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ABSTRACT 
In contemporary cloud-based analytical databases, the adoption of 
a disaggregated storage model is a prevalent trend. This model 
allows the elastic compute layer to access data stored remotely in 
block-oriented columnar formats in cloud storage. However, the 
high latency and limited bandwidth associated with remote storage, 
as well as the limited capacity of local storage, pose significant 
challenges. Consequently, the imperative of caching data within the 
compute nodes has gained significant attention, sparking a renewed 
interest in caching methodologies for enhancing analytical 
processes. While existing caching solutions focus on improving 
bandwidth based on file or block-level caching with an average file 
or block size of tens of MBs, many analytical database scenarios 
require handling small files (one table consisting of thousands of 
10 KB small files), low latency (response time of 100 ms), and high 
concurrency (hundreds of simultaneous accesses). In this paper, we 
introduce a new caching system, Gopher, which effectively 
addresses these challenges. It empowers storage-disaggregated 
cloud databases to deliver performance comparable to MPP 
databases while also exploiting the benefits of elastic horizontal 
scaling. 
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1 INTRODUCTION 
In the era of cloud computing, the evolution of cloud-based 
analytical databases has led to the widespread adoption of a 
disaggregated storage model [20, 21, 23, 53, 54]. Driven by its 
flexibility and cost-effectiveness, this architecture decouples the 
compute and storage layers, enabling elastic compute layers to 

access remotely-stored data within cloud storage services. Major 
cloud databases and big data systems like Snowflake [20], AWS 
Redshift [21], Spark [24], and Presto [25] already support direct 
querying of cloud storage like AWS S3 [17] and Azure Blob [69]. 
However, this architecture introduces challenges due to high 
latency and bandwidth limitations inherent to remote storage, as 
well as constraints posed by local storage capacity. 

Consequently, cache systems have garnered significant attention. 
Despite the performance gains achieved through conventional 
caching methods, they struggle to address two challenges 
effectively.  

1) While traditional caching technologies [1, 2, 3, 34, 35, 36, 38, 
39] can effectively improve read speeds, they often provide limited 
benefits for write operations. This is due to the network’s inherently 
higher latency and lower throughput compared to local disk access. 
Such sluggish write speeds can result in write-intensive processes 
suffering from substantial delays and severely degrade the 
efficiency of job pipelines, where the successful completion of one 
task is contingent upon the quick and reliable processing of its 
output by the subsequent task.  

2) Although certain caching systems [8, 9, 14] are designed to 
enhance both read and write throughput using file or block-level 
caching, with typical file or block sizes in the tens of megabytes, 
many cloud-based database environments present unique 
challenges. These scenarios often involve dealing with copious 
amounts of minuscule files. For example, a single database table 
might contain thousands of 10 KB files. This imposes strict latency 
thresholds of about 100 milliseconds. Additionally, there is a need 
to accommodate hundreds of concurrent access requests. To meet 
these demands, caching strategies must evolve to efficiently handle 
the granular nature of small files while maintaining the speed and 
scalability required for demanding cloud database workloads. 

In this paper, we present Gopher, a novel caching system that 
overcomes the aforementioned challenges. Gopher is a distributed 
caching mechanism designed to handle high concurrency and 
deliver low-latency access to files of all sizes. Deployed at each 
node within the data warehouse’s computational layer, Gopher is 
engineered to accelerate I/O operations. To circumvent the 
potential limitations of network communication within clusters, 
which are common in centralized master-slave distributed systems, 
Gopher adopts a decentralized architecture. Each cache instance 
operates as an autonomous client/server service, functioning as a 
local file system equipped with a two-tier cache for data warehouse 
computing services at the node level. 
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Gopher stands out as a high-performance, highly available 
caching system, offering an architecture that supports file 
prefetching, batch read operations, shared memory, optimized 
asynchronous writes, concurrent multi-read capabilities, as well as 
a suite of advanced features including merging for small files and 
rapid cache reconstruction during cluster horizontal scaling. These 
features collectively reduce the number of I/O operations and 
memory copies, facilitating efficient concurrent analytics 
processing and seamless scaling. In our experiments, we observe 
that Gopher can significantly enhance the performance of cloud 
databases by 4x. It accomplishes this while offering query times 
that are comparable to those of MPP databases and enjoying the 
advantages of elastic horizontal scaling. 

The rest of the paper is organized as follows. Section 2 
introduces the background and the motivation of the system design. 
Section 3 and 4 elaborate on the system architecture, API, and 
caching optimizations. Section 5 presents and discusses 
experiments and Section 6 reviews related works. The conclusion 
is drawn in Section 7. 

2 BACKGROUND 
This section introduces the architecture of Teleadb for AnalyticDB 
(TeleDB-ADB) cloud-native data warehouse and describes our 
target workloads. It provides background information that 
motivates the Gopher solution, a low latency cache in the compute 
nodes.  

2.1 TeleDB-ADB Cloud-Native Data Warehouse 
TeleDB-ADB is a data warehouse to support both SQL and 
machine learning analytical tasks in the cloud. The system adopts a 
cloud-native disaggregated design in which the compute, storage 
and metadata services are managed in separated clusters to enable 
high elasticity, high availability, and high reliability. Figure 1 
illustrates the TeleDB-ADB architecture.   

TeleDB-ADB’s storage layer supports data persistency and 
retrieval in object storage, UnionStore, and external big data 
storage [18, 19]. TeleDB-ADB-managed object storage is the 
default storage pool for user table data, temporary data, and query 
results. It is elastic and cost-effective, providing 99.999999999% 
durability and 99.99% availability SLA, which makes it a natural 
choice as the main storage engine for massive data. UnionStore is 
the storage engine to support hybrid transactional and analytical 
processing. It consists of a WAL service and Page service, which 
persist and replay redo logs to support transactional data visits and 
time travel. TeleDB-ADB also supports open lakehouse and can 
visit external data in HDFS managed by Apache Hive [70] and 
Apache Spark [24]. The system uses foreign data wrapper to access 
the Hive, Hudi [71], or Iceberg [72] metadata and then performs 
data read / write operations in HDFS [19] or other external storage. 

The metadata layer is an independent cluster that manages and 
serves various metadata for the compute clusters.  It consists of a 
coordination service, a metadata service, and a metadata storage 
service. The coordination service is an etcd [73] cluster that 
discovers and allocates the metadata serving. The metadata service 
is a cluster of stateless services that provide metadata access, 
privilege control, lock management, and distributed transactions, 

etc. The metadata storage service is a distributed key-value storage 
engine that stores various metadata such as mappings between 
tables and storage objects, data dictionary, WAL logs and indexes, 
etc. When a metadata request arrives, the coordination service 
allocates a metadata service node to handle this request. This node 
retrieves the requested metadata from the metadata storage service 
and returns them. 

The compute layer is the core of the system and can provide 
multiple compute clusters to perform data warehouse or machine 
learning analytical tasks in scale.  Each compute cluster can be 
created using different hardware and configurations on demand and 
its resources are completely isolated from other clusters. Currently, 
the compute layer can support up to 10,000 computer clusters 
concurrently. Each compute cluster has a coordinator node (also 
called master or head) as the query entrance and coordinator as well 
as multiple worker nodes (also called segment) which perform the 
heavy-lifting computation. When an analytical task arrives, the 
coordinator node generates a distributed execution plan, driving its 
worker nodes to complete the task.  

We initiated the TeleDB-ADB system implementation in 2016 
and it has been deployed to production since 2018. Our largest 
production deployment entails more than 148 compute clusters and 
30,000 VM nodes. It adeptly oversees in excess of one million 
tables and 19 PB data, processing more than 10 million queries and 
jobs daily, which is one of the largest cloud data warehouse 
deployments worldwide. Our customer benefits substantially from 
the inherent attributes of our cloud-native architecture, witnessing 
a reduction of 20% in duplicated jobs, 51% in redundant data, and 
an optimization of over 30% in hardware resource utilization. 
While deploying the system to a large production environment has 
given us a deep experience of the benefits of a cloud-native 
architecture, it has also revealed the urgent need for a new caching 
system for cloud analytical database workloads. These 
requirements are elaborated in the next section. 

2.2 Target Workload Properties 
The integration of a disaggregated storage model demonstrates 
substantial elasticity and scalability advantages yet brings high 
latency and restricted bandwidth associated with remote storage to 
the system. In response to these inherent challenges, we implement 
a cache system in the compute layer to manage read and write 

  
Figure 1: TeleDB-ADB Cloud Database Architecture. 

 



 

operations. This cache is strategically designed to optimize 
analytical workloads for data warehouse, data lake, and AI/ML 
processing, which have the following properties: 

• Massive small file access: In addition to a large file sequential 
access and large file random access, millions of 16 KB files are 
generated in large-scale production environments, which need 
to be managed carefully to ease disk and network I/O overheads. 

• High concurrency: The cache needs to support large volume of 
concurrent jobs. In one of our large production environments, 
the system processes over 9 million queries and 1 million ETL 
jobs daily. During its peak business hours, the system faces the 
demand of over 8000 concurrent queries, imposing significant 
strain on the cache (500 concurrent jobs per node) to handle 
data read/write gracefully with fixed I/O capacity. 

• Low latency: Latency stands as a pivotal factor influencing 
real-time analysis, fast data retrieval, AI/ML processing, and 
other time-sensitive jobs. These tasks expect query responses 
like MPP processing, which requires the cache to significantly 
reduce overall response delays, aiming for a substantial 
decrease in latency by 2x and more. Such enhancements 
empower expedited decision-making processes and facilitate 
seamless execution of real-time analytics, thereby elevating 
operational efficiency and responsiveness in various 
applications. 

• Seamless access to diverse storage infrastructure: Large 
enterprise users store data in diverse infrastructure such as local 
and remote HDFS, S3, and FTP storage, etc to utilize historical 
IT investments. Building modern analytic and AI pipelines 
requires the cache being able to flexibly exchange data with 
different storage systems, minimizing data silos and redundant. 

• Shared memory support for query operator pipelining: Shared 
memory becomes critical when dealing with large amounts of 
data in parallel operations. Supporting data pipelines through 
shared memory enables rapid transmission and processing of 
data at different processing stages, reducing unnecessary data 
copying and transmission time to the local or remote storage, 
thereby improving processing efficiency and overall system 
performance. 

3 GOPHER DESIGN OVERVIEW 
In this section, we present a comprehensive overview of the Gopher 
system, elucidating its architecture, API functionalities, and 
providing practical examples to illustrate its application and usage. 

3.1 System Architecture 
Gopher is a distributed cache system that supports high concurrent 
and low latency access to massive small and large files. It is 
deployed to each node at the data warehouse computer layer to 
accelerate computing I/O access (Figure 2-a). In order to avoid 
potential intra-cluster network communication constraints which 
we have observed in other centralized master-slave distributed 
cache systems, the cache adopts a decentralized design in which 
each cache instance is a self-contained client/server service, acting 
as a local file system with two-level caches for data warehouse 
computing services at the node. Figure 2-b illustrates the main 
components of Gopher.  

1) The metadata service is the core of the cache system. It 
manages metadata such as task status, file name, or block ID and 
interfaces with other modules to facilitate access data for clients. 
To gracefully handle massive I/O requests, the metadata service 
employs a working thread pool which consists of separated child 
thread pools. These pools handle long-executing commands and 
manage disk space asynchronously, ensuring efficient resource 
utilization.  

2) The user file system stores destination storage information 
such as target file systems, ports, and buckets, etc.  

3) The block manager and file manager offer data access for 
blocks and files, respectively. They utilize stream reads and writes 
to process large files in a small memory buffer, improving I/O 
efficiency and reducing memory usage.   

4) The cache manager implements a two-level cache, a memory 
pool as well as an SSD cache, to productively utilize the limited 
cache space and improve data access speed. The memory pool 
supports zero-copy processing, facilitating shared memory access 
to enhance runtime efficiency. The SSD cache stores data swapped 
out by the memory pool. As a non-volatile storage medium, the 

   
 

Figure 2: Gopher Cache System Architecture. 

 
 



  
 

 

SSD cache can be used to restore computing states when the node 
accidentally crashes.  

5) The persistent storage module incorporates network 
transmission libraries such as liboss2, libhdfs3 and libftp to 
complete network connection and transmission tasks to S3 object 
storage, HDFS and local storage, an expanding list of storage 
options.  

6) The session manager utilizes epoll multiplexing to handle 
connections from multiple clients simultaneously. The client 
implementation involves the cache system APIs as well as stream 
objects such as FileInStream and File OutStream to stream read and 
write data efficiently. The flatbuf protocol is employed to provide 
high-performance and reusable serialization and deserialization.  

As a high-performance and highly available caching system, 
Gopher supports multiple key features such as file prefetching, 
batch read, shared memory, asynchronous write optimization, 
concurrent multiple reads, and small file memory merging, etc. 
These features can practically reduce I/O operations and memory 
copies, supporting efficient concurrent processing and rapid 
scaling-out. Detailed cache optimizations are described in Section 
3.3 and 4. 

3.2 API 
Gopher provides a comprehensive set of client interfaces to manage 
files and directories, ranging from basic file operations to advanced 
cache management. The interfaces include C, C++, and Java 
implementation for flexible invocations. C is the primary interface 
as it is convenient for direct database calls. Figure 3 shows common 
interfaces in C for different types of operations. 

a) User operations are client interfaces to establish and terminate 
a connection with Gopher and the remote persistent storage. For 
instance, the connect() method (line 2) passes the destination 
persistent storage information in parameter configure to ask Gopher 

to set up a connection with the remote storage system and returns a 
handle to a file system managed by Gopher.  

b) File operations are standard file operations that open, read, 
write, and close files. Parameter sync in the closeFile() method 
(line 8-9) is to specify whether to synchronize the file to the remote 
storage immediately.  

c) Batch operations are to accelerate reading files smaller than 8 
MB. For instance, the prefetch() method (line 16-17) instructs 
Gopher to prefetch files specified in fileList. The batchRead() 
method (line 18-19) multiple files into the buffer which  is normally 
set to 8 MB.  

d) Memory object operations are methods to instruct storing 
intermediate results in the memory directly instead of writing to 
temporary files. These I/O optimizations are discussed in detail in 
Section 4.3.  

In addition to the operations mentioned above, Gopher also 
provides interfaces to support administrative tasks, UUID handling, 
and other functionalities, servicing as a comprehensive file system 
for clients. These interfaces have not been detailed here because 
they are less directly related to the subject of caching.  

3.3 Examples 
This section uses an example of reading and writing a sequence of 
files with various sizes from an object storage service (OSS) to 
illustrate the cache system’s I/O process. This process supports 
reads, synchronous writes, and asynchronous writes. 

The client calls connect() and disconnect() to establish and 
terminate a connection with the cache system. Once receiving the 
OSS connection information from the client, the cache system 
persists it in the user file system, initializing a working pool at the 
metadata service to start the interaction with OSS using libraries in 
the persistent storage module. These allocated resources will be 
freed when the I/O process completes, and the connection 
terminates. 

3.3.1 Reads  

There is a strong correlation between file size and I/O efficiency, 
and we have observed that a database process reaches good input 
utilization when it is given a buffer of at least 1 MB or a whole data 
block. Hence, we first sort the list of files to read based on their file 
sizes and apply separate read policies according to their sizes. 

1) Files less than 1MB. Files smaller than 1 MB are all read in 
batch. The client calls prefetch() to request the list of files and then 
calls batchRead() to read the file data. On the other hand, upon 
receiving the list of small files, the cache system allocates a 16 MB 
buffer at its two-level cache, reading files from OSS to the buffer. 
When either the 16 MB buffer is filled or the batch accumulates 
100 small files, a new stream of small files will be returned to the 
client. 

2) Files between 1 MB and 8 MB. Unlike files smaller than 1 
MB, the process of transferring files between 1 MB and 8 MB from 
OSS to the cache and then from the cache to the client occurs 
asynchronously. As soon as a file is cached in the buffer, a fresh 
stream is initiated to the client, even as the cache continues to 
retrieve additional files from OSS. 

1.  /* a. User Operations */ 
2.  gopherFS connect(gopherConfig configure); 
3.  int disconnect(gopherFS fs); 
4.  
5.  /* b. File Operations */ 
6.  gopherFile openFile(gopherFS fs, const char *path,  
7.        int flag, toOffset block_size); 
8.  int closeFile(gopherFS fs, gopherFile file,  
9.        bool sync); 
10. tSize read(gopherFS fs, gopherFile file,  
11.       void *buffer, tSize length);  
12. tSize write(gopherFS fs, gopherFile file, 
13.       const void *buffer, tSize length);  
14. 
15. /* c. Batch Operations */ 
16. int prefetch(gopherFS fs, int num,  
17.       const char **fileList); 
18. int batchRead(gopherFS fs, int num,  
19.       const char **fileList, void *buffer); 
20. 
21. /* d. Memory Object Operations */ 
22. int createObject(gopherFS fs, const char* object_id,  
23.       int64_t data_size, char** data); 
24. int sealObject(gopherFS fs, const char* object_id); 
25. int getObject(gopherFS fs, const char* object_id,  
26.       int64_t timeout_ms, const char** data); 
27. int releaseObject(gopherFS fs, const char* object_id); 
28. int deleteObject(gopherFS fs, const char* object_id); 

Figure 3: Gopher Client Interface Examples. 

 



 

3) Files more than 8MB. Files exceeding 8 MB in size are moved 
from OSS to the cache and then served to the client in 8 MB blocks 
in turn. These data blocks can also be prefetched when we set a 
block-prefetch configuration flag in Gopher. When the client issues 
a read() request specifying the file’s offset and the desired data 
length, the cache system verifies if the requested block is already 
stored. If not, it initiates the download of subsequent blocks in the 
file and forwards the block to the client once it has been retrieved. 

3.3.2 Synchronous Writes 

To perform synchronous writes, the client first calls openFile() to 
create and specify the block size of the file in the cache. Then it 
invokes write() to ask the cache system to allocate a memory space 
with the given block size, writing file contents to the memory. 
When the block is filled, the cache system allocates a new block in 
memory to the client to continue writing and send the filled block 
to OSS in the background. When the file is completely written, the 
client calls closeFile() to terminate the write process. As writing 
data to OSS takes much longer than writing to the local cache, the 
working thread pool supports simultaneously writing multiple 
blocks to OSS in parallel to accelerate writing. 

3.3.3 Asynchronous Writes 

The asynchronous write feature can further expedite the writing 
process of sequential files by only verifying the file writes at the 
time of transaction completion. For instance, the database performs 
10 inserts during a transaction and instructs the client to write 10 
files. When the client calls the closeFile() after writing the first file 
to the cache, the cache system immediately returns write 
completion, allowing the client to start writing the next file even 
though writing to OSS is still in progress. On the server side, 
Gopher writes and aggregates these files in the memory pool and 
asynchronously sends them to the persistent storage in batch in 
parallel. Write completion will be verified when the transaction 
ends and summit() is called. If any file write is unsuccessful, the 
entire transaction will be rolled back. Otherwise, the database will 
proceed to the next transaction. The asynchronous writes feature 
transforms a sequential database write process to writing cached 
blocks to OSS in parallel, thereby substantially accelerating the 
write process. 

4 CACHING OPTMIZATIONS 
This section discusses caching optimizations in addition to file 
prefetching and asynchronous writes covered in section 3, such as 
small-file merging and rapid cache reconstruction.  We design and 
implement these innovative features in Gopher, enhancing its 
functionality as a high-performance compute layer cache within an 
elastic cloud environment. 

4.1 Merging Small Files into Blocks 
Large-scale analytical computing clusters inevitably deal with 
massive numbers of small files. As the cluster grows and the 
number of nodes increases, the same data is divided into more 
segments, resulting in smaller segments that are then distributed 
evenly across the compute nodes. Consequently, the files processed 
on each node continue to decrease in size. In some of our large 
production environments, which house over 10,000 virtual 

machines and handle several million queries daily, we have 
identified millions of files less than 16KB. These files generate 
significant I/O pressure, creating a bottleneck that impacts overall 
performance. To address this challenge, we have developed a small 
file merging and caching strategy to improve the system’s 
efficiency. 

The mechanism of merging small files into blocks operates as 
follows. Files smaller than 16KB are identified and distinguished 
from other files, encapsulated into 8MB cached data blocks. The 
data block structure is self-descriptive, containing metadata such as 
file names, start offsets, file lengths and bitmap locations at the 
block footer. Interfaces for block-level read, write, delete, and 
lookup are provided for rapid data access. By accessing just a single 
data block, the client gains all the necessary information to access 
500 files or more, resulting in a highly efficient process. 

In addition, data locality, multi-threading, and two-level caches 
are utilized to enhance data access optimization.  

1) To better support range reads, files are aggregated based on 
data locality rather than random distribution. Files that are 
frequently accessed together or belong to the same table are 
arranged into the same block as much as possible. When these files 
need to be read, the number of data blocks to load reduces 
significantly.  

2) For file updates and deletes, we utilize an append-only 
method that allows for non-blocking operations. Background 
threads in the working pool will batch-process the cleanup of 
outdated files asynchronously.  

3) The local SSD pool is utilized as a large volume L2 cache. 
The cache manager first assigns memory space in the memory pool 
to support fast data block access. When the memory usage reaches 
the upper limit, the cache manager moves the least recently used 
blocks to the local SSD pool instead of destroying them. When files 
in these blocks are needed again, we can reload the blocks to the 
memory rather than reconstructing them via fetching hundreds of 
files from the remote storage. By combining small files into data 
blocks and employing the optimization measures above within the 
cache, the utilization of I/O resources is effectively balanced, 
substantially reducing high I/O issues and thereby enhancing the 
stability and performance of the system. 

 

Figure 4: Cached Data Block for Small Files. 



  
 

 

4.2 Rapid Cache Reconstruction in Cluster 
Horizontal Scaling 

Horizontal scaling is a common occurrence for analytical systems 
in massive production environment, which may significantly affect 
the computing cluster performance. As the priorities of business 
requests change over the course of the day, different compute 
clusters scale out and in accordingly. For example, during daytime 
business hours, interactive queries are frequent and server 
resources are primarily allocated to clusters that support those 
queries. At night, when the company needs to consolidate and 
analyze daily business data, computing resources are shifted to 
clusters that support batch jobs. Driven by dynamic changes in 
business requirements, compute clusters are scaled out and in 
multiple times a day to adapt to workload changes. However, the 
compute nodes that get assigned new data partitions after the 
horizontal scaling often become the shortboards of a barrel due to 
the nature of missing or mismatch of local caches. We have 
observed that, in large-scale production environments, retrieving 
massive files from the remote persistent storage to reconstruct the 
cache can take anywhere from half an hour to several hours, 
severely impacting the cluster. To address this challenge, we 
developed a feature that allows the cache to be rapidly 
reconstructed after the cluster horizontally scales. 

The mechanism of rapid cache reconstruction is as follows. Data 
in the persistent storage is evenly distributed among nodes in a 
computer cluster in the unit of data logical partitions according to a 
consistent hash algorithm. When a scaling occurs, the mapping 
between the data and the compute nodes is changed. For instance, 
if a cluster of 128 compute nodes is scaled out to 256 nodes, the 
mapping between the data in the persistent storage and the compute 
nodes changes from 1:128 to 1:256. The node that newly joins the 
cluster can use the consistent hash algorithm to calculate and 
identify the node where its data logical partitions mapped, sending 
cache synchronization requests to it. The two nodes transfer the 
cached data in the unit of a data block which is introduced in 4.1 
and can encapsulate hundreds of small files through a multi-thread 
communication module in the cache system. File MD5’s are 
examined to ensure data consistency. If there is an exception in the 
transmission process, the communication module will restart the 
cache synchronization until all the requested cache data is 
synchronized successfully. At this time, the cache system in the old 
node will mark the transferred cached blocks invalid, and its 
background thread will perform cleanup, releasing local cache 
resources to allocate for new tasks.  Since it is a many-to-many 
communication process among nodes within the same cluster, the 
cache reconstruction is highly efficient and usually completes in 
seconds. 

4.3 Memory-First Intermediate Result Sharing 
The execution plans of analytical query jobs are usually complex, 
involving sequential executions of multiple operators. The output 
of one operator is the input of the next one. Substantial intermediate 
results are generated and saved in this process. In traditional 
database processing, these intermediate results are typically stored 
as temporary files cached on disk, which may encounter several 
potential bottlenecks:  

1) Disk caching requires data to be written from memory to disk 
and then read from disk to memory, a process that involves disk I/O 
and memory copying, which has a significant impact on 
performance.  

2) When the upstream operator is writing a temporary file, the 
downstream operator needs to wait until the file is completely 
written, which will hinder the execution of the downstream job, 
wasting the CPU and other system resources allocated to the 
downstream operator.  

3) In the cloud database scenario, as the number of compute 
nodes increases, the data partition range controlled by each node is 
narrower, resulting in the temporary files saved by each node being 
smaller in size but greater in number. This creates greater pressure 
on file metadata management, serialization, and deserialization.  

In an effort to support intermediate results between different 
operators in the execution plan effectively, we’ve introduced a new 
option to store intermediate results as in-memory objects in 
addition to saving them as temporary files. By prioritizing in-
memory objects for caching, we can reduce the overhead associated 
with disk writes and memory copies, enhance collaboration 
between upstream producers and downstream consumer operators, 
and reduce the costs involved in managing many small files. 

Figure 3.d illustrates the client interfaces to manipulate an in-
memory object that supports zero-copy write-once-read-many, 
allowing multiple operators to perform efficient concurrent reads. 
Line 22-23 is the createObject() method which allocates memory 
resource and creates an in-memory object, returning the object ID 
and memory address (specified in the parameter data) to the client. 
Once obtaining the memory address, the upstream operator writes 
to the memory. Upon completion of writing, it invokes the 
sealObject() method (line 24) as a signal to the cache system that 
the in-memory object has been fully written to and ready for 
reading. On the other hand, the downstream operators invoke the 
getObject() method (line 25-26) to read data in the in-memory 
object and call the releaseObject() method (line 27) upon 
completion of reading. When all the downstream operators finish 
reading, the deleteObject() method (line 28) is called by the client 
or the cache background process to release the memory resources.  

In a similar vein, temporary files are written and read in the same 
way as normal files. Clients use file operations in Figure 3.b to open 
and close files, writing and reading data. 

This hybrid method to cache intermediate results as in-memory 
objects or temporary files provides clients the flexibility to choose 
either the memory pool or the SSD cache pool to transmit 
intermediate results from one operator to the next efficiently. The 
client can take the actual data sizes and latency needs into 
consideration, dynamically opt for the most suitable cache, thereby 
enhancing I/O resource utilization and overall query performance. 
Below are the intermediate result sharing strategies in TeleDB-
ADB database, which exemplifies the advantage of this hybrid 
caching technique. 

1) When the intermediate result is less than 8MB, the client will 
create an in-memory object to save the intermediate result. Caching 
these data in memory uses only limited memory resources as well 
as avoiding frequent disk I/O’s. In addition, since memory objects 
support zero-copy write-once-read-many operations, downstream 
operators can directly read memory objects that have been sealed 



 

by the upstream operator without having to apply for additional 
memory, copy data, and perform serialization or deserialization 
again. This significantly improves the efficiency of reading 
intermediate results.  

2) When the intermediate result is greater than 8 MB, the client 
can decide whether to store the data in memory or SSD cache pool 
based on whether the downstream operators consume the 
intermediate result immediately. 2-a) Intermediate results need to 
be consumed immediately. In this case, the client uses the in-
memory object interface to cache intermediate results, writing to 
multiple in-memory objects. Instead of waiting until all the data is 
written into the temporary file, the downstream operator can start 
reading the data once any in-memory object is sealed without 
additional disk I/O or memory copy. Collaboration between 
operators and system utilization are both more efficient. 2-b) 
Intermediate results are not immediately consumed. In this case, the 
client invokes the file operation interfaces to write the intermediate 
results to the SSD cache directly, which reduces the number of data 
copying, faster than first writing to the memory and then placing it 
on the disk. 

5 EXPERIMENTAL EVALUATIONS 
In this section, we evaluated Gopher’s general performance and 
various features using a collection of experiments that employ the 
TPC-H benchmark and real-world data workloads. The 
experiments demonstrate that Gopher excels as a cache system, 
delivering low latency, high concurrency, and robust throughput 
when handling data warehouse and machine learning system files 
of various sizes in the elastic cloud environment.  

Unless specified, the experimental configuration is as follows: 
the TeleDB-ADB database is established to include a compute 
cluster and a storage cluster. The compute cluster is composed of 1 
master node and 8 segmented nodes, with a total local storage 
capacity of 100 GB. Each node is equipped with 8 core CPUs and 
16GB memory resources. For the Gopher caching system, 8 CPU 
and 16 GB memory are assigned at each node for the cache system. 
The storage cluster supports s3 I/O interfaces, responsible for 
persisting the database data. Servers are connected with 30Gbps 
network. 

5.1 End-to-End Evaluation 
In this section, we evaluate Gopher’s performance in managing 
database and machine learning workloads through the TPC-H, 

slowly changing dimensions, and unstructured data file read/write 
tests. 

5.1.1 TPC-H 

We utilize the TPC-H 100GB benchmark to evaluate Gopher’s 
efficiency as a cloud database cache. This standard data warehouse 
workload generates files in the file size range of 0 to 453 MB for 
Gopher to process. Three experiment control groups are set up to 
evaluate the results. In the first and second group, the TeleDB-ADB 
cloud-native database executes the TPC-H benchmark, with and 
without using Gopher, respectively. In the third group, a 
Greenplum database (version 6.2) which employs a traditional 
MPP architecture that stores data locally is configured with the 
same CPU, memory, and disk resources to execute the TPC-H test. 
This group acts as a performance baseline for commercial data 
warehouses. 

Figure 5 visualizes the experiment results. The x-axes denote the 
22 queries of TPC-H. The y-axis in Figure 5-a denotes the 
performance comparison between the TeleDB-ADB cloud-native 
database that does not use its compute node local storage as a 
compute layer cache (TeleDB-ADB w/o Cache) and the Greenplum 
MPP database (Greenplum) in percentage. The y-axis in Figure 5-
b shows the performance comparison between the TeleDB-ADB 
database that employs Gopher to cache data in its compute nodes 
(TeleDB-ADB w/ Gopher) and the Greenplum MPP database 
(Greenplum), also denoted in percentage. 

The test results reveal that Gopher can enhance storage-
disaggregated database query performance significantly to process 
data warehouse workloads and serve enterprise-level critical 
missions. In the scenario without a compute cache (Figure 5-a), all 
22 queries experienced a drastic slowdown, with performance 
declining by as much as 70.5% to 7x, and an average performance 
degradation of 4x. The performance downgrade is due to an 
architecture change where data is now stored in remote storage 
instead of the local server. As a result, the database must fetch this 
data via the network, which is slower and less stable compared to 
reading data from local SSD storage.  

In the scenario where Gopher is used, the query runtime for the 
TeleDB-ADB cloud-native database improves by a factor of 4. As 
Figure 5-b illustrates, the query times are very similar to those of 
Greenplum, with individual query difference varying from a 
decrease of 52.9% to an increase of 41.2%, resulting in an overall 
difference less than 8.1%. The significant improvement is due to 
two key factors. First, the overall architecture incorporates a cache 
layer within the compute nodes, establishing a multi-tier cache 

 
 

Figure 5: TPC-H Experiment Results for Greenplum vs TeleDB-ADB w/o Cache, and Greenplum vs TeleDB-ADB w/ Gopher. 
 
 
 
 
 



  
 

 

system that allows data to be stored in memory, SSD disks, and 
remote storage. This system facilitates smooth swapping between 
different storage layers and ensures that data is served to the query 
job as required, maintaining efficient performance. Second, in 
addition to this robust architecture, we have implemented a range 
of caching features, including file pre-fetching, asynchronous 
writes, and zero-copy. These features further optimize Gopher’s 
resource utilization, throughput, and hit rates. The effectiveness of 
these features is thoroughly evaluated and discussed in section 5.2. 

5.1.2 Slowly Changing Dimensions 

To accurately evaluate its performance in real-world business 
contexts, we use slowly changing dimensions (SCD), a technique 
commonly employed by banks to manage changes in account 
transactions, as the database operations to assess Gopher. The 
streamlined bank transaction scenario we simulate is as follows: 

• A regional bank serves 1 million customers, each with a single 
account. 

• The bank's financial transactions encompass four primary 
operations: account opening, closure, deposit, and withdrawal. 

• Every day over a 360-day period: 

o 20,000 new customers open accounts and 20,000 existing 
customers close theirs. 

o 100,000 customers deposit $100 and another 100,000 
withdraw $100. 

• To simplify the experiment setup, all accounts are initially 
credited with sufficient funds and each account performs at 
most one of the four operations above. 

The database system captures these daily business transactions and 
maintains a detailed historical record. It is vital for the bank’s 
ongoing operations and supports various business needs, such as 
generating financial reports, managing customer relationships, and 
conducting audits. 

The database technical operations that support this bank 
transaction business scenario are as described follows:  

• A database table, Accounts, records the bank’s client account 
information (Figure 6), with each row representing a customer 
account and a total of 1 million rows. 

• Over a 360-day cycle, daily operations include: 

o Insert 20,000 rows.  

o Delete 20,000 rows.  

o Update 200,000 rows, with half increasing the balance by 100 
and the other half decreasing the balance by 100. 

• All data changes are written to the table as appends. Both old 
and new records are retained and distinguished by the 
start_date and end_date fields as shown in Figure 7. 

• To continuously support its mission-critical tasks, the database 
routinely performs a vacuum every 7 days, cleaning up and 
optimizing its storage space to ensure it remains in an optimal 
state. 

Similar to 5.1.1, we conduct this experiment with three control 
groups. First, we use a TeleDB-ADB cloud-native database without 
employing compute-side storage as a cache (TeleDB-ADB w/o 
Cache). Second, we utilize a TeleDB-ADB database that employs 
Gopher as its compute layer cache (TeleDB-ADB w/ Gopher). 
Finally, we include a Greenplum MPP database (Greenplum). Each 
of these three groups is configured with identical server resources 
and runs on 10 concurrent processes. 

Figure 8 illustrates the test results. The x-axes denote the 360 
days and the y-axes denote the update (line 1-29 in Figure 7) and 
query (line 31-39 in Figure 7) time, respectively. 

The experiment results show that Gopher exhibits excellent 
performance advantages in complex database operations in the long 
term. SCD tables, due to their necessity to manage multiple 
versions of data, are complex to update and can generate a large 
number of small files, a common issue in database management. 
For instance, in our simplified bank transaction scenario, executing 
operations from line 1-29 in Figure 8 every day to update 220,000 
rows of data results in hundreds of files less than 8 KB. Despite 
regular vacuum optimizes storage space, the number of small files 
remains significant, leading to frequent I/O operations and 
inefficient use of storage space, which decrease database 
performance and resource efficiency. Additionally, as the SCD 
version maintenance continues, the version history becomes 
extensive and the data volume increases significantly. For instance, 
the database is needed to handle files over 10GB in size in this 

1.  Table accounts( 
2.    id BIGINT, 
3.    balance BIGINT, 
4.    start_date DATE, 
5.    end_date DATE); 

Figure 6: Bank Account SCD Table. 

 

 

 

1.  -- Open an account –- 
2.  INSERT INTO accounts <new account data>; 
3.  
4.  -- Close an account –- 
5.  UPDATE accounts 
6.  SET end_date = <current date> 
7.  WHERE id = <account id to close>; 
8.  
9.  -- Deposit or withdraw $100 for an account –- 
10. INSERT INTO accounts 
11.   SELECT id,  
12.     balance+<dollar change>, 
13.     <current date>, 
14.     to_date('2999-12-31', 'yyyy-mm-dd') 
15.   FROM accounts 
16.   WHERE id = <account id to update>; 
24.  
25. UPDATE accounts 
26. SET end_date = <current date> 
27. WHERE id = <account id to update> 
28.   AND start_date != <current date> 
29.   AND end_date = to_date('2999-12-31', 'yyyy-mm-dd'); 
30. 
31. –- Query active accounts 
32. SELECT count(*) 
33. FROM accounts 
34. WHERE end_date = to_date('2999-12-31', 'yyyy-mm-dd'); 
35. 
36. –- Query accounts changed in the previous day 
37. SELECT count(*) –- exclude closed accounts 
38. FROM accounts 
39. WHERE start_date = <previous date>;   

Figure 7: Bank Account Database Operations. 

 

 

 



 

experiment, according to our measurements. This massive data 
volume not only extends query times but also raises cache eviction 
rates, further diminishing database performance. 

Faced with the dual challenges of handling millions of small files 
and managing large datasets, the database's query and update 
performance is significantly impacted. However, Gopher has been 
successful in reducing the negative effects of these challenges. As 
Figure 8-a illustrates, Greenplum's update time decreases from an 
average of 22.29 seconds during the first three days to 55.59 
seconds during the last three days, showing a 2.49x drop in 
performance. In comparison, a cloud database with disaggregated 
storage and no compute cache performs worse, experiencing longer 
query time and more significant performance degradation over time. 
The average update time for TeleDB-ADB w/ cache is 55.97 
seconds during the first three days, which is 2.5x slower than 
Greenplum, and it increases to 294.90 seconds during the last three 
days, which is 5.3x slower than Greenplum, with a performance 
drop of 4.5x. Conversely, thanks to Gopher’s optimizations for 
handling both small and large files, TeleDB-ADB w/ Gopher 
performs significantly better. It has an average update time of 21.11 
seconds during the first three days and 31.21 seconds during the 

last three days, with only a 1.48x performance degradation. This is 
better than Greenplum’s performance in both same-day updates and 
late-stage performance degradation. 

5.1.3 Unstructured Data File Reads / Writes 

In addition to its support for cloud databases in processing 
structured data, Gopher can serve as a compute layer cache for 
machine learning processing in the cloud. It significantly improves 
the caching of semi-structured and unstructured data throughout the 
machine learning lifecycle, including training, fine-tuning, and 
inference phases. To assess Gopher’s suitability as a cache for 
machine learning workloads, we conducted an experiment that 
focused on its write and read efficiency for unstructured data of 
diverse sizes.  

Two control groups are set up. One group utilizes Gopher while 
the other uses Alluxio. Both groups are configured with the same 
hardware resources and preloaded data. To thoroughly evaluate 
their support for different kinds of data files used in machine 
learning processes, the test encompasses a wide range of file types, 
ranging from 8 KB web pages to 512 MB video files.  

	

 
Figure 8: Slowly Changing Dimension Transformation Experiment Results for 

Greenplum vs TeleDB-ADB w/o Cache vs TeleDB-ADB w/ Gopher. 
	

	
Table 1: Gopher vs Alluxio Unstructured Data File Read /Write. 



  
 

 

Table 1 shows the test results. The leftmost column shows the 
file sizes. The central four columns show the write and read 
efficiency of Alluxio and Gopher in MB/second, respectively. The 
two rightmost columns compare the write and read rate of Gopher 
and Alluxio. 

The experimental results indicate that Gopher is an effective 
compute layer cache when handling unstructured data of varying 
sizes. With increasing file sizes, both Gopher and Alluxio exhibit 
improving read and write performance, with Gopher showcasing 
more pronounced advantages. Specifically, at the time of writing, 
Gopher outperforms Alluxio by 2x. This superior performance can 
be attributed to Gopher's fully distributed design, which eliminates 
the network overhead and the metadata interaction bottleneck 
associated with Alluxio's Master-Slave architecture. When it comes 
to read operations, Gopher has demonstrated a significant 
performance edge, ranging from 3.8x to 8.9x, thanks to its 
optimized handling of small files. However, as file sizes continue 
to escalate, the limitations of available memory space necessitate 
data swapping, causing Gopher's performance lead over Alluxio to 
diminish to approximately 2x. 

5.2 Advanced Caching Feature Experiments 
This section evaluates and discusses Gopher’s advanced features 
such as file prefetching, asynchronous writes, small file merging, 
cache reconstruction, and intermediate result sharing in memory. 

5.2.1 File Prefetching 

We use a TPC-H test bed to evaluate the file prefetching feature 
with 100GB data. Two experimental control groups are established. 
In the first group, file prefetching is activated, while the second 
group disables file prefetching. To guarantee the integrity of the 
experimental data, each experimental condition is replicated 10 
times. 

Figure 9 illustrates the experiment results. Given the varying 
runtime of different queries, we convert the execution time with file 
prefetching (FP) and the execution time with no file prefetching 
(NFP) to percentages to facilitate an intuitive comparison. The test 
results indicate that enabling file prefetching reduces query run 
time from 20% to 51%, excluding Q13 and Q22, which see 
improvements of 5.6% and 2.0% respectively. The less impact on 
these two queries may be due to both the smaller amount of data 
involved in the query executions and the likelihood that these data 
have already been cached during earlier query runs. This suggests 
that file prefetching is an effective method to reduce data wait time 
on remote storage, which in turn enhances CPU utilization and 
query performance. These benefits are pronounced in cloud data 
warehouse scenarios where the compute node’s local storage is 
limited compared to the volume of data they handle. When local 
storage is abundant, the effect is correspondingly reduced.  

5.2.2 Asynchronous Writes  

We use the database load process in the TPC-H benchmark to 
evaluate the impact of asynchronous writes on the performance of 
database writes. We first stage the generated data on the local disks 
of the compute nodes and then write it to the database as append-
only tables. The database uses Gopher’s multi-level storage 
capabilities to persist its table data in object storage. We set up two 

control groups for this experiment. In the first group, the 
asynchronous write function is activated. After writing data to 
Gopher, the database process can immediately proceed to the next 
operation without waiting for the data to be completely written to 
the object storage. In the second group, the asynchronous write 
function is turned off. The database must wait for Gopher to 
complete writing data to the object storage. We repeat the test using 
25GB, 50GB, 100GB, 200GB, 400GB, and 800GB data 
respectively. 

Table 2 shows the results of the experiment. The leftmost 
column denotes the data volume in GB (DV). The middle two 
columns are the time to perform synchronous writes (SW) and 
asynchronous writes (AW) in seconds. The rightmost column is the 
improvement of asynchronous write time compared to synchronous 
write in percentage (IMPV).  

The test results reveal that asynchronous writes enhance 
database write performance by 21%-45%, across varying data sizes. 
This improvement could be attributable to two reasons. First, the 
asynchronous write feature decouples the database write operation 
from the remote object storage write operation. This allows the 
database to initiate the next task promptly after completing writing 
to Gopher, reducing the database process’s wait time. Second, 
when Gopher writes data to the object storage, it can aggregate 
multiple write requests and process them in batch. This 
substantially improves the efficiency of data writes to object 
storage over the network.  The trend of test results also supports 
this reasoning. As the data volume increases, Gopher can 
consolidate more write operations to object storage, thereby 
amplifying the performance benefits. 

5.2.3 Small File Merging  

To assess the benefits of the small file merging feature, we 
conduct a stress test in which we write massive small files to 
Gopher and monitor changes in I/O utilization and read/write 
performance. Two control groups are set up for comparison. In the 
first group, the small file merging function is activated, and the files 
are merged in 8MB following their entry into Gopher. In the other 
group, this feature is turned off and all files are stored and read in 
their original size and quantity. Each of these two groups is 
configured with identical server resources and runs on 200 
concurrent processes. The test workloads are generated from real-
world production profiling, encompassing a large volume of files 
ranging from 0.5 KB and 16 KB.  

 

Figure 9: TPC-H 100GB with File Prefetching (FP) vs No File 
Prefetching (NFP). 

 



 

Figure 10 shows the experiment results. In Figures X-a and X-b, 
the X-axis represents the file size, and the Y-axis represents the IO 
utilization in percentage and read efficiency in MB/second. The 
data of the two sets of experiments are labeled as "merged" and 
"unmerged", respectively.  

In the test result datasets, the I/O utilization rate decreases from 
nearly 100% to 20%-40% after file merging. Meanwhile, the read 
rate jumped from 100-160 MB/second to 400-520MB/second, 
achieving a 2.5x to 5x performance improvement. These results 
show that the small file merge function can significantly mitigate 
disk I/O pressure and improve throughput. 

5.2.4 Cache Reconstruction  

To quantitively evaluate the effect of the cache reconstruction 
feature, we conduct an experiment to scale out a working database 
cluster and observe the cache reconstruction time. The database is 
first configured to repeatedly execute select queries from real 
production environment to fully activate the Gopher cache. Then 
we instruct the database to perform a cluster scale out and double 
its compute nodes, observing the time to reconstruct the cache. Two 
cache recovery strategies are applied in different experiment 
control groups respectively. In the first group, the cache 
reconstruction feature is enabled and cached data are copied from 
existing compute nodes to newly added nodes. In the second group, 
the cache reconstruction feature is disabled. The newly added nodes 
pull data from the storage cluster directly to build its cache. In our 
production environment, it is common to see a database cluster 
consisting of several million of files. Hence, we repeat the 
experiment using various numbers of files to account for different 
sizes. File numbers in the database cluster are 320000, 640000, 
1280000, 2560000, 5120000, and 10240000. 

Table 3 displays the result of the experiments. The number of 
files is listed in the leftmost column. The cache recovery time with 
and without the cache reconstruction feature (CR and NC, 
respectively) are shown in the central columns. The rightmost 
column provides the ratio of these two cache recovery time.  

The experiment yielded a 36x or greater improvement in cache 
recovery time when the cache reconstruction feature is enabled. For 
instance, for an active database cluster which comprises 10 million 
small files, the cache reconstruction feature can substantially 
decrease the cache recovery time from 13429 seconds (3.7 hours) 
to 258 seconds (4.3 minutes). This improvement aligns with the 
outcomes observed in our customers’ production environment. In 
addition, as cached data are transferred between compute nodes in 
8 MB merged block rather than individual files, the benefit 
increases as the number of files to recover rises. The experiment 
results confirm this reasoning, showing that as the file number 
ranges from 320,000 to 10 million, the improvements of cache 
recovery time reach from 36x to 52x. 

5.2.5 Intermediate Result Sharing in Memory 

To assess the intermediate result sharing in memory feature, we use 
the database to run a simplified embedded query from production 
environment which first writes timestamps and other data to a table 
and reads from the writing results. Two experimental control 
groups are applied. In the first group, memory object is used to 
enable intermediate result sharing in the memory. In the other 
group, this feature is disabled. As both the file size and memory 
object size may have an impact on the execution time, we repeat 
the experiment using various sizes of file and memory objects. A 
broad spectrum of file sizes is tested to observe the cumulative 
effect on complex queries involving sequences of write and read 
operations. The file sizes are 32 MB, 128 MB, 512 MB, 2048 MB 
and 8192 MB. The memory object sizes are 0.5 MB, 1 MB, 2 MB, 
4 MB and 8 MB. 

Table 4 illustrates the result of the experiments. The file size and 
the memory object size are in the leftmost two columns. The 
execution time using memory object (M) in millisecond, the 
execution time without memory object (NM) in millisecond and the 
percentage improvement of using memory object (IMPV) are in the 
other columns. In all test cases, the group utilizing memory objects 
outperforms the other group by 25% or more.  

 
Figure 10: IO Utilization and Read Rates of Merged vs Unmerged Small Files.  

 

Table 2: Synchronous Writes vs Asynchronous Writes. 

 

 

Table 3: Cache Reconstruction Time. 

 



  
 

 

 

Table 4: Share Intermediate Results with Zero-Copy Memory. 

The experiment result demonstrates that memory object can 
significantly speed up write-read query operations by minimizing 
data copying, thereby reducing wait times for subsequent tasks. 
Additionally, performance enhancements are influenced by both 
the file size and the memory object sizes. This is likely because 
various workloads require different optimal memory object sizes 
for efficient data-sharing pipelines. To address this, we have 
provided a memory object creation interface (line 22-23 in Figure 
3) that allows the client, such as a database, to define the desired 
memory object size, resulting in greater flexibility as well as 
improved overall performance and resource utilization. 

6 RELATED WORK  

Gopher operates as an integrated platform that provides both 
caching and hierarchical storage capabilities for storage-
disaggregated analytical systems. This section will discuss research 
and industrial work in storage-disaggregated analytical systems, 
with a focus on cache systems and hierarchical storage, respectively. 

Storage-Disaggregated Analytical System. Modern cloud 
databases have embraced an architecture that incorporates storage 
disaggregation, which include databases natively developed for the 
cloud (e.g. Snowflake [20], AWS Redshift [21], PolarDB [23], and 
TiDB [54]) as well as traditional data warehouse systems migrated 
to the cloud (Vertica [74], Teradata Vantage [22, 75]). In addition 
to cloud databases, big data processing engines like Spark [24] and 
Presto [25] are leveraging the benefits of storage disaggregation 
and are designed to support a disaggregated architecture. This 
computational and storage decoupling enables each component to 
seamlessly adjust to dynamic changes in workload demands. 

Cache System. Caching systems are one of the key technologies 
to improve the performance and resource utilization of large-scale 
analytics jobs. A variety of distinctive caching technologies have 
been developed in both the open-source and research communities. 
Alluxio [8] is an open-source distributed caching system that 
integrates with a variety of data processing frameworks, supporting 
large-scale data processing tasks through its distributed nature. Yet 
the master-slave architecture may lead to a single point of 
performance bottleneck. Memcached [16] is known for its 
simplicity and high concurrency processing capabilities, but it has 
limitations in terms of data persistence. Redis [15], as an open-
source memory-based key-value store, offers swift data access and 
comprehensive data structure support, but requires integration with 
additional tools or technologies in distributed database scenarios. 
Snowflake implements a multi-tier cache similar to Gopher. Both 

systems cache files in compute nodes using consistent hashing and 
opportunistic caching strategies. Different from the Snowflake 
cache [76], Gopher supports caching features such as file 
prefetching, asynchronous writes, small file merging, and cache 
reconstruction, which can significantly improve performance. 

The research community has also pioneered a range of caching 
technologies. Hycache+ [56] allows cached data to be transparently 
swapped between high-speed network-attached storage and 
compute nodes by providing memory-level I/O throughput but may 
require additional optimizations to accommodate the workloads of 
different storage systems and database applications. Nectar [10] 
improves data center resource utilization and simplifies the 
development process by automating data and compute 
management, but its reuse strategy of incremental computation and 
shared compute operator can add complexity to the system when 
combined with a database. CliqueMap [13] employs Remote 
Memory Access (RMA) and Remote Procedure Calls (RPC) to 
enhance the performance and scalability of distributed caching 
systems. CompuCache [14] achieves a cost-effective remote 
computing caching solution by leveraging VMs for data offloading 
purposes rather than reducing latency.  

Hierarchical Storage. In the cloud environment, hierarchical 
storage that incorporates different types of media such as DRAM, 
SSD, and HDD is a common approach to strike a balance among 
performance, capacity, and cost. [27, 28] leverage SSDs for data 
prefetching, enhancing the throughput of analytical processing. [57, 
58, 59] utilize SSDs as read caches, maximizing the efficiency of 
data reads through the application of multiple caching strategies. 
[60, 61, 62, 63] adopt SSDs as write-back caches to implement a 
two-tier file buffering mechanism, optimizing I/O performance. 
[64, 65, 66] facilitate user management of optimal configurations 
for multi-layer cloud storage instances, achieving flexible and rich 
storage policies. [67, 68, 69, 70] detect I/O access patterns to 
optimize storage-driven hot and cold data migration. 

7 CONCLUSION 
The rise of cloud analytical databases has prompted the adoption 

of disaggregated storage models, which offer flexibility and cost-
effectiveness but introduce challenges related to remote storage 
latency, bandwidth limitations, and local storage capacity 
constraints. Traditional caching methods, despite enhancing read 
performance, struggle with write operations or handling small files 
efficiently. This paper introduces Gopher, a novel distributed 
caching system designed to overcome these challenges. Gopher’s 
decentralized architecture, enhanced by its cutting-edge features, 
significantly boosts I/O performance and provides rapid, 
concurrent access to files of all sizes. This makes it an optimal 
choice for a computer layer cache system, particularly suited for 
analytical database and AI workloads in the cloud. Experimental 
results have shown that Gopher can substantially improve the 
performance of cloud databases, achieving a fourfold increase. It 
achieves this by delivering query times that rival those of MPP 
databases while harnessing the benefits of elastic horizontal scaling. 

  

 



 

REFERENCES 
[1] Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan, Hamid 

Pirahesh, and Berthold Reinwald. 2003. Cache Tables: Paving the Way for an 
Adaptive Database Cache. In VLDB. 718–729. 

[2] Christof Bornhövd, Mehmet Altinel, C. Mohan, Hamid Pirahesh, and Berthold 
Reinwald. 2004. Adaptive Database Caching with DBCache. IEEE Data 
Engineering Bulletin 27, 2 (2004), 11–18. 

[3] Per-Åke Larson, Jonathan Goldstein, and Jingren Zhou. 2004. MTCache: 
Transparent Mid-Tier Database  Caching in SQL Server. In ICDE. 177–188. 

[4] Michael Armbrust, Tathagata Das, Sameer Paranjpye, Reynold Xin, Shixiong 
Zhu, Ali Ghodsi, Burak Yavuz, Mukul Murthy, Joseph Torres, Liwen Sun, 
Peter A. Boncz, Mostafa Mokhtar, Herman Van Hovell, Adrian Ionescu, Alicja 
Luszczak, Michal Switakowski, Takuya Ueshin, Xiao Li, Michal Szafranski, 
Pieter Senster, and Matei Zaharia. 2020. Delta Lake: High-Performance ACID 
Table Storage over Cloud Object Stores. PVLDB 13, 12 (2020), 3411–3424. 

[5] Snowflake. 2023. Caching in the Snowflake Cloud Data Platform. 
https://community.snowflake.com/s/article/Caching-in-the-Snowflake-Cloud-
Data-Platform. accessed: 2024-01-16. 

[6] Amazon. 2024. Database Caching. https://aws.amazon.com/caching/database-
caching/?nc1=h_ls. accessed: 2024-01-16. 

[7] Ruihong Wang, Jianguo Wang, Stratos Idreos, M. Tamer Özsu, and Walid G. 
Aref. 2022. The Case for Distributed Shared-Memory Databases with RDMA-
Enabled Memory Disaggregation. PVLDB 16, 1 (2022), 15-22. 

[8] Alluxio. 2021. Alluxio - Data Orchestration for the Cloud. 
https://www.alluxio.io/. accessed: 2024-01-16. 

[9] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014. 
Tachyon: Reliable, Memory Speed Storage for Cluster Computing Frameworks. 
In SoCC. 6:1–6:15. 

[10] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, 
Yuan Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and 
Computation in Datacenters. In OSDI. 75-88. 

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba Borthakur, 
Srikanth Kandula, Scott Shenker, and Ion Stoica. 2012. PACMan: Coordinated 
Memory Caching for Parallel Jobs. In NSDI. 267-280. 

[12] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale, Stéphane 
Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang, Tim Wood, Daniel 
Hagimont, Noël De Palma, Bernabé Batchakui, and Alain Tchana. 2021. OFC: 
An Opportunistic Caching System for FaaS Platforms. In EuroSys. 228-244. 

[13] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Harshad 
Deshmukh, Dan Gibson, Milo M. K. Martin, Amanda Strominger, Thomas F. 
Wenisch, and Amin Vahdat. 2021. CliqueMap: Productionizing an RMABased 
Distributed Caching System. In SIGCOMM. 93-105. 

[14] Qizhen Zhang, Philip A. Bernstein, Daniel S. Berger, Badrish Chandramouli, 
Vincent Liu, and Boon Thau Loo.  2022. CompuCache: Remote Computable 
Caching using Spot VMs. In CIDR. 

[15] Redis. 2024. Introduction to Redis. https://redis.io/docs/about/. accessed: 2024-
01-16. 

[16] Memcached. 2020. Overview. 
https://github.com/memcached/memcached/wiki/Overview. accessed: 2024-01-
16. 

[17] Amazon. 2024. Amazon S3 Cloud Storage. https://aws.amazon.com/s3/. 
accessed: 2024-01-16. 

[18] Ceph. 2024. Intro to Ceph. https://docs.ceph.com/en/quincy/start/intro/. 
accessed: 2024-01-16. 

[19] Apache. 2024. HDFS Architecture Guide. 
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. accessed: 2024-01-16.  

[20] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin 
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, 
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven 
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp 
Unterbrunner. 2016. The Snowflake Elastic Data Warehouse. In SIGMOD. 
215-226. 

[21] Nikos Armenatzoglou, Sanuj Basu, Naga Bhanoori, Mengchu Cai, Naresh 
Chainani, Kiran Chinta, Venkatraman Govindaraju, Todd J. Green, Monish 
Gupta, Sebastian Hillig, Eric Hotinger, Yan Leshinksy, Jintian Liang, Michael 
McCreedy, Fabian Nagel, Ippokratis Pandis, Panos Parchas, Rahul Pathak, 
Orestis Polychroniou, Foyzur Rahman, Gaurav Saxena, Gokul Soundararajan, 
Sriram Subramanian, and Doug Terry. 2022. Amazon Redshift Re-invented. In 
SIGMOD. 2205-2217. 

[22] Xin Tang, Robert Wehrmeister, James Shau, Abhirup Chakraborty, Daley Alex, 
Awny Al Omari, Feven Atnafu, Jeff Davis, Litao Deng, Deepak Jaiswal, 
Chittaranjan Keswani, Yafeng Lu, Chao Ren, Tom Reyes, Kashif Siddiqui, 
David Simmen, Devendra Vidhani, Ling Wang, Shuai Yang, and Daniel Yu. 
2016. SQL-SA for Big Data Discovery Polymorphic and Parallelizable SQL 
User-Defined Scalar and Aggregate Infrastructure in Teradata Aster 6.20. In 
ICDE. 1182-1193. 

[23] Feifei Li. 2019. Cloud-Native Database Systems at Alibaba: Opportunities and 
Challenges. In VLDB. 2263-2272. 

[24] Apache. 2024. Apache Spark. https://spark.apache.org/. accessed: 2024-01-16. 
[25] Presto. 2024. Caching in Presto. https://www.qubole.com/blog/caching-presto. 

accessed: 2024-01-16. 
[26] Junpeng Niu, Jun Xu, and Lihua Xie. 2018. Hybrid Storage Systems: A Survey 

of Architectures and Algorithms. IEEE Access 6 (2018), 13385-13406. 
[27] K. R. Krish, Bharti Wadhwa, M. Safdar Iqbal, M. Mustafa Rafique, and Ali R. 

Butt. 2016. On Efficient Hierarchical Storage for Big Data Processing. In 
CCGrid. 403-408. 

[28] Bin Dong, Teng Wang, Houjun Tang, Quincey Koziol, Kesheng Wu, and Suren 
Byna. 2018. ARCHIE: Data Analysis Acceleration with Array Caching in 
Hierarchical Storage. In 2018 IEEE International Conference on Big Data. 211-
220. 

[29] Jit Gupta, Krishna Kant, and Ayman Abouelwafa. 2020. FussyCache: A 
Caching Mechanism for Emerging Storage Hierarchies. In CloudCom. 74-81. 

[30] Jonathan Goldstein and Per-Åke Larson. 2001. Optimizing Queries Using 
Materialized Views: A Practical, Scalable Solution. In SIGMOD. 331-342. 

[31] Amit Shukla, Prasad M. Deshpande, and Jeffrey F. Naughton. 1998. 
Materialized View Selection for Multidimensional Datasets. In VLDB. 488-
499. 

[32] Divesh Srivastava, Shaul Dar, H. V. Jagadish, and Alon Y. Levy. 1996. 
Answering Queries with Aggregation Using Views. In VLDB. 318-329. 

[33] Ankur Agiwal, Kevin Lai, Gokul Nath Babu Manoharan, Indrajit Roy, Jagan 
Sankaranarayanan, Hao Zhang, Tao Zou, Min Chen, Zongchang (Jim) Chen, 
Ming Dai, Thanh Do, Haoyu Gao, Haoyan Geng, Raman Grover, Bo Huang, 
Yanlai Huang, Zhi (Adam) Li, Jianyi Liang, Tao Lin, Li Liu, Yao Liu, Xi Mao, 
Yalan (Maya) Meng, Prashant Mishra, Jay Patel, Rajesh S. R., Vijayshankar 
Raman, Sourashis Roy, Mayank Singh Shishodia, Tianhang Sun, Ye (Justin) 
Tang, Junichi Tatemura, Sagar Trehan, Ramkumar Vadali, Prasanna 
Venkatasubramanian, Gensheng Zhang, Kefei Zhang, Yupu Zhang, Zeleng 
Zhuang, Goetz Graefe, Divyakant Agrawal, Je! Naughton, Sujata Kosalge, and 
Hakan Hacıgümüş. Napa: Powering Scalable Data Warehousing with Robust 
Query Performance at Google. PVLDB 14, 12 (2021), 2986-2998. 

[34] Michael Stonebraker, Anant Jhingran, Jeffrey Goh, and Spyros Potamianos. 
1990. On Rules, Procedures, Caching and Views in Data Base Systems. In 
SIGMOD. 281–290. 

[35] Shaul Dar, Michael J. Franklin, Björn T.Jónsson , Divesh Srivastava, and 
Michael Tan. 1996. Semantic Data Caching and Replacement. In VLDB. 330-
341. 

[36] Donald Kossmann, Michael J. Franklin, and Gerhard Drasch. 2000. Cache 
Investment: Integrating Query Optimization and Distributed Data Placement. 
TODS 25, 4 (2000), 517–558. 

[37] Yannis  Kotidis and Nick Roussopoulos. 1999. DynaMat: A Dynamic View 
Management System for Data Warehouses. In SIGMOD. 371–382. 

[38] Peter Scheuermann, Junho Shim, and Radek Vingralek. 1996. WATCHMAN: 
A Data Warehouse Intelligent  Cache Manager. In VLDB. 51–62. 

[39] Junho Shim, Peter Scheuermann, and Radek Vingralek. 1999. Dynamic 
Caching of Query Results for Decision Support Systems. In SSDBM. 254–263. 

[40] Dominik Durner, Badrish Chandramouli, and Yinan Li. 2021. Crystal: A 
Unified Cache Storage System for Analytical Databases. PVLDB 14, 11 (2021), 
2432-2444. 

[41] Kayhan Dursun, Carsten Binnig, Ugur Çetintemel, and Tim Kraska. 2017. 
Revisiting Reuse in Main Memory Database Systems. In SIGMOD. 1275–
1289. 

[42] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009. 
An Architecture for Recycling Intermediates in a Column-store. In SIGMOD. 
309–320. 

[43] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018. 
Selecting Subexpressions to Materialize at Datacenter Scale. PVLDB 11, 7 
(2018), 800–812. 

[44] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, 
Marc Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. 
Computation Reuse in Analytics Job Service at Microsoft. In SIGMOD. 191–
203. 

[45] Fabian Nagel, Peter A. Boncz, and Stratis Viglas. 2013. Recycling in Pipelined 
Query Evaluation. In ICDE. 338–349. 

[46] Luis Leopoldo Perez and Christopher M. Jermaine. 2014. History-Aware Query 
Optimization with  Materialized Intermediate Views. In ICDE. 520–531. 

[47] Guodong Jin, Haoqiong Bian, Yueguo Chen, and Xiaoyong Du. 2022. 
Columnar Storage Optimization and Caching for Data Lakes. In EDBT. 2-419. 

[48] Tianru Zhang, Andreas Hellander, and Salman Toor. 2022. Efficient 
Hierarchical Storage Management Empowered by Reinforcement Learning. 
IEEE Transactions on Knowledge and Data Engineering 35, 6 (2023), 5780–
5793. 

[49] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud 
Object Storage for High-Performance Analytics. PVLDB 16, 11 (2023), 2769-
2782. 

[50] Shakil B. Tamboli and Smita Shukla Patel. 2014. A Survey on an Efficient Data 
Caching Mechanism for Big Data Application. IJSR 11, 3 (2014), 1242-1247. 



  
 

 

[51] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. 
2015. In-Memory Big Data Management and Processing: A Survey. IEEE 
Transactions on Knowledge and Data Engineering 27, 7 (2015), 1920-1948. 

[52] Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco 
Serafni, Ashraf Aboulnaga, and Michael Stonebraker. 2021. FlexPushdownDB: 
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB 14, 11 (2021), 
2101-2113. 

[53] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu 
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, 
Jianjun Li, Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, 
Nicholas Cameron, Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-based 
HTAP Database. PVLDB 13, 12 (2020), 3072-3084. 

[54] Rong Chen, Haibo Chen, and Binyu Zang. 2010. Tiled-MapReduce: Optimizing 
Resource Usages of Data-parallel Applications on Multicore with Tiling. In 
PACT. 523-534. 

[55] Dongfang Zhao, Kan Qiao, and Ioan Raicu. 2014. HyCache+: Towards 
Scalable High-Performance Caching Middleware for Parallel File Systems. In 
CCGRID. 267-276. 

[56] Yi Liu, Xiongzi Ge, Xiaoxia Huang, and David H.C. Du. 2013. MOLAR: A 
Cost-Efficient, High-Performance Hybrid Storage Cache. In CLUSTER. 1-5. 

[57] Jianzhe Tai, Bo Sheng, Yi Yao, and Ningfang Mi. 2015. SLA-aware data 
migration in a shared hybrid storage cluster. Cluster Computing 18 (2015), 
1581-1593. 

[58] Ningwei Dai, Yunpeng Chai, Yushi Liang, and Chunling Wang. 2015. ETD-
Cache: An Expiration-Time Driven Cache Scheme to Make SSD-Based Read 
Cache Endurable and Cost-Efficient. In CF. 1-8. 

[59] Lin Lin, Yifeng Zhu, Jianhui Yue, Zhao Cai, and Bruce Segee. 2011. Hot 
Random Off-loading: A Hybrid Storage System With Dynamic Data Migration. 
In MASCOTS. 318-325. 

[60] Xian Chen, Wenzhi Chen, Zhongyong Lu, Peng Long, Shuiqiao Yang, and 
Zonghui Wang. 2015. A Duplication-Aware SSD-Based Cache Architecture for 
Primary Storage in Virtualization Environment. IEEE Systems journal 11, 4 
(2015), 2578-2589. 

[61] Taeho Kgil and Trevor Mudge. 2006. FlashCache: A NAND Flash Memory 
File Cache for Low Power Web Servers. In CASES. 103-112. 

[62] Sai Huan, Qingsong Wei, Jianxi Chen, Cheng Chen, and Dan Feng. 2016. 
Improving Flash-based Disk Cache with Lazy Adaptive Replacement. ACM 
Transactions on Storage 12, 2 (2016), 1-24. 

[63] Feng Chen, David Koufaty, and Xiaodong Zhang. 2011. Hystor: Making the 
Best Use of Solid State Drives in High Performance Storage Systems. In ICS. 
22-32. 

[64] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and Anand 
Sivasubramaniam. 2011. HybridStore: A Cost Efficient, High Performance 
Storage System Combining SSDs and HDDs. In MASCOTS. 227-236. 

[65] Gong Zhang, Lawrence Chiu, and Ling Liu. 2010. Adaptive Data Migration in 
Multi-tiered Storage Based Cloud Environment. In CloudCom. 148-155. 

[66] Ajaykrishna Raghavan, Abhishek Chandra, and Jon Weissman. 2014. Tiera: 
Towards Flexible Multi-Tiered Cloud Storage Instances. In MIDDLEWARE. 
1-12. 

[67] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini, and Raju 
Rangaswami. 2011. Cost Effective Storage using Extent Based Dynamic 
Tiering. In FAST. 273-286. 

[68] Hui Wang and Peter Varman. 2014. Balancing Fairness and Efficiency in 
Tiered Storage Systems with Bottleneck-Aware Allocation. In FAST. 229-242. 

[69] Azure. 2024. Azure Blob Storage documentation. 
https://learn.microsoft.com/en-us/azure/storage/blobs. accessed: 2024-01-16. 

[70] Apache. 2024. Apache Hive. https://hive.apache.org/. accessed: 2024-01-16. 
[71] Apache. 2024. Apache Hudi. https://hudi.apache.org/. accessed: 2024-01-16. 
[72] Apache. 2024. Apache Iceberg. https://iceberg.apache.org/. accessed: 2024-01-

16. 
[73] CNCF. 2024. etcd. https://etcd.io/. accessed: 2024-01-16. 
[74] Vertica. 2024. Vertica documentation. 

https://www.vertica.com/docs/10.0.x/HTML/Content/Home.htm. accessed: 
2024-01-16. 

[75] Teradata. 2024. Teradata documentation. https://docs.teradata.com. accessed: 
2024-01-16. 

[76] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, Ashish 
Motivala, Thierry Cruanes. 2020. Building An Elastic Query Engine on 
Disaggregated Storage.  In NSDI. 449–462. 

 
 
 


