounts(
2. id BIGINT,
3. balance BIGINT,
4. start_date DATE,
5. end_date DATE);

Figure 6: Bank Account SCD Table.

1. -- Open an account –-
2. INSERT INTO accounts <new account data>;
3.
4. -- Close an account –-
5. UPDATE accounts
6. SET end_date = <current date>
7. WHERE id = <account id to close>;
8.
9. -- Deposit or withdraw $100 for an account –-
10. INSERT INTO accounts
11. SELECT id,
12. balance+<dollar change>,
13. <current date>,
14. to_date('2999-12-31', 'yyyy-mm-dd')
15. FROM accounts
16. WHERE id = <account id to update>;
24.
25. UPDATE accounts
26. SET end_date = <current date>
27. WHERE id = <account id to update>
28. AND start_date != <current date>
29. AND end_date = to_date('2999-12-31', 'yyyy-mm-dd');
30.
31. –- Query active accounts
32. SELECT count(*)
33. FROM accounts
34. WHERE end_date = to_date('2999-12-31', 'yyyy-mm-dd');
35.
36. –- Query accounts changed in the previous day
37. SELECT count(*) –- exclude closed accounts
38. FROM accounts
39. WHERE start_date = <previous date>;

Figure 7: Bank Account Database Operations.

experiment, according to our measurements. This massive data
volume not only extends query times but also raises cache eviction
rates, further diminishing database performance.

Faced with the dual challenges of handling millions of small files
and managing large datasets, the database's query and update
performance is significantly impacted. However, Gopher has been
successful in reducing the negative effects of these challenges. As
Figure 8-a illustrates, Greenplum's update time decreases from an
average of 22.29 seconds during the first three days to 55.59
seconds during the last three days, showing a 2.49x drop in
performance. In comparison, a cloud database with disaggregated
storage and no compute cache performs worse, experiencing longer
query time and more significant performance degradation over time.
The average update time for TeleDB-ADB w/ cache is 55.97
seconds during the first three days, which is 2.5x slower than
Greenplum, and it increases to 294.90 seconds during the last three
days, which is 5.3x slower than Greenplum, with a performance
drop of 4.5x. Conversely, thanks to Gopher’s optimizations for
handling both small and large files, TeleDB-ADB w/ Gopher
performs significantly better. It has an average update time of 21.11
seconds during the first three days and 31.21 seconds during the

last three days, with only a 1.48x performance degradation. This is
better than Greenplum’s performance in both same-day updates and
late-stage performance degradation.

5.1.3 Unstructured Data File Reads / Writes

In addition to its support for cloud databases in processing
structured data, Gopher can serve as a compute layer cache for
machine learning processing in the cloud. It significantly improves
the caching of semi-structured and unstructured data throughout the
machine learning lifecycle, including training, fine-tuning, and
inference phases. To assess Gopher’s suitability as a cache for
machine learning workloads, we conducted an experiment that
focused on its write and read efficiency for unstructured data of
diverse sizes.

Two control groups are set up. One group utilizes Gopher while
the other uses Alluxio. Both groups are configured with the same
hardware resources and preloaded data. To thoroughly evaluate
their support for different kinds of data files used in machine
learning processes, the test encompasses a wide range of file types,
ranging from 8 KB web pages to 512 MB video files.

	

Figure 8: Slowly Changing Dimension Transformation Experiment Results for

Greenplum vs TeleDB-ADB w/o Cache vs TeleDB-ADB w/ Gopher.
	

	
Table 1: Gopher vs Alluxio Unstructured Data File Read /Write.

Table 1 shows the test results. The leftmost column shows the
file sizes. The central four columns show the write and read
efficiency of Alluxio and Gopher in MB/second, respectively. The
two rightmost columns compare the write and read rate of Gopher
and Alluxio.

The experimental results indicate that Gopher is an effective
compute layer cache when handling unstructured data of varying
sizes. With increasing file sizes, both Gopher and Alluxio exhibit
improving read and write performance, with Gopher showcasing
more pronounced advantages. Specifically, at the time of writing,
Gopher outperforms Alluxio by 2x. This superior performance can
be attributed to Gopher's fully distributed design, which eliminates
the network overhead and the metadata interaction bottleneck
associated with Alluxio's Master-Slave architecture. When it comes
to read operations, Gopher has demonstrated a significant
performance edge, ranging from 3.8x to 8.9x, thanks to its
optimized handling of small files. However, as file sizes continue
to escalate, the limitations of available memory space necessitate
data swapping, causing Gopher's performance lead over Alluxio to
diminish to approximately 2x.

5.2 Advanced Caching Feature Experiments
This section evaluates and discusses Gopher’s advanced features
such as file prefetching, asynchronous writes, small file merging,
cache reconstruction, and intermediate result sharing in memory.

5.2.1 File Prefetching

We use a TPC-H test bed to evaluate the file prefetching feature
with 100GB data. Two experimental control groups are established.
In the first group, file prefetching is activated, while the second
group disables file prefetching. To guarantee the integrity of the
experimental data, each experimental condition is replicated 10
times.

Figure 9 illustrates the experiment results. Given the varying
runtime of different queries, we convert the execution time with file
prefetching (FP) and the execution time with no file prefetching
(NFP) to percentages to facilitate an intuitive comparison. The test
results indicate that enabling file prefetching reduces query run
time from 20% to 51%, excluding Q13 and Q22, which see
improvements of 5.6% and 2.0% respectively. The less impact on
these two queries may be due to both the smaller amount of data
involved in the query executions and the likelihood that these data
have already been cached during earlier query runs. This suggests
that file prefetching is an effective method to reduce data wait time
on remote storage, which in turn enhances CPU utilization and
query performance. These benefits are pronounced in cloud data
warehouse scenarios where the compute node’s local storage is
limited compared to the volume of data they handle. When local
storage is abundant, the effect is correspondingly reduced.

5.2.2 Asynchronous Writes

We use the database load process in the TPC-H benchmark to
evaluate the impact of asynchronous writes on the performance of
database writes. We first stage the generated data on the local disks
of the compute nodes and then write it to the database as append-
only tables. The database uses Gopher’s multi-level storage
capabilities to persist its table data in object storage. We set up two

control groups for this experiment. In the first group, the
asynchronous write function is activated. After writing data to
Gopher, the database process can immediately proceed to the next
operation without waiting for the data to be completely written to
the object storage. In the second group, the asynchronous write
function is turned off. The database must wait for Gopher to
complete writing data to the object storage. We repeat the test using
25GB, 50GB, 100GB, 200GB, 400GB, and 800GB data
respectively.

Table 2 shows the results of the experiment. The leftmost
column denotes the data volume in GB (DV). The middle two
columns are the time to perform synchronous writes (SW) and
asynchronous writes (AW) in seconds. The rightmost column is the
improvement of asynchronous write time compared to synchronous
write in percentage (IMPV).

The test results reveal that asynchronous writes enhance
database write performance by 21%-45%, across varying data sizes.
This improvement could be attributable to two reasons. First, the
asynchronous write feature decouples the database write operation
from the remote object storage write operation. This allows the
database to initiate the next task promptly after completing writing
to Gopher, reducing the database process’s wait time. Second,
when Gopher writes data to the object storage, it can aggregate
multiple write requests and process them in batch. This
substantially improves the efficiency of data writes to object
storage over the network. The trend of test results also supports
this reasoning. As the data volume increases, Gopher can
consolidate more write operations to object storage, thereby
amplifying the performance benefits.

5.2.3 Small File Merging

To assess the benefits of the small file merging feature, we
conduct a stress test in which we write massive small files to
Gopher and monitor changes in I/O utilization and read/write
performance. Two control groups are set up for comparison. In the
first group, the small file merging function is activated, and the files
are merged in 8MB following their entry into Gopher. In the other
group, this feature is turned off and all files are stored and read in
their original size and quantity. Each of these two groups is
configured with identical server resources and runs on 200
concurrent processes. The test workloads are generated from real-
world production profiling, encompassing a large volume of files
ranging from 0.5 KB and 16 KB.

Figure 9: TPC-H 100GB with File Prefetching (FP) vs No File
Prefetching (NFP).

Figure 10 shows the experiment results. In Figures X-a and X-b,
the X-axis represents the file size, and the Y-axis represents the IO
utilization in percentage and read efficiency in MB/second. The
data of the two sets of experiments are labeled as "merged" and
"unmerged", respectively.

In the test result datasets, the I/O utilization rate decreases from
nearly 100% to 20%-40% after file merging. Meanwhile, the read
rate jumped from 100-160 MB/second to 400-520MB/second,
achieving a 2.5x to 5x performance improvement. These results
show that the small file merge function can significantly mitigate
disk I/O pressure and improve throughput.

5.2.4 Cache Reconstruction

To quantitively evaluate the effect of the cache reconstruction
feature, we conduct an experiment to scale out a working database
cluster and observe the cache reconstruction time. The database is
first configured to repeatedly execute select queries from real
production environment to fully activate the Gopher cache. Then
we instruct the database to perform a cluster scale out and double
its compute nodes, observing the time to reconstruct the cache. Two
cache recovery strategies are applied in different experiment
control groups respectively. In the first group, the cache
reconstruction feature is enabled and cached data are copied from
existing compute nodes to newly added nodes. In the second group,
the cache reconstruction feature is disabled. The newly added nodes
pull data from the storage cluster directly to build its cache. In our
production environment, it is common to see a database cluster
consisting of several million of files. Hence, we repeat the
experiment using various numbers of files to account for different
sizes. File numbers in the database cluster are 320000, 640000,
1280000, 2560000, 5120000, and 10240000.

Table 3 displays the result of the experiments. The number of
files is listed in the leftmost column. The cache recovery time with
and without the cache reconstruction feature (CR and NC,
respectively) are shown in the central columns. The rightmost
column provides the ratio of these two cache recovery time.

The experiment yielded a 36x or greater improvement in cache
recovery time when the cache reconstruction feature is enabled. For
instance, for an active database cluster which comprises 10 million
small files, the cache reconstruction feature can substantially
decrease the cache recovery time from 13429 seconds (3.7 hours)
to 258 seconds (4.3 minutes). This improvement aligns with the
outcomes observed in our customers’ production environment. In
addition, as cached data are transferred between compute nodes in
8 MB merged block rather than individual files, the benefit
increases as the number of files to recover rises. The experiment
results confirm this reasoning, showing that as the file number
ranges from 320,000 to 10 million, the improvements of cache
recovery time reach from 36x to 52x.

5.2.5 Intermediate Result Sharing in Memory

To assess the intermediate result sharing in memory feature, we use
the database to run a simplified embedded query from production
environment which first writes timestamps and other data to a table
and reads from the writing results. Two experimental control
groups are applied. In the first group, memory object is used to
enable intermediate result sharing in the memory. In the other
group, this feature is disabled. As both the file size and memory
object size may have an impact on the execution time, we repeat
the experiment using various sizes of file and memory objects. A
broad spectrum of file sizes is tested to observe the cumulative
effect on complex queries involving sequences of write and read
operations. The file sizes are 32 MB, 128 MB, 512 MB, 2048 MB
and 8192 MB. The memory object sizes are 0.5 MB, 1 MB, 2 MB,
4 MB and 8 MB.

Table 4 illustrates the result of the experiments. The file size and
the memory object size are in the leftmost two columns. The
execution time using memory object (M) in millisecond, the
execution time without memory object (NM) in millisecond and the
percentage improvement of using memory object (IMPV) are in the
other columns. In all test cases, the group utilizing memory objects
outperforms the other group by 25% or more.

Figure 10: IO Utilization and Read Rates of Merged vs Unmerged Small Files.

Table 2: Synchronous Writes vs Asynchronous Writes.

Table 3: Cache Reconstruction Time.

Table 4: Share Intermediate Results with Zero-Copy Memory.

The experiment result demonstrates that memory object can
significantly speed up write-read query operations by minimizing
data copying, thereby reducing wait times for subsequent tasks.
Additionally, performance enhancements are influenced by both
the file size and the memory object sizes. This is likely because
various workloads require different optimal memory object sizes
for efficient data-sharing pipelines. To address this, we have
provided a memory object creation interface (line 22-23 in Figure
3) that allows the client, such as a database, to define the desired
memory object size, resulting in greater flexibility as well as
improved overall performance and resource utilization.

6 RELATED WORK

Gopher operates as an integrated platform that provides both
caching and hierarchical storage capabilities for storage-
disaggregated analytical systems. This section will discuss research
and industrial work in storage-disaggregated analytical systems,
with a focus on cache systems and hierarchical storage, respectively.

Storage-Disaggregated Analytical System. Modern cloud
databases have embraced an architecture that incorporates storage
disaggregation, which include databases natively developed for the
cloud (e.g. Snowflake [20], AWS Redshift [21], PolarDB [23], and
TiDB [54]) as well as traditional data warehouse systems migrated
to the cloud (Vertica [74], Teradata Vantage [22, 75]). In addition
to cloud databases, big data processing engines like Spark [24] and
Presto [25] are leveraging the benefits of storage disaggregation
and are designed to support a disaggregated architecture. This
computational and storage decoupling enables each component to
seamlessly adjust to dynamic changes in workload demands.

Cache System. Caching systems are one of the key technologies
to improve the performance and resource utilization of large-scale
analytics jobs. A variety of distinctive caching technologies have
been developed in both the open-source and research communities.
Alluxio [8] is an open-source distributed caching system that
integrates with a variety of data processing frameworks, supporting
large-scale data processing tasks through its distributed nature. Yet
the master-slave architecture may lead to a single point of
performance bottleneck. Memcached [16] is known for its
simplicity and high concurrency processing capabilities, but it has
limitations in terms of data persistence. Redis [15], as an open-
source memory-based key-value store, offers swift data access and
comprehensive data structure support, but requires integration with
additional tools or technologies in distributed database scenarios.
Snowflake implements a multi-tier cache similar to Gopher. Both

systems cache files in compute nodes using consistent hashing and
opportunistic caching strategies. Different from the Snowflake
cache [76], Gopher supports caching features such as file
prefetching, asynchronous writes, small file merging, and cache
reconstruction, which can significantly improve performance.

The research community has also pioneered a range of caching
technologies. Hycache+ [56] allows cached data to be transparently
swapped between high-speed network-attached storage and
compute nodes by providing memory-level I/O throughput but may
require additional optimizations to accommodate the workloads of
different storage systems and database applications. Nectar [10]
improves data center resource utilization and simplifies the
development process by automating data and compute
management, but its reuse strategy of incremental computation and
shared compute operator can add complexity to the system when
combined with a database. CliqueMap [13] employs Remote
Memory Access (RMA) and Remote Procedure Calls (RPC) to
enhance the performance and scalability of distributed caching
systems. CompuCache [14] achieves a cost-effective remote
computing caching solution by leveraging VMs for data offloading
purposes rather than reducing latency.

Hierarchical Storage. In the cloud environment, hierarchical
storage that incorporates different types of media such as DRAM,
SSD, and HDD is a common approach to strike a balance among
performance, capacity, and cost. [27, 28] leverage SSDs for data
prefetching, enhancing the throughput of analytical processing. [57,
58, 59] utilize SSDs as read caches, maximizing the efficiency of
data reads through the application of multiple caching strategies.
[60, 61, 62, 63] adopt SSDs as write-back caches to implement a
two-tier file buffering mechanism, optimizing I/O performance.
[64, 65, 66] facilitate user management of optimal configurations
for multi-layer cloud storage instances, achieving flexible and rich
storage policies. [67, 68, 69, 70] detect I/O access patterns to
optimize storage-driven hot and cold data migration.

7 CONCLUSION
The rise of cloud analytical databases has prompted the adoption

of disaggregated storage models, which offer flexibility and cost-
effectiveness but introduce challenges related to remote storage
latency, bandwidth limitations, and local storage capacity
constraints. Traditional caching methods, despite enhancing read
performance, struggle with write operations or handling small files
efficiently. This paper introduces Gopher, a novel distributed
caching system designed to overcome these challenges. Gopher’s
decentralized architecture, enhanced by its cutting-edge features,
significantly boosts I/O performance and provides rapid,
concurrent access to files of all sizes. This makes it an optimal
choice for a computer layer cache system, particularly suited for
analytical database and AI workloads in the cloud. Experimental
results have shown that Gopher can substantially improve the
performance of cloud databases, achieving a fourfold increase. It
achieves this by delivering query times that rival those of MPP
databases while harnessing the benefits of elastic horizontal scaling.

REFERENCES
[1] Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan, Hamid

Pirahesh, and Berthold Reinwald. 2003. Cache Tables: Paving the Way for an
Adaptive Database Cache. In VLDB. 718–729.

[2] Christof Bornhövd, Mehmet Altinel, C. Mohan, Hamid Pirahesh, and Berthold
Reinwald. 2004. Adaptive Database Caching with DBCache. IEEE Data
Engineering Bulletin 27, 2 (2004), 11–18.

[3] Per-Åke Larson, Jonathan Goldstein, and Jingren Zhou. 2004. MTCache:
Transparent Mid-Tier Database Caching in SQL Server. In ICDE. 177–188.

[4] Michael Armbrust, Tathagata Das, Sameer Paranjpye, Reynold Xin, Shixiong
Zhu, Ali Ghodsi, Burak Yavuz, Mukul Murthy, Joseph Torres, Liwen Sun,
Peter A. Boncz, Mostafa Mokhtar, Herman Van Hovell, Adrian Ionescu, Alicja
Luszczak, Michal Switakowski, Takuya Ueshin, Xiao Li, Michal Szafranski,
Pieter Senster, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID
Table Storage over Cloud Object Stores. PVLDB 13, 12 (2020), 3411–3424.

[5] Snowflake. 2023. Caching in the Snowflake Cloud Data Platform.
https://community.snowflake.com/s/article/Caching-in-the-Snowflake-Cloud-
Data-Platform. accessed: 2024-01-16.

[6] Amazon. 2024. Database Caching. https://aws.amazon.com/caching/database-
caching/?nc1=h_ls. accessed: 2024-01-16.

[7] Ruihong Wang, Jianguo Wang, Stratos Idreos, M. Tamer Özsu, and Walid G.
Aref. 2022. The Case for Distributed Shared-Memory Databases with RDMA-
Enabled Memory Disaggregation. PVLDB 16, 1 (2022), 15-22.

[8] Alluxio. 2021. Alluxio - Data Orchestration for the Cloud.
https://www.alluxio.io/. accessed: 2024-01-16.

[9] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014.
Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks.
In SoCC. 6:1–6:15.

[10] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath,
Yuan Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and
Computation in Datacenters. In OSDI. 75-88.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba Borthakur,
Srikanth Kandula, Scott Shenker, and Ion Stoica. 2012. PACMan: Coordinated
Memory Caching for Parallel Jobs. In NSDI. 267-280.

[12] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel
Hagimont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. 2021. OFC:
An Opportunistic Caching System for FaaS Platforms. In EuroSys. 228-244.

[13] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Harshad
Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger, Thomas F.
Wenisch, and Amin Vahdat. 2021. CliqueMap: Productionizing an RMABased
Distributed Caching System. In SIGCOMM. 93-105.

[14] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, Badrish Chandramouli,
Vincent Liu, and Boon Thau Loo. 2022. CompuCache: Remote Computable
Caching using Spot VMs. In CIDR.

[15] Redis. 2024. Introduction to Redis. https://redis.io/docs/about/. accessed: 2024-
01-16.

[16] Memcached. 2020. Overview.
https://github.com/memcached/memcached/wiki/Overview. accessed: 2024-01-
16.

[17] Amazon. 2024. Amazon S3 Cloud Storage. https://aws.amazon.com/s3/.
accessed: 2024-01-16.

[18] Ceph. 2024. Intro to Ceph. https://docs.ceph.com/en/quincy/start/intro/.
accessed: 2024-01-16.

[19] Apache. 2024. HDFS Architecture Guide.
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. accessed: 2024-01-16.

[20] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp
Unterbrunner. 2016. The Snowflake Elastic Data Warehouse. In SIGMOD.
215-226.

[21] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish
Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael
McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak,
Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan,
Sriram Subramanian, and Doug Terry. 2022. Amazon Redshift Re-invented. In
SIGMOD. 2205-2217.

[22] Xin Tang, Robert Wehrmeister, James Shau, Abhirup Chakraborty, Daley Alex,
Awny Al Omari, Feven Atnafu, Jeff Davis, Litao Deng, Deepak Jaiswal,
Chittaranjan Keswani, Yafeng Lu, Chao Ren, Tom Reyes, Kashif Siddiqui,
David Simmen, Devendra Vidhani, Ling Wang, Shuai Yang, and Daniel Yu.
2016. SQL-SA for Big Data Discovery Polymorphic and Parallelizable SQL
User-Defined Scalar and Aggregate Infrastructure in Teradata Aster 6.20. In
ICDE. 1182-1193.

[23] Feifei Li. 2019. Cloud-Native Database Systems at Alibaba: Opportunities and
Challenges. In VLDB. 2263-2272.

[24] Apache. 2024. Apache Spark. https://spark.apache.org/. accessed: 2024-01-16.
[25] Presto. 2024. Caching in Presto. https://www.qubole.com/blog/caching-presto.

accessed: 2024-01-16.
[26] Junpeng Niu, Jun Xu, and Lihua Xie. 2018. Hybrid Storage Systems: A Survey

of Architectures and Algorithms. IEEE Access 6 (2018), 13385-13406.
[27] K. R. Krish, Bharti Wadhwa, M. Safdar Iqbal, M. Mustafa Rafique, and Ali R.

Butt. 2016. On Efficient Hierarchical Storage for Big Data Processing. In
CCGrid. 403-408.

[28] Bin Dong, Teng Wang, Houjun Tang, Quincey Koziol, Kesheng Wu, and Suren
Byna. 2018. ARCHIE: Data Analysis Acceleration with Array Caching in
Hierarchical Storage. In 2018 IEEE International Conference on Big Data. 211-
220.

[29] Jit Gupta, Krishna Kant, and Ayman Abouelwafa. 2020. FussyCache: A
Caching Mechanism for Emerging Storage Hierarchies. In CloudCom. 74-81.

[30] Jonathan Goldstein and Per-Åke Larson. 2001. Optimizing Queries Using
Materialized Views: A Practical, Scalable Solution. In SIGMOD. 331-342.

[31] Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton. 1998.
Materialized View Selection for Multidimensional Datasets. In VLDB. 488-
499.

[32] Divesh Srivastava, Shaul Dar, H. V. Jagadish, and Alon Y. Levy. 1996.
Answering Queries with Aggregation Using Views. In VLDB. 318-329.

[33] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang (Jim) Chen,
Ming Dai, Thanh Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang,
Yanlai Huang, Zhi (Adam) Li, Jianyi Liang, Tao Lin, Li Liu, Yao Liu, Xi Mao,
Yalan (Maya) Meng, Prashant Mishra, Jay Patel, Rajesh S. R., Vijayshankar
Raman, Sourashis Roy, Mayank Singh Shishodia, Tianhang Sun, Ye (Justin)
Tang, Junichi Tatemura, Sagar Trehan, Ramkumar Vadali, Prasanna
Venkatasubramanian, Gensheng Zhang, Kefei Zhang, Yupu Zhang, Zeleng
Zhuang, Goetz Graefe, Divyakant Agrawal, Je! Naughton, Sujata Kosalge, and
Hakan Hacıgümüş. Napa: Powering Scalable Data Warehousing with Robust
Query Performance at Google. PVLDB 14, 12 (2021), 2986-2998.

[34] Michael Stonebraker, Anant Jhingran, Jeffrey Goh, and Spyros Potamianos.
1990. On Rules, Procedures, Caching and Views in Data Base Systems. In
SIGMOD. 281–290.

[35] Shaul Dar, Michael J. Franklin, Björn T.Jónsson , Divesh Srivastava, and
Michael Tan. 1996. Semantic Data Caching and Replacement. In VLDB. 330-
341.

[36] Donald Kossmann, Michael J. Franklin, and Gerhard Drasch. 2000. Cache
Investment: Integrating Query Optimization and Distributed Data Placement.
TODS 25, 4 (2000), 517–558.

[37] Yannis Kotidis and Nick Roussopoulos. 1999. DynaMat: A Dynamic View
Management System for Data Warehouses. In SIGMOD. 371–382.

[38] Peter Scheuermann, Junho Shim, and Radek Vingralek. 1996. WATCHMAN:
A Data Warehouse Intelligent Cache Manager. In VLDB. 51–62.

[39] Junho Shim, Peter Scheuermann, and Radek Vingralek. 1999. Dynamic
Caching of Query Results for Decision Support Systems. In SSDBM. 254–263.

[40] Dominik Durner, Badrish Chandramouli, and Yinan Li. 2021. Crystal: A
Unified Cache Storage System for Analytical Databases. PVLDB 14, 11 (2021),
2432-2444.

[41] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, and Tim Kraska. 2017.
Revisiting Reuse in Main Memory Database Systems. In SIGMOD. 1275–
1289.

[42] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009.
An Architecture for Recycling Intermediates in a Column-store. In SIGMOD.
309–320.

[43] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018.
Selecting Subexpressions to Materialize at Datacenter Scale. PVLDB 11, 7
(2018), 800–812.

[44] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag,
Marc Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018.
Computation Reuse in Analytics Job Service at Microsoft. In SIGMOD. 191–
203.

[45] Fabian Nagel, Peter A. Boncz, and Stratis Viglas. 2013. Recycling in Pipelined
Query Evaluation. In ICDE. 338–349.

[46] Luis Leopoldo Perez and Christopher M. Jermaine. 2014. History-Aware Query
Optimization with Materialized Intermediate Views. In ICDE. 520–531.

[47] Guodong Jin, Haoqiong Bian, Yueguo Chen, and Xiaoyong Du. 2022.
Columnar Storage Optimization and Caching for Data Lakes. In EDBT. 2-419.

[48] Tianru Zhang, Andreas Hellander, and Salman Toor. 2022. Efficient
Hierarchical Storage Management Empowered by Reinforcement Learning.
IEEE Transactions on Knowledge and Data Engineering 35, 6 (2023), 5780–
5793.

[49] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud
Object Storage for High-Performance Analytics. PVLDB 16, 11 (2023), 2769-
2782.

[50] Shakil B. Tamboli and Smita Shukla Patel. 2014. A Survey on an Efficient Data
Caching Mechanism for Big Data Application. IJSR 11, 3 (2014), 1242-1247.

[51] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang.
2015. In-Memory Big Data Management and Processing: A Survey. IEEE
Transactions on Knowledge and Data Engineering 27, 7 (2015), 1920-1948.

[52] Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco
Serafni, Ashraf Aboulnaga, and Michael Stonebraker. 2021. FlexPushdownDB:
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB 14, 11 (2021),
2101-2113.

[53] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang,
Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao,
Nicholas Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based
HTAP Database. PVLDB 13, 12 (2020), 3072-3084.

[54] Rong Chen, Haibo Chen, and Binyu Zang. 2010. Tiled-MapReduce: Optimizing
Resource Usages of Data-parallel Applications on Multicore with Tiling. In
PACT. 523-534.

[55] Dongfang Zhao, Kan Qiao, and Ioan Raicu. 2014. HyCache+: Towards
Scalable High-Performance Caching Middleware for Parallel File Systems. In
CCGRID. 267-276.

[56] Yi Liu, Xiongzi Ge, Xiaoxia Huang, and David H.C. Du. 2013. MOLAR: A
Cost-Efficient, High-Performance Hybrid Storage Cache. In CLUSTER. 1-5.

[57] Jianzhe Tai, Bo Sheng, Yi Yao, and Ningfang Mi. 2015. SLA-aware data
migration in a shared hybrid storage cluster. Cluster Computing 18 (2015),
1581-1593.

[58] Ningwei Dai, Yunpeng Chai, Yushi Liang, and Chunling Wang. 2015. ETD-
Cache: An Expiration-Time Driven Cache Scheme to Make SSD-Based Read
Cache Endurable and Cost-Efficient. In CF. 1-8.

[59] Lin Lin, Yifeng Zhu, Jianhui Yue, Zhao Cai, and Bruce Segee. 2011. Hot
Random Off-loading: A Hybrid Storage System With Dynamic Data Migration.
In MASCOTS. 318-325.

[60] Xian Chen, Wenzhi Chen, Zhongyong Lu, Peng Long, Shuiqiao Yang, and
Zonghui Wang. 2015. A Duplication-Aware SSD-Based Cache Architecture for
Primary Storage in Virtualization Environment. IEEE Systems journal 11, 4
(2015), 2578-2589.

[61] Taeho Kgil and Trevor Mudge. 2006. FlashCache: A NAND Flash Memory
File Cache for Low Power Web Servers. In CASES. 103-112.

[62] Sai Huan, Qingsong Wei, Jianxi Chen, Cheng Chen, and Dan Feng. 2016.
Improving Flash-based Disk Cache with Lazy Adaptive Replacement. ACM
Transactions on Storage 12, 2 (2016), 1-24.

[63] Feng Chen, David Koufaty, and Xiaodong Zhang. 2011. Hystor: Making the
Best Use of Solid State Drives in High Performance Storage Systems. In ICS.
22-32.

[64] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and Anand
Sivasubramaniam. 2011. HybridStore: A Cost Efficient, High Performance
Storage System Combining SSDs and HDDs. In MASCOTS. 227-236.

[65] Gong Zhang, Lawrence Chiu, and Ling Liu. 2010. Adaptive Data Migration in
Multi-tiered Storage Based Cloud Environment. In CloudCom. 148-155.

[66] Ajaykrishna Raghavan, Abhishek Chandra, and Jon Weissman. 2014. Tiera:
Towards Flexible Multi-Tiered Cloud Storage Instances. In MIDDLEWARE.
1-12.

[67] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini, and Raju
Rangaswami. 2011. Cost Effective Storage using Extent Based Dynamic
Tiering. In FAST. 273-286.

[68] Hui Wang and Peter Varman. 2014. Balancing Fairness and Efficiency in
Tiered Storage Systems with Bottleneck-Aware Allocation. In FAST. 229-242.

[69] Azure. 2024. Azure Blob Storage documentation.
https://learn.microsoft.com/en-us/azure/storage/blobs. accessed: 2024-01-16.

[70] Apache. 2024. Apache Hive. https://hive.apache.org/. accessed: 2024-01-16.
[71] Apache. 2024. Apache Hudi. https://hudi.apache.org/. accessed: 2024-01-16.
[72] Apache. 2024. Apache Iceberg. https://iceberg.apache.org/. accessed: 2024-01-

16.
[73] CNCF. 2024. etcd. https://etcd.io/. accessed: 2024-01-16.
[74] Vertica. 2024. Vertica documentation.

https://www.vertica.com/docs/10.0.x/HTML/Content/Home.htm. accessed:
2024-01-16.

[75] Teradata. 2024. Teradata documentation. https://docs.teradata.com. accessed:
2024-01-16.

[76] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish
Motivala, Thierry Cruanes. 2020. Building An Elastic Query Engine on
Disaggregated Storage. In NSDI. 449–462.

