
SQL-ML
A SQL-Centric Framework for Building Efficient Feature Store

Ahmad Ghazal
PingCap
USA

ahmad.ghazal@pingcap.com

Hanumath Rao Maduri∗
Workday
USA

hanu.ncr@gmail.com

Pekka Kostamaa
Teradata
USA

pekka.kostamaa@teradata.com

Abstract
Feature stores are centralized repositories for managing and serving
ML model features, ensuring consistent data access during both
training and inference. However, current solutions are often inte-
grated into the ML stack and rely on proprietary systems, adding
complexity. We argue that feature stores should be treated as a
database problem due to their conceptual similarity to derived ta-
bles and materialized views, as current approaches are effectively
reinventing well-established database concepts.

In this paper, we present SQL-ML, a SQL extension designed to
support the creation, management, and backfilling of feature stores.
SQL-ML treats feature stores as user-defined databases and features
as materialized views, seamlessly integrating into existing SQL en-
vironments. While SQL-ML can be embedded in any SQL database,
a more adaptable solution is to deploy it as middleware, interfacing
with a host SQL database and leveraging its source data for feature
storage. SQL-ML manages metadata independently while delegat-
ing data-related tasks—such as materialization, updates, global opti-
mizations, and serving—to the host database. Global optimizations
in SQL-ML minimize redundant scans and computations across
features, significantly enhancing performance when thousands of
features share common source data. Also, SQL-ML scales to large
feature sets by leveraging database capabilities—for example, Post-
greSQL supports up to 1,600 columns per table and imposes no
practical limit on the number of tables.

We demonstrate SQL-ML’s potential through a proof-of-concept
implementation, extending PostgreSQL’s functionality and using
another PostgreSQL instance as the host database. Our experi-
ments show that SQL-ML significantly improves both user experi-
ence—reducing the time required to create, manage, and backfill
feature stores—and system efficiency, lowering resource consump-
tion compared to other feature store solutions.

Keywords
SQL, Feature Store, Feature, PostgreSQL, Middleware

VLDBWorkshop Reference Format:
Ahmad Ghazal, Hanumath Rao Maduri, and Pekka Kostamaa. SQL-ML
A SQL-Centric Framework for Building Efficient Feature Store. VLDB 2025
Workshop: DATAI.

∗The first two authors contributed equally to this paper.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

1 Introduction
Machine learning, a branch of AI, enables systems to learn from
data and improve over time without explicit programming. It uses
algorithms and statistical models to analyze data patterns, allowing
machines to make predictions or decisions. Initially focused on sim-
ple tasks, machine learning is now widely applied across industries
like retail, finance, and technology. For optimal performance, mod-
els need extensive training and testing, but since real-world data
often contains flaws, careful curation and cleansing are essential.

To address this challenge, feature storeswere developed to stream-
line the cleaning and preparation of data for machine learning tasks.
In this context, a feature is a measurable property or characteristic,
often referred to as a variable or attribute. Features are essential for
capturing the traits of the data being analyzed, enabling models to
make accurate predictions or classifications. They can take various
forms, including numerical, categorical, ordinal, binary, or text. A
feature store serves as a centralized platform for the development,
storage, modification, and reuse of these machine-learning features.

Features are derived from raw data, similar to summary tables or
materialized views. However, modern feature stores—like Tecton,
Feast, AWS SageMaker, Databricks, and Snowflake—treat feature
management as an ML-specific task external to the database, using
it only as a data source. This separation leads to redundant efforts
in defining languages, managing metadata, and executing features.
Most systems depend on custom, Python-based APIs, which ham-
pers usability, extensibility, and portability. While some use SQL for
feature computation, it’s often embedded and lacks a true abstrac-
tion. Repurposing materialized views or Delta tables for features
still requires custom pipelines and orchestration. A native SQL ex-
tension provides a cleaner, standardized, and declarative way to
manage features without this complexity.

Some of the current feature stores use ad-hoc domain-specific
languages (DSLs) and complex feature management life cycles.
They often require proprietary storage for features, which can
hinder their adaptability to different compute-engines. Additionally,
their reliance on Python for relational operations—such as joins
and aggregations—lacks standardization and can be cumbersome,
presenting a steep learning curve for users.

Embedding feature stores directly within the database core is
a more intuitive approach. By treating features as first-class data-
base entities, SQL-ML provides a SQL-centric, efficient framework
for feature store management. Key capabilities, such as backfill
operations for retroactively populating feature data and global opti-
mizations to minimize redundant computations, enhance SQL-ML’s
flexibility and performance. This paper makes two primary contri-
butions: (1) a specification for extending SQL engines to support
feature stores, and (2) an architecture for implementing SQL-ML

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

as a middleware solution based on PostgreSQL. SQL-ML processes
feature store requests, manages backfilling and optimizations, and
integrates with any SQL database storing the source data. For sim-
plicity, we refer to the middleware as SQL-ML throughout the paper.

The SQL extension introduced in SQL-ML includes commands
for creating and dropping feature stores and individual features. Ad-
ditionally, SQL-ML supports backfilling (UPDATE FEATURE) and
describing (DESCRIBE FEATURE) features. Creating a feature store
is analogous to creating a database (e.g., using CREATE DATABASE
in PostgreSQL), while creating a feature is similar to creating a
view (e.g., using CREATE VIEW in PostgreSQL). Feature stores and
features are represented as new database objects, which requires
extensions to the database metadata.

A SQL-ML-based feature store integrates seamlessly with the
host database, requiring no changes to its syntax or metadata. SQL-
MLmanages the materialization of the feature store by representing
it as a database or schema and its features as tables within the host
database. This process is pushed down to the host database with-
out altering its core functionality, ensuring that the feature store
remains transparent and fully compatible with existing database
operations.

SQL-ML interacts with the host database via SQL to imple-
ment feature store functionalities. For instance, CREATE FEATURE-
STORE... in SQL-ML translates to CREATE DATABASE... on the host
DB. Feature updates and materialization are handled by issuing
insert-select queries, optimized by the host DB. However, SQL-
ML can apply global optimizations using its knowledge of feature
definitions, which is crucial when thousands of features share com-
mon source data. These optimizations, implemented through SQL
rewrites, will be detailed in the paper.

Mature feature stores—often store features in the tens or hun-
dreds of thousands. A common misconception is that relational
databases cannot scale to support the large number of tables and
columns. In practice, databases like PostgreSQL support up to 1,600
columns per table with no limit on the number of tables. TiDB
also supports scalable and quick creation/migration of millions of
tables demonstrating that relational systems are well-suited for
enterprise-scale feature stores.

We built an initial prototype of SQL-ML using the open-source
PostgreSQL. To support extended SQL, we modified the parser
and added new metadata to handle feature stores, including infor-
mation about the host database and specific features. While our
implementation currently operates on another PostgreSQL instance
as the host database, it is designed to be extensible to other host
databases. Feature store and feature-related commands are executed
by generating appropriate SQL queries and sending them to the
host database.

We also implemented feature refresh through a background pro-
cess, which periodically sends insert-select queries to the host based
on the time window of the features. To evaluate our SQL-ML pro-
totype, we used a sample feature store for ML models diagnosing
heart disease. The results showed that users could create and start
using the feature store within minutes, a significant improvement
compared to the hours required when using Feast.

While model training and inference are essential stages in theML
lifecycle, they are downstream consumers of the feature store. SQL-
ML focuses on efficient and scalable feature definition, maintenance,

and serving—core responsibilities of any feature store. Demonstrat-
ing training or inference pipelines would conflate concerns and
distract from the contributions of SQL-ML. Nonetheless, we provide
a full example in Section 5 showing how features created by SQL-
ML are directly consumable by predictive models, emphasizing its
compatibility with model scoring workflows.

For the rest of the paper, we provide an overview of existing
feature store solutions and their limitations (Section 2), followed by
a detailed description of SQL-ML’s architecture, including its SQL
extensions, metadata management, and execution (Section 3). We
then discuss feature maintenance processes, such as updates and
backfilling, and the integration of global optimizations (Section 4).
Next, we present SQL-ML’s approach to feature serving (Section
5) and evaluate its performance compared to existing solutions
through user experience and optimization experiments (Section 6).
Finally, we outline future directions for SQL-ML and conclude with
a summary of our contributions (Section 7).

2 Related Work
SQL has been extended for tasks such as ML training and prediction
through frameworks like SQLFlow [25], which enables ML work-
flows directly in SQL by integrating with databases and ML engines
such as TensorFlow and XGBoost. Other examples include Apache
MADlib [13], which provides in-database analytics for PostgreSQL
and Greenplum; PostgresML [14], which supports native ML model
training and execution within PostgreSQL; RedshiftML [2], which
enables creating, training, and applying machine learning models
directly in Amazon Redshift using familiar SQL commands; and
Microsoft SQL Server Machine Learning Services [19], which inte-
grates Python and R scripts for predictive analytics directly within
SQL Server.

While these extensions illustrate the versatility of SQL in bridg-
ing ML workflows with databases, they fall outside the scope of
this paper. Our focus is solely on feature store management rather
than the downstream consumers of feature stores, emphasizing
efficient feature creation, maintenance, and optimization within
SQL-centric workflows.

Broadly, feature stores can be categorized into two types: general-
purpose feature stores, which are designed to cater to a diverse
range of use cases across industries, and platform-specific feature
stores, which are deeply integrated with specific cloud environ-
ments or ML frameworks. SQL-ML belongs to the general-purpose
category because it operates independently of any specific platform,
leveraging standard SQL to integrate seamlessly with a wide variety
of databases and workflows. Thus, our primary focus will be on
examining existing feature stores within this category, particularly
Feast [5] and Feathr [6]. Our analysis is structured around three
core dimensions: APIs, metadata management, and optimization
strategies. Additionally, we provide a brief overview of platform-
specific feature stores, such as SageMaker, Vertex AI, Snowflake,
and Databricks, which are tightly coupled with their respective
cloud or data platforms.

2.1 General Purpose Feature Stores
The two most popular general-purpose feature stores are Feast and
Feathr. Both can be deployed on-premises or in the cloud.

2.1.1 Feast Feast is an open-source feature store designed for man-
aging and discovering machine learning features, and can be de-
ployed both on-premises and across major cloud platforms, includ-
ing AWS, GCP, and Azure. Its key capabilities include:

• API:Adeclarative DSL for defining features in Python (with
embedded SQL) is provided, along with a Python CLI SDK
for interacting with entities, feature views, and stores. Users
can retrieve both historical and real-time features using
functions like get_historical_features and get_online_features,
with support for various data stores (e.g., Snowflake, Red-
shift, Postgres) and formats such as Parquet and CSV.

• Metadata: It utilizes a proprietary catalog to register fea-
ture definitions and metadata, enabling feature discovery
and collaboration. The registry is file-based and compatible
with both local and cloud storage systems like S3, GCS, and
Azure, with automatic updates reflecting any changes.

• Optimizations: It relies on the underlying host databases
to optimize the execution of SQL queries that are pushed
down to them.

Tecton [9] is an enterprise-focused alternative that provides
a similar feature retrieval API to Feast but is built on a distinct
codebase. As a managed service, Tecton simplifies the creation
and management of features by minimizing operational overhead
while delivering enhanced functionality and scalability. Both Feast
and Tecton include feature registries (supporting both online and
offline use cases) and leverage pushdown optimizations to the host
database. For the purposes of this paper, we treat Tecton and Feast
as conceptually and architecturally similar [23], and therefore, we
do not discuss Tecton further.

2.1.2 Feathr Feathr is a scalable and unified platform designed
for enterprise data and AI engineering, utilized by companies like
LinkedIn and Microsoft Azure. Its core features include:

• API: It supports user-friendly Python APIs and customiz-
able user-defined functions (UDFs) with support for PyS-
park and Spark SQL, facilitating easy use for data scientists
across offline, streaming, and online environments.

• Metadata: Feathr supports a built-in proprietary catalog for
creating and managing features. Users can create features
on raw data from myriad data sources, can also search
for features, explore metadata, manage access control, and
share features within teams.

• Optimizations: Feathr primarily utilizes the Spark en-
gine’s optimizer. It has custom join implementations like
Point in time joins which are useful for the feature engi-
neering workloads [17].

Table 1 presents a comparison between SQL-ML and two leading
general-purpose feature stores, Feathr and Feast. It highlights how
current feature stores are reinventing the wheel when it comes
to language (user interface) and metadata management, whereas
SQL-ML builds on mature database technology for these crucial
components. In terms of optimization, Feast, Feathr, and SQL-ML
all rely on underlying databases to optimize feature computation
and updates. However, SQL-ML goes a step further by leveraging its
understanding of feature definitions to apply global optimizations,
reducing redundant computation of shared source data.

2.2 Platform Specific Feature Stores
Many feature stores fall into this category, and we will briefly
highlight a few key examples. Notable ones include F3 Feature Store
[18], Google Vertex AI [11], AWS SageMaker [3], Databricks Feature
Store [4], and Snowflake Feature Store [10]. These feature stores
offer APIs for defining data objects within their ecosystem, such as
entities, feature stores, feature registries, and support for creating
and retrieving both offline and online features. While Python is
the primary API, they also offer bindings for other programming
languages. Although these stores allow for the specification of SQL
dialects based on their underlying data sources, they generally lack
the database abstraction that SQL-ML aims to provide. Furthermore,
their optimization capabilities—such as global optimizations or
advanced query-based techniques—are often limited.

Table 1: Comparison of Feature Stores

Feature Store Language Metadata Optimizations
SQL-ML SQL SQL engine

extensions
Host DB’s optimizations
+ global optimizations

Feast Python API
with
embedded SQL

Proprietary Host DB’s optimizations

Feathr Python API
with
embedded SQL

Proprietary Spark optimizer

3 SQL-ML
This section describes the architecture and design of the key com-
ponents of SQL-ML. As mentioned earlier, SQL-ML is a middleware
that extends PostgreSQL and is designed to operate on source data
from any SQL-based database. While the middleware architecture
offers broad compatibility and ease of deployment, database systems
can alternatively choose to integrate SQL-ML functionality directly
into their engines by extending metadata catalogs and translating
SQL-ML commands internally. This direct integration is essentially
a simplified special case of the middleware design, where the SQL-
ML layer is embedded within the database itself. However, we do
not elaborate on this variant in the paper and instead focus on the
middleware-based approach, as it represents the more general and
portable solution across diverse database backends. The overall
architecture of SQL-ML and its core components is shown in Figure
1.

We built SQL-ML by extending the SQL language of PostgreSQL
to allow creating feature stores and features. This extension is im-
plemented by adding new grammar for handling the new objects
(Parser component in Figure 1). The analysis phase (semantic ana-
lyzer) in PostgreSQL is also extended to support the new parse trees
for feature stores and features (Analyzer component in Figure 1).
Most of the planner work in PostgreSQL is not needed for SQL-ML
and the new planner is just to apply global optimizations for feature
refresh and produce the execution code which include: metadata
update and generated SQL to be executed on the host DB.

The rest of this section is structured as follows: Section 3.1
presents the SQL extensions that form the core of SQL-ML, in-
cluding commands for creating, updating, and describing features
and feature stores. Section 3.2 explains the metadata layer and

Figure 1: SQL-ML Architecture

its integration with the existing database catalog, enabling seam-
less management of feature-related metadata. Finally, Section 3.3
discusses the processing of SQL-ML commands, including parsing,
semantic analysis, and execution, where commands such as creating
or dropping feature stores and features are mapped to equivalent
operations in the host database, ensuring efficient integration with
SQL-ML’s metadata and execution framework.

3.1 SQL Extensions
Existing SQL constructs like materialized views or Delta tables
can be used to approximate feature store functionality, doing so
typically requires ad hoc conventions, custom metadata tracking,
and external orchestration logic for updates, backfills, and serving.
These approaches lack a standardized abstraction, forcing users to
build and maintain bespoke pipelines and tooling. By introducing
a SQL extension, SQL-ML elevates features and feature stores to
first-class database objects with declarative semantics for creation,
maintenance, and introspection—removing the need for external
glue code and enabling native optimizations within the SQL engine.

SQL-ML language is an extension of PostgreSQL’s SQL, a widely
used and highly standards-compliant dialect. The extension cover
creating/dropping feature stores and features. The metadata man-
agement and executions of these new commands are covered in the
next two sections. In this section, we cover the new grammar with
some examples.

Creating a feature store is simple and similar to creating a data-
base in PostgreSQL but most of the options are not related to our
context. The SQL commands to create or drop feature stores are
below.

1 CREATE FEATURESTORE name

2 [WITH] [OWNER [=] user_name]

3 DROP FEATURESTORE name

where name is the name of the feature store in both cases. For the
create statement, there is an optional specification of feature store
owner (default is current user). For example, CREATE FEATURE-
STORE ride_share;, DROP FEATURESTORE ride_share; and creates
and drops the ride_share feature store respectively.

The feature concept in SQL-ML corresponds to multiple val-
ues(columns) used by ML and therefore it is represented and imple-
mented as a table. The syntax of creating/dropping features is below.
For simplicity, we are not including ALTER FEATURE command.

1 CREATE FEATURE [IF NOT EXISTS] [feature_store_name .]

feature_name <column_list > AS <sql_query >

2 PARTITION BY <date_time_sql_expression > BY <granuality >

1 DROP FEATURE [IF EXISTS] [feature_store_name .]

feature_name

Features only exist in feature stores and feature_store_name is
optional. <column_list> is list of column names for the feature.
Also, <sql_query> is a SELECT statement written using PostgreSQL
syntax and it is the same used for CREATE VIEW or CREATE TABLE
AS. ML typically extracts features based on a timewindow like "daily
active user count in Facebook" and <date_time_sql_expression> is
used to represent that time window. <date_time_sql_expression>
could be a date/timestamp column or expression and it is also used
by the refresh background process discussed in Section 3.3. The
<granularity> expression specifies the interval used to compute
partitions for features, and it can be set to HOUR, DAY, WEEK,
MONTH, or YEAR.

The following is a simple example of creating a feature named
trip_rollup:

1 CREATE FEATURE IF NOT EXISTS rideshare.trip_rollup AS

2 SELECT driver_id , COUNT (*) AS total_trips

3 FROM rideshare_rawdata.driver_stats

4 GROUP BY driver_id

5 PARTITION BY creation_timestamp BY DAY;

The trip_rollup feature is defined in the ride_share feature store
and is designed to calculate the total number of trips per driver daily.
The data source is the driver_stats table in the ride_share_rawdata
database. This table includes, among other fields, driver_id (which
uniquely identifies each driver) and creation_timestamp, which
records the time a trip was logged. The feature uses the column
creation_timestamp to compute daily aggregates, as specified by
the PARTITION BY ... BY DAY clause in the feature definition.

SQL-ML also supports on-demand backfilling of feature data
using the UPDATE command with the following syntax:

1 UPDATE FEATURE [feature -store -name.]<feature -name > WHERE

<partition -by -col -predicate >

In the UPDATE FEATURE command, the WHERE clause is com-
posed of range predicates on the partition-by field. SQL-ML com-
putes and stores the specified partitions if they do not already exist.
Further details on the operation of this command are provided in
Section 4.2.

Users can consume feature data directly from the host and to
facilitate that we provide the DESCRIBE FEATURE command that
shows the table and its partitions information on the host DB. The
syntax is:

1 DESCRIBE FEATURE [feature -store -name.]<feature -name >

Finally, the SHOW FEATURE command can be used to show the
feature DDL (Data Definition Language) statement that was used
to create the feature.

3.2 Metadata Extensions
This section outlines the metadata layer for registering FEATURE-
STORE and FEATURE entities. By seamlessly integrating these
FEATURE abstractions into the database, they are stored alongside
other database objects like TABLEs and VIEWs within the same
catalog tables. This strategy allows us to make only minimal mod-
ifications to the system catalog in order to register the metadata
objects associated with these new entities.

In our SQL-ML implementation, we implemented the following
changes to the PostgreSQL database catalog:

3.2.1 FEATURESTORE metadata: PostgreSQL includes the meta-
data table pg_namespace to capture SCHEMA information. Due
to the conceptual and structural similarities between FEATURE-
STORE and SCHEMA, we utilize pg_namespace to represent feature
stores by adding a new column, nspkind, to distinguish between
the two types of objects.

3.2.2 FEATURE metadata: In SQL-ML, a FEATURE is analogous to
database views, and we leverage PostgreSQL’s system catalog table
pg_class, which contains information about all tables and views.
We made a minor extension to this table to distinguish FEATURES
from traditional tables and views.

3.2.3 System views: System views provide a secure way to access
relevant metadata. PostgreSQL includes several built-in views, such
as pg_tables, for querying existing tables. Similarly, we have intro-
duced two new system views, pg_feature and pg_featurestore, that
are specifically related to FEATURE and FEATURESTORE objects.
Below is an example of how to use the pg_feature view.

1 SELECT * FROM pg_feature;

Table 2: Sample output from pg_feature.

feature
name

feature
store

partition
column

partition by granu-
larity

last_updated

heart_data health record_dt day 01-22-2023 20:07:40

The output in Table 2 displays a FEATURE called heart_data
which is part of the FEATURESTORE health. This FEATURE is par-
titioned on a column called record_dt with partition_by_granularity
of DAY. The column last_update indicates the time stamp when the
feature was last updated.

3.3 Planner & Execution Extensions
This section discusses the processing of the CREATE and DROP
commands for FEATURE and FEATURESTORE in SQL-ML. The
process involves parsing and analyzing these commands in SQL-ML,
followed by the materialization of the objects in the host database
and the updating of SQL-ML metadata. To illustrate the end-to-end
process, we use the previous example of the feature trip_rollup in
the rideshare feature store. It is important to note that SQL-ML
does not modify or constrain how features are consumed. The
tables created and maintained by SQL-ML follow standard SQL
semantics and are readily accessible by any external ML framework
or in-database ML system. This makes SQL-ML a transparent and
interoperable feature store backend, capable of serving training
and inference workflows without requiring additional APIs or glue
code.

Our initial implementation of SQL-ML uses PostgreSQL as the
host database, which influences how we materialize and optimize
feature processing. However, this approach can be easily extended
to other host databases, a step we plan to take in the future.

3.3.1 Parser: The SQL-ML parser is based on the PostgreSQL di-
alect, as PostgreSQL is widely used and shares grammar similarities
with many newer databases [12]. We added few more grammar
rules to support in addition to the syntax extension, we extended
its grammar to support SQL-ML commands like CREATE FEA-
TURESTORE, CREATE FEATURE, and their corresponding DROP
commands.

When a user submits an SQL statement, the SQL-ML parser gen-
erates an abstract syntax tree (AST) that captures essential details.
For example, the AST for a CREATE FEATURESTORE command in-
cludes: 1) whether to create it if it doesn’t exist, 2) the configuration
file for HostDB, and 3) the FEATURESTORE name.

Similarly, for the CREATE FEATURE command (e.g., trip_rollup),
the AST captures: 1) creation conditions, 2) FEATURE name (with
optional FEATURESTORE prefix), 3) the SELECT query, 4) the
partition column, and 5) refresh granularity.

3.3.2 Analyzer: This phase primarily involves semantic checks.
The input for this phase is the abstract syntax tree (AST) generated
during the Parser phase (see Fig 1). For the SQL-ML extensions, we
conduct two types of semantic checks: one concerning the SQL-ML
metastore and the other regarding the host database which are part
of execution phase. Some of the semantic checks specific to the
SQL-ML layer include verifying whether a feature already exists,
whether the feature has a valid partition-by column etc.

3.3.3 Execute: This phase involves executing the corresponding
command for each SQL-ML extension DDL. It also identifies and
reports semantic check errors related to the host database. For in-
stance, if a database called rideshare for the underlying FEATURE-
STORE already exists in the host database, then an error will be
reported.

Each SQL-ML command corresponds to a command in the host
database, and it is during this phase that the relevant command in
hostDB is executed. Table 3 provides a mapping for the CREATE
and DROP commands related to FEATURE and FEATURESTORE.
For example, when a user executes a CREATE FEATURESTORE
command, the corresponding CREATE DATABASE <fs-name> com-
mand is executed after the Abstract Syntax Tree (AST) is generated
by the parser and validated during the analyzer phase.

Table 3: Mapping of SQL-ML Commands to Host Database
Commands

SQL-ML Command HostDB Command

create featurestore <fs-name> create database <fs-name>

drop featurestore <fs-name> drop database <fs-name>

create feature <f-name> <query> create table <f-name>

drop feature <f-name> drop table <f-name>

To better understand the execution logic, let us use an example
of creating a feature store named rideshare along with the feature
trip_rollup (as described earlier). Figure 2 depicts the execution logic
of CREATE FEATURESTORE rideshare where the command goes
through the parser and semantic analyzer that checks if rideshare
exists and if the user has the proper access rights. If no semantic

Figure 2: CREATE FEATURESTORE

errors, SQL-ML creates a connection with the PostgreSQL host
database and submits CREATE DATABASE rideshare. If the com-
mand is successful then SQL-ML adds it to its metadata. Otherwise,
SQL-ML issues an error to the user. This paper does not show the
details of the error checking and reporting.

Similarly, Figure 3 illustrates the process of creating the FEA-
TURE trip_rollup. The command undergoes parsing and resolution,
where access rights are verified and the existence of the object
is checked. As with creating a feature store, SQL-ML establishes
a connection and submits CREATE TABLE trip_rollup to the
host database. Upon successful table creation, SQL-ML registers
trip_rollup in its metadata and reports an error otherwise. Be-
low is the SQL command that is submitted to the PostgreSQL host
database.

1 CREATE TABLE rideshare.trip_rollup (

2 driver_id INT ,

3 total_trips INT ,

4 creation_timestamp TIMESTAMP

5) PARTITION BY RANGE (creation_timestamp);

Creating the feature does not require any materialization, as
this is managed by either the periodic feature update or an explicit
feature backfill request from the user. We discuss both of these
processes in the following sections.

4 Feature Maintenance
Efficiently managing the lifecycle of machine learning features is
crucial for maintaining accurate and up-to-date models. In SQL-ML,
feature updates and backfills are integrated into a streamlined pro-
cess designed to handle large-scale data while minimizing manual
intervention. This section describes SQL-ML’s approach to updating
features with automated, partition-based refresh cycles, allowing
for timely feature maintenance aligned with common ML require-
ments. Additionally, SQL-ML introduces a powerful global optimiza-
tion capability that leverages shared computations across features,
significantly reducing redundancy and improving performance.

Figure 3: CREATE FEATURE

4.1 Feature Update
In SQL-ML, features are partition-based and can use one of five
partition granularities: hourly, daily, weekly, monthly, or yearly,
with hourly and daily being the most common. SQL-ML refreshes
and updates features automatically through background processes.
To streamline updates, five main processes are configured—one for
each partition type. These processes activate at specific partition
boundaries: the start of each new hour, day (midnight daily), week
(midnight every Sunday), month (midnight on the first day of each
month), and year (midnight on New Year’s Day). At each boundary,
the process identifies all relevant features with matching partition
boundaries and initiates an update process for each feature.

For instance, the trip_rollup feature is partitioned daily using
the creation_timestamp column. The daily update process involves
generating a new partition and inserting data into it. To maintain
consistency, the new partition table is named using the original
table name as a prefix and the corresponding timestamp as a suf-
fix. For example, updating trip_rollup on 11/09/2024, would create
a table with a suffix based on the timestamp value 1731202290,
which represents November 9, 2024, at 00:00:00. Note that both the
creation_timestamp and driver_id fields are sourced from the raw
dataset driver_stats.

1 CREATE TABLE rideshare.trip_rollup_1731202290

2 PARTITION OF rideshare.trip_rollup

3 FOR VALUES FROM '11 -08 -2024␣00:00:00 ' TO '11 -09 -2024␣

00:00:00 '

1 INSERT INTO rideshare.trip_rollup_1731202290 (driver_id ,

total_trips)

2 SELECT driver_id , COUNT (*) AS total_trips

3 FROM rideshare_rawdata.driver_stats

4 WHERE creation_timestamp >= '11 -08 -2024␣00:00:00 ' AND

creation_timestamp < '11 -09 -2024␣00:00:00 '

5 GROUP BY driver_id;

SQL-ML simplifies feature updates and maintenance by support-
ing a straightforward UPDATE command, intentionally limiting
the use of complex subqueries or advanced functions like PIVOT
during the update process. However, these advanced operations

can still be leveraged during feature creation. Furthermore, global
optimizations for each of the 5 partition-based update processes
that leverage common intermediate results among features are also
performed. The cross-feature or global optimizations are covered
in Section 4.3.

4.2 Feature Backfill
Feature backfill involves adding data to an existing feature, specif-
ically for partitions that have not yet been computed. SQL-ML
computes feature partitions based solely on the current date, time,
or timestamp. Users can use the UPDATE FEATURE command,
as described in the syntax extension section, to backfill partitions
that does not exists and ignores those that is already created. The
example below uses UPDATE to backfill rideshare.trip_rollup for
first day of November 2024.

1 UPDATE FEATURE rideshare.trip_rollup

2 WHERE creation_timestamp BETWEEN '11 -01 -2024␣00:00:00 '

AND '11 -02 -2024␣00:00:00 ';

The UPDATE execution logic starts by identifying all partitions
that match the WHERE clause, skipping non-empty partitions, and
then applies the feature update logic to the empty ones. The back-
filling process for each empty partition follows the same steps
as creating new partitions and inserting data, as described in the
previous section.

4.3 Global Optimization
Global optimization seeks to identify the best possible solution, or
global optimum, across the entire feasible solution space, as opposed
to settling for a locally optimal solution within a constrained region.
In the context of database research, this concept is typically referred
to as multi-query optimization [8, 16, 20–22, 24]. Optimal multi-
query optimization is an NP-hard problem [22] which requires
exponential time.

Global optimization in SQL-ML focuses on identifying common
table scans across features, which is particularly effective since
the number of features often far exceeds the number of source
tables. The commonality between two features is determined at
each table scan by checking if they share the same filter, a common
scenario when data is pulled from source tables based on partition
boundaries. The complexity of finding common scans between two
feature plans in SQL-ML is 𝑂 (𝑛1 + 𝑛2), using hash-based indexing,
where 𝑛1 and 𝑛2 represent the number of scan nodes in each plan.
This complexity simplifies to 𝑂 (𝑛) when 𝑛 is the maximum num-
ber of scans in both features. Extending this to all 𝑘 features, the
complexity of identifying common scans becomes 𝑂 (𝑘2), resulting
in an overall complexity for the global optimizer of 𝑂 (𝑛𝑘2).

For example, in our evaluation, we use two source tables—one
for patients and another for health information—to construct 20
distinct features. The SQL-ML global optimizer operates within
the feature update component, which includes five main processes
(hourly, daily, weekly, monthly, and yearly) discussed earlier. Each
process invokes the global optimizer with insert-select plans as
input, represented as directed acyclic graphs (DAGs). The optimizer
examines these DAGs, identifying opportunities where features
share identical scan filters. It then rewrites the DAGs to consolidate
these common components by constructing temporary results for

the shared portions. However, this rewrite may be less efficient
when the source data is indexed or partitioned by timestamp. To
handle this, the SQL-ML optimizer compares the cost of executing
the query with and without the rewrite for each common set of
features. It does this by using "explain" query on the host database
to estimate the cost and then chooses the lower-cost option.

The algorithm below summarizes how feature updates work in
sync with the SQL-ML global optimizer. The algorithm identifies
features that match specific partition boundaries, generates and
optimizes insert-select plans for each feature, creates new partitions,
and then executes the optimized plans to update each partition
efficiently.

Algorithm 1 Feature Update Process in SQL-ML
1: Identify features with matching partition granularity
2: Create create table DDL for new partitions
3: Generate insert-select plan for each partition
4: Send all plans to the global optimizer
5: Execute DDL to create new table partitions
6: Execute insert-select statements into table partitions based on

optimized plans

We illustrate the details of the global optimizer through an ex-
ample. Consider the two features: revenue_rollup and trip_rollup
(described earlier). The revenue_rollup feature captures the total
revenue per driver per day, thereby enhancing the model’s pre-
dictive power by incorporating both the number of trips and the
associated revenue for each driver. The definition of this feature
is provided below which shows that both features are based on
ride_share_rawdata.driver_stats and partitioned the same way on
creation_timestamp daily.

1 CREATE FEATURE IF NOT EXISTS rideshare.revenue_rollup AS

2 select driver_id , sum(revenue) as total_revenue from

rideshare_rawdata.driver_stats group by driver_id

3 PARTITION BY creation_timestamp BY DAY;

Let us assume that the update module built the insert select part
of each of the features for 11/11/2024. The DAGs are shown in
Figures 4 and 5, respectively.

Aggregate
[group by driver_id]

count(*)

Filter
[creation_timestamp
between 11-11-2024
and 11-12-2024]

Scan
[driver_stats]

Figure 4: DAG for the trip_rollup

Aggregate
[group by driver_id]

sum(revenue)

Filter
[creation_timestamp
between 11-11-2024
and 11-12-2024]

Scan
[driver_stats]

Figure 5: DAG for the revenue_rollup

Both features share the same source, partition column, and filter
conditions which allows sharing the table scan and filter operations.
The optimized plan in this example is shown in Figure 6 which
computes the common results. The resulting data is written to a
temporary table via a spool operator. Let us assume that the global
optimizer finds out this plan is cheaper than the individual plans
which can be due to lack of good access paths for the driver_stats
table.

Subsequent operators, such as aggregation, which are specific
to each feature, are processed by reading from this temporary ta-
ble. After the aggregation operations are completed, the resulting
feature values—specific to each feature—are inserted into their re-
spective feature tables. In the next section, the process of serving
these features is explained, where the feature values are retrieved
from these tables for further use.

Project
[driver_id, cnt]

Project
[driver_id, sm]

Aggregate
[driver_id, cnt]

Aggregate
[driver_id, sm]

Spool
Writes to temporary table

Filter
[creation_timestamp
between 11-11-2024
and 11-12-2024]

Scan
[driver_stats]

Figure 6: DAG after the Global Optimization

We conclude this section by demonstrating how we separated
common components, such as creating new partitions (e.g., create
table partition and insert-select into new partitions), between fea-
ture updates and backfilling, as shown in Figure 7. The figure also
illustrates global optimization as a subcomponent of the feature
update process.

4.4 Feature Maintenance Summary
In this section, SQL-ML’s approach to efficiently managing fea-
ture updates and backfilling is detailed, emphasizing the system’s
reliance on partition-based refresh processes. By leveraging granu-
larity settings (e.g., hourly, daily) for feature partitions, SQL-ML au-
tomates periodic updates, ensuring features are timely and require
minimal manual intervention. SQL-ML also supports on-demand

Figure 7: FEATURE MAINTENANCE

backfilling, allowing users to retroactively populate feature data
based on specified date or time ranges.

A key advantage of SQL-ML is its global optimization capabil-
ity, which minimizes redundant computations across features that
share similar source data. The optimizer consolidates common ta-
ble scans, reducing resource usage and improving performance
significantly, especially in large-scale ML applications. This op-
timization is showcased through examples, demonstrating how
SQL-ML reduces overhead by sharing common intermediate results
for multiple features, unlike conventional feature stores that lack
such query optimization.

5 Feature Serving
Feature serving in SQL-ML is straightforward, as it simply directs
the user to the location where the feature results are stored. Our
approach is effective because all feature computation is offloaded
to the host database, making it logical to access the feature data di-
rectly from its storage location. We have introduced the DESCRIBE
FEATURE command in SQL-ML, which offers a detailed description
of the table names and partitions that can be scanned to generate
the corresponding feature values. This command is briefly discussed
in the section 3.1.

For example, here’s the output of this command for an existing
feature called trip_rollup:

1 DESCRIBE FEATURE rideshare.trip_rollup;

The output from the above SQL-ML describe command for a
feature with three partitions would look like this:

ML prediction and learning are the most common consumers
of features, though they are outside the primary scope of feature

Table 4: Output for describe trip_rollup

table-name partition-name

trip_rollup trip_rollup_1727654400
trip_rollup trip_rollup_1727481600
trip_rollup trip_rollup_1727395200

stores. However, a simple example illustrating how ML can lever-
age features created and maintained by SQL-ML can help readers
understand this relationship. We use a prediction example that
utilizes trip_rollup and trip_revenue features to rank drivers based
on their activity and revenue. This example, built in SQL, supports
the increasingly prevalent practice of running ML directly within
databases [1]. SQL-ML provides a distinct advantage by keeping
raw data, feature computation, and consumption closely integrated.

For this example, let us first define what is the ranking function
for drivers. A simple PLSQL UDF function is defined below that
combines the two features into a single rank value. Below is the
function definition:

1 CREATE OR REPLACE FUNCTION rank_driver(total_trip_count

NUMERIC , total_revenue NUMERIC , trip_count NUMERIC ,

trip_revenue NUMERIC)

2 RETURNS NUMERIC AS $$

3 DECLARE

4 alpha NUMERIC := 0.5;

5 beta NUMERIC := 0.5;

6 rank_score NUMERIC;

7 BEGIN

8 rank_score := (alpha * trip_count/total_trip_count) +

(beta * trip_revenue/total_trip_revenue);

9

10 RETURN rank_score;

11 END;

12 $$ LANGUAGE plpgsql;

The following SQL query ranks the drivers on a specific day
based on their performance score defined above by rank_driver.
The example uses the day with timestamp 1727654400 which leads
to using the partitioned tables trip_rollup_1727654400
trip_revenue_1727654400

1 WITH total_stats AS (

2 SELECT

3 COUNT (*) total_trip_count ,

4 SUM(revenue) total_trip_revenue

5 FROM driver_stats

6)

7 SELECT

8 driver_id ,

9 rank_driver(total_trip_count , total_trip_revenue , SUM

(trip_rollup), SUM(trip_revenue)) AS

performance_score

10 FROM trip_rollup_1727654400 as trol inner join

trip_revenue_1727654400 as trev on trol.driver_id =

trev.driver_id , total_stats

11 group by driver_id

12 ORDER BY performance_score DESC;

While the current SQL-ML prototype requires users to query
feature partitions directly, this design prioritizes simplicity and
transparency in initial deployments. However, we acknowledge that
querying partition tables may be unintuitive for some users. As part
of future work, we plan to support direct SQL access to FEATURE

objects (e.g., SELECT ... FROM feature_name) by introducing logical
views that unify partitions. These views will internally rewrite
timestamp filters to access the appropriate partition(s), providing
a more intuitive and streamlined querying experience for both
training and inference workloads.

6 Evaluations
In this section, we present the evaluation results for SQL-ML through
two experiments. The first experiment demonstrates the user expe-
rience of creating a simple feature store with SQL-ML and compares
it to Feast. The second experiment highlights the potential of the
SQL-ML global optimizer by evaluating the performance of a model
using a SQL-ML feature store with 20 features, both with and with-
out optimization.

Evaluations are carried out using publicly available heart dis-
ease data [[7], [15]], with two imported tables: patient_details
[A.2] and heart_data [A.1], which capture patient information and
heart-related data, respectively. The original data set was relatively
small, so we synthesized 100 GB of data based on it.

The SQL-ML setup consisted of a single instance of SQL-ML and
a PostgreSQL database as a host. Both the SQL-ML platform and
the host PostgreSQL shared a similar configuration, running on a
basic Linux system with an AMD RYZEN 7 4700U processor, 16 GB
of RAM, 256 GB SSD storage, and Linux (Ubuntu 22.04 LTS) as the
operating system.

6.1 User Experience Test
SQL-ML Evaluation This test represents a feature store with two
features: cholesterol level and heart rate for patients. For SQL-ML,
a feature store named health [B.1] was defined to store these fea-
tures.We created two features: cholesterol (representing patients’
cholesterol levels) [B.2] and heart_rate (representing patients’
heart rates) [B.2]. A heart disease prediction model was added, uti-
lizing our feature store. The prediction model is implemented as a
PostgreSQL UDF [B.3] that declares a heat disease if both choles-
terol and heart_rate are above a certain level. The prediction for all
patients is done through a SQL query [B.3] that invokes the UDF
to calculate the risk of heart disease for all patients based on data
from a specific day’s data source.

The entire process—including feature definition, materialization,
and predictions—was completed within 1 hour. Detailed feature
definitions can be found in the Appendix.

Feast Evaluation We conducted the same heart disease prediction
test above. We used the same configuration on Feast version 0.29.0.
The creation of features in Feast required several steps: (1) adding
the source data using the Entity abstraction [C.1], (2) creating
data sources based on the entities [C.2], (3) defining and registering
features [C.3], and (4) configuring a materialization schedule for the
features [C.4]. All these steps were implemented in Python using
the custom APIs provided by Feast, which abstract data sources,
features, and materialization windows (analogous to partition gran-
ularity in SQL-ML). Feature serving in Feast also relies on Python
APIs, which we used to implement the heart disease prediction
code.

Implementing the heart disease prediction workflow with Feast
took over 10 hours of coding and testing, compared to just 1 hour

using SQL-ML. Both estimates exclude time spent on installation,
setup, or learning the system. While the comparison is not a for-
mal user study and depends on the user’s familiarity with SQL
or Python, the difference reflects the nature of each system. Feast
requires multiple configuration steps using custom Python SDKs
and CLI tools, whereas SQL-ML relies solely on declarative SQL.
This streamlined approach reduces boilerplate and lowers the bar-
rier to entry for data analysts who are already familiar with SQL.
Overall, the comparison illustrates how SQL-ML simplifies feature
engineering by leveraging the native capabilities of the database.

6.2 Global Optimizations Test
On average, prediction models in healthcare utilize between 10 and
20 features, with the exact number depending on the complexity
of the condition and the availability of data. To explore global
optimizations, we extended the heart disease prediction model to
include a total of 20 features. Of these, 13 are health factors from
the original heart dataset, such as age, sex, chest pain type, resting
blood pressure, serum cholesterol levels, fasting blood sugar, and
other attributes listed in the original health data table [A.1]. The
remaining 7 features were synthetically generated to augment the
feature store, resulting in a dataset with 20 features in total. The
additional 18 feature definitions are analogous to cholesterol and
heart_rate used in the user experience test described above and
are omitted here for brevity.

We also extended the prediction model to leverage all 20 features.
While our test primarily focuses on measuring the performance of
feature materialization with and without global optimization, we
describe the prediction model here for completeness. The model
is based on logistic regression, which produces a binary output
indicating the presence or absence of heart disease. The prediction
is defined by the function:

𝑃 (Heart Disease) = 1
1 + 𝑒−𝑧

Heart disease is predicted if 𝑃 (Heart Disease) > 0.5, and no heart
disease is predicted otherwise. The value of 𝑧, known as the linear
predictor, is defined as:

𝑧 =

20∑︁
𝑖=1

𝛽𝑖 · 𝑓𝑖

Where:
• 𝛽𝑖 : The coefficient for feature 𝑓𝑖 , representing its contribu-

tion to the prediction.
• 𝑓𝑖 : The 𝑖-th feature, such as age (𝑓1) or sex (𝑓2).

We used the same hardware, and we added 7 columns to the
original heart_date table to get the raw data for all the 20 features
resulting in 150 GB total source data on the host database. The
source data covers a span of 60 days of health information for the
100 million patients. The test measures the performance of feature
materialization for a specific day for all patients with (per section
4.3) andwithout global optimizationwhere features arematerialized
independently and without common temporary results.

Figure 8 compares the performance of global optimization versus
no global optimization for different numbers of features (2, 10, and

Figure 8: With & Without Global Optimization- No Index

20), using the heart dataset without indexing. The results demon-
strate that global optimization provides significant performance
improvements as the number of features increases, with reduc-
tions ranging from 6 seconds in the 2-feature test to 129 seconds
in the 20-feature test. This increase in benefit is logical, since the
cost of building the common result is incurred only once, and the
advantages grow as more features are processed.

We also explored a scenario where indexing might reduce the
advantages of global optimization by limiting the benefits of shared
access to common table data. Our objective was to examine a nega-
tive case in which the cost of constructing common results exceeds
their benefits, prompting the cost-based global optimizer to reject
this strategy. However, this proved challenging, as the construc-
tion of common results remained advantageous even with an index
present in the scope. This is because, within the initial scope, the
common results align precisely with table scans and filters, mak-
ing them inherently efficient. Future work involves broadening
the scope of global optimizations to create more opportunities for
constructing shared results. However, this also requires the global
optimizer to make cost-based decisions, as the overhead of shared
results may, in some cases, outweigh their benefits.

Figure 9 illustrates the results of our experiment, which utilized
an index on the timestamp column of the patient data. The index
significantly reduced the data accessed to approximately 1.7% of the
original size, or about 1/60th. Despite this, the index still accounted
for roughly 15% of the overall query performance improvement.
Consequently, the SQL-ML optimizer continued to employ global
optimizations, achieving performance gains ranging from 3 to 48
seconds.

7 Conclusion and Future Work
In this paper, we presented SQL-ML, a SQL-centric framework
that simplifies the management and retrieval of machine learning
features by embedding feature store capabilities directly into the
SQL ecosystem. By treating features as database objects, SQL-ML
streamlines feature storage and management, enabling seamless in-
tegrationwith existing SQLworkflows. Our prototype, built on Post-
greSQL, demonstrated SQL-ML’s potential to enhance user experi-
ence and system efficiency by minimizing redundant computations

Figure 9: With & Without Global Optimization- Index

and leveraging SQL for robust feature optimizations. Compared to
conventional feature stores, SQL-ML reduces the operational over-
head, achieves faster feature creation, and improves performance
by incorporating multi-query optimizations and periodic feature
refreshes.

To further enhance SQL-ML’s applicability and efficiency, future
work will explore: (1) adding support for additional host databases,
such as MySQL, to increase SQL-ML’s adaptability across vari-
ous database environments, (2) extending the global optimization
capabilities for joins and aggregations by leveraging current multi-
query optimizations, which will improve query efficiency for more
complex feature engineering tasks, and (3) expanding SQL-ML to
support streaming engines, enabling real-time feature updates and
maintaining freshness for time-sensitive applications. This evolu-
tion will empower SQL-ML to become a versatile, highly efficient
tool in feature store management for diverse use cases in machine
learning.

References
[1] [n.d.]. 10 databases supporting in-database machine learning | In-

foWorld. https://www.infoworld.com/article/2262611/10-databases-supporting-
in-database-machine-learning.html

[2] [n.d.]. Amazon Redshift | Redshift ML - AmazonWeb Services. https://aws.amazon.
com/redshift/features/redshift-ml/

[3] [n.d.]. Amazon SageMaker Feature Store for machine learning (ML) – Amazon
Web Services. https://aws.amazon.com/sagemaker/feature-store/

[4] [n.d.]. Databricks Feature Store. https://www.databricks.com/product/feature-
store

[5] [n.d.]. Feast: Feature Store for Machine Learning. https://feast.dev/
[6] [n.d.]. feathr-ai/feathr: Feathr – A scalable, unified data and AI engineering

platform for enterprise. https://github.com/feathr-ai/feathr
[7] [n.d.]. Heart Disease Dataset. https://www.kaggle.com/datasets/johnsmith88/

heart-disease-dataset
[8] [n.d.]. Multi-query optimization-Apache Mail Archives. https://lists.apache.org/

thread/mcdqwrtpx0os54t2nn9vtk17spkp5o5k
[9] [n.d.]. Power Every Experience with AI. https://www.tecton.ai/
[10] [n.d.]. Snowflake Feature Store | Snowflake Documentation. https://docs.snowflake.

com/en/developer-guide/snowflake-ml/feature-store/overview
[11] [n.d.]. Vertex AI with Gemini 1.5 Pro and Gemini 1.5 Flash. https://cloud.google.

com/vertex-ai
[12] [n.d.]. The world of PostgreSQL wire compatibility. https:

//datastation.multiprocess.io/blog/2022-02-08-the-world-of-postgresql-
wire-compatibility.html

[13] 2024. Apache MADlib: Scalable In-database Machine Learning. https://madlib.
apache.org/ Accessed: 2024-11-26.

[14] 2024. PostgresML: Machine Learning in PostgreSQL. https://www.postgresml.org/
Accessed: 2024-11-26.

[15] William Steinbrunn Andras Janosi. [n.d.]. Heart Disease. https://doi.org/10.
24432/C52P4X

[16] Panos Kalnis and Dimitris Papadias. 2003. Multi-query optimization for on-line
analytical processing. Inf. Syst. 28, 5 (July 2003), 457–473. https://doi.org/10.
1016/S0306-4379(02)00026-1

[17] Rui Liu, Kwanghyun Park, Fotis Psallidas, Xiaoyong Zhu, Jinghui Mo, Rathijit Sen,
Matteo Interlandi, Konstantinos Karanasos, Yuanyuan Tian, and Jesús Camacho-
Rodríguez. 2023. Optimizing Data Pipelines for Machine Learning in Feature
Stores. Proc. VLDB Endow. 16, 13 (Sept. 2023), 4230–4239. https://doi.org/10.
14778/3625054.3625060

[18] Weixi Ma, SiyuWang, Arnaud Venet, Junhua Gu, Subbu Subramanian, Rocky Liu,
Yafei Yang, and Daniel P. Friedman. 2024. F3: A Compiler for Feature Engineering.
In Proceedings of the 2nd ACM SIGPLAN International Workshop on Functional
Software Architecture (Milan, Italy) (FUNARCH 2024). Association for Computing
Machinery, New York, NY, USA, 3–9. https://doi.org/10.1145/3677998.3678220

[19] Microsoft 2024. Microsoft SQL Server Machine Learning Services. Mi-
crosoft. https://learn.microsoft.com/en-us/sql/machine-learning/sql-server-
machine-learning-services Accessed: 2024-11-26.

[20] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient and
extensible algorithms for multi query optimization. SIGMOD Rec. 29, 2 (May
2000), 249–260. https://doi.org/10.1145/335191.335419

[21] Prasan Roy and S. Sudarshan. 2009. Multi-Query Optimization. Springer US,
Boston, MA, 1849–1852. https://doi.org/10.1007/978-0-387-39940-9_239

[22] Timos K. Sellis. 1988. Multiple-query optimization. ACM Trans. Database Syst.
13, 1 (March 1988), 23–52. https://doi.org/10.1145/42201.42203

[23] Mugdha Somani. [n.d.]. Top 3 Feature Stores To Ease Feature Management
in Machine Learning. https://censius.ai/blogs/top-3-feature-stores-to-ease-
feature-management-in-machine-learning

[24] Yicheng Tu, Mehrad Eslami, Zichen Xu, and Hadi Charkhgard. 2022. Multi-
Query Optimization Revisited: A Full-Query Algebraic Method. In 2022 IEEE
International Conference on Big Data (Big Data). 252–261. https://doi.org/10.
1109/BigData55660.2022.10020338

[25] Yi Wang, Yang Yang, Weiguo Zhu, Tao Gu, Yu Ji, Xiaoyu Zhu, Weichen Yang,
and Yuan He. 2020. SQLFlow: A Bridge between SQL and Machine Learning. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. Association for Computing Machinery, New York, NY, USA, 1241–1255.
https://doi.org/10.1145/3318464.3389773

A Heart Disease Source Data
Two base tables store the raw data.

A.1 heart_data table definition

1

2 CREATE TABLE rawdata.heart_data(

3 patient_id CHAR (10),

4 record_dt CHAR (100),

5 chest_pain_type CHAR (10),

6 resting_blood_pressure CHAR (10),

7 serum_cholestoral CHAR (10),

8 fasting_blood_sugar CHAR (10),

9 resting_electoral_res CHAR (10),

10 max_heart_rate CHAR (10),

11 exercise_ind_angina CHAR (10),

12 oldpeak CHAR (10),

13 slope_of_peak_exercise CHAR (10),

14 no_of_major_vessels CHAR (10),

15 thal CHAR (10),

16 target CHAR (10)

17);

A.2 patient_details table definition

1 CREATE TABLE rawdata.patient_details(

2 patient_id CHAR (10),

3 age CHAR (10),

4 sex CHAR (10)

5);

https://www.infoworld.com/article/2262611/10-databases-supporting-in-database-machine-learning.html
https://www.infoworld.com/article/2262611/10-databases-supporting-in-database-machine-learning.html
https://aws.amazon.com/redshift/features/redshift-ml/
https://aws.amazon.com/redshift/features/redshift-ml/
https://aws.amazon.com/sagemaker/feature-store/
https://www.databricks.com/product/feature-store
https://www.databricks.com/product/feature-store
https://feast.dev/
https://github.com/feathr-ai/feathr
https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset
https://lists.apache.org/thread/mcdqwrtpx0os54t2nn9vtk17spkp5o5k
https://lists.apache.org/thread/mcdqwrtpx0os54t2nn9vtk17spkp5o5k
https://www.tecton.ai/
https://docs.snowflake.com/en/developer-guide/snowflake-ml/feature-store/overview
https://docs.snowflake.com/en/developer-guide/snowflake-ml/feature-store/overview
https://cloud.google.com/vertex-ai
https://cloud.google.com/vertex-ai
https://datastation.multiprocess.io/blog/2022-02-08-the-world-of-postgresql-wire-compatibility.html
https://datastation.multiprocess.io/blog/2022-02-08-the-world-of-postgresql-wire-compatibility.html
https://datastation.multiprocess.io/blog/2022-02-08-the-world-of-postgresql-wire-compatibility.html
https://madlib.apache.org/
https://madlib.apache.org/
https://www.postgresml.org/
https://doi.org/10.24432/C52P4X
https://doi.org/10.24432/C52P4X
https://doi.org/10.1016/S0306-4379(02)00026-1
https://doi.org/10.1016/S0306-4379(02)00026-1
https://doi.org/10.14778/3625054.3625060
https://doi.org/10.14778/3625054.3625060
https://doi.org/10.1145/3677998.3678220
https://learn.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services
https://learn.microsoft.com/en-us/sql/machine-learning/sql-server-machine-learning-services
https://doi.org/10.1145/335191.335419
https://doi.org/10.1007/978-0-387-39940-9_239
https://doi.org/10.1145/42201.42203
https://censius.ai/blogs/top-3-feature-stores-to-ease-feature-management-in-machine-learning
https://censius.ai/blogs/top-3-feature-stores-to-ease-feature-management-in-machine-learning
https://doi.org/10.1109/BigData55660.2022.10020338
https://doi.org/10.1109/BigData55660.2022.10020338
https://doi.org/10.1145/3318464.3389773

B Heart Disease Feature Store
SQL-ML feature definitions used in the evaluations.

B.1 FEATURE STORE
1 CREATE FEATURESTORE health;

B.2 FEATURE DEFINITIONS
Definitions of features for cholesterol and heart rate in a patient.

1 CREATE FEATURE health.cholesterol_for_patient(

2 patient_id , record_dt ,

3 cholesterol

4) AS

5 SELECT

6 patient_details.patient_id ,

7 TO_DATE(record_dt , 'YYYYMMDD ') AS record_dt ,

8 (

9 cast(serum_cholestoral as int)- min_chol

10)/ min_max_chol AS cholesterol

11 FROM

12 rawdata.heart_data ,

13 rawdata.patient_details ,

14 (

15 SELECT

16 min_chol ,

17 max_chol - min_chol as min_max_chol

18 FROM

19 (

20 SELECT

21 min(

22 cast(serum_cholestoral as int)

23) min_chol ,

24 max(

25 cast(serum_cholestoral as int)

26) max_chol

27 from

28 rawdata.heart_data

29)

30) AS min_max_cholestoral

31 WHERE

32 heart_data.patient_id = patient_details.patient_id

PARTITION BY record_dt BY DAY;

1 CREATE FEATURE health.heart_rate_for_patient(

2 patient_id , record_dt ,

3 heart_rate

4) AS

5 SELECT

6 patient_details.patient_id ,

7 TO_DATE(record_dt , 'YYYYMMDD ') AS record_dt ,

8 (

9 cast(max_heart_rate as int) - min_hr

10)/ min_max_hr AS heart_rate

11 FROM

12 rawdata.heart_data ,

13 rawdata.patient_details ,

14 (

15 SELECT

16 min_hr ,

17 max_hr - min_hr as min_max_hr

18 FROM

19 (

20 SELECT

21 min(

22 cast(max_heart_rate as int)

23) min_hr ,

24 max(

25 cast(max_heart_rate as int)

26) max_hr

27 from

28 rawdata.heart_data

29)

30) AS min_max_heart_rate

31 WHERE

32 heart_data.patient_id = patient_details.patient_id

PARTITION BY record_dt BY DAY;

B.3 Prediction query using UDF
Prediction function used in a query for predicting heart disease of
a patient.

1 CREATE FUNCTION predict_heart_disease(cholesterol real ,

heart_rate real) RETURNS integer AS $$

2 BEGIN

3 if cholesterol > 0.9 and heart_rate > 0.8 THEN

4 return 1;

5 ELSE

6 return 0;

7 END IF;

8 END;

9 $$ LANGUAGE plpgsql;

Query to predict the heart disease using the above UDF
1 SELECT

2 predict_heart_disease(cholesterol , heart_rate)

3 FROM

4 health.heart_rate_for_patient hr

5 inner join health.cholesterol_for_patient ch on hr.

patient_id = ch.patient_id;

C Feast API
C.1 Entity
Feast API for entity creation.
class feast.entity.Entity(name: str, description: str,
value_type: feast.value_type.ValueType,
labels: Optional[MutableMapping[str, str]] = None)

This class represents a collection of entities and their associated metadata.

C.1.1 Properties

• created_timestamp: Retrieves the created_timestamp of the entity.
• description: Retrieves the description of the entity.
• labels: Retrieves the labels associated with the entity, represented as a

dictionary of user-defined metadata.
• last_updated_timestamp: Retrieves the

last_updated_timestamp of the entity.
• name: Retrieves the name of the entity.
• value_type: Retrieves the type of the entity.

C.1.2 Methods

• from_dict(entity_dict): Creates an entity from a dictionary.
– Parameters: entity_dict – A dictionary representing the entity.
– Returns: An EntityV2 object created from the dictionary.

• from_proto(entity_proto): Creates an entity from its protobuf represen-
tation.

– Parameters: entity_proto – A protobuf representation of the entity.
– Returns: An EntityV2 object created from the protobuf.

• from_yaml(yml): Creates an entity from a YAML string or file path.
– Parameters: yml – A YAML string or a file path containing the YAML

data.
– Returns: An EntityV2 object created from the YAML data.

• is_valid(): Validates the entity’s state locally. Raises an exception if the
entity is invalid.

• to_dict(): Converts the entity to a dictionary.
– Returns: A dictionary representation of the entity.

• to_proto(): Converts the entity to its protobuf representation.
– Returns: An EntityV2Proto protobuf object.

• to_spec_proto(): Converts the entity to an EntitySpecV2 protobuf rep-
resentation, suitable for passing to Feast requests.

– Returns: An EntitySpecV2 protobuf object.
• to_yaml(): Converts the entity to a YAML string.

– Returns: A YAML-formatted string representing the entity.

C.2 FileSource
Feast source API for file based sources.
class feast.data_source.FileSource(event_timestamp_column: str,

file_format: feast.data_format.FileFormat,
file_url: str,
created_timestamp_column: Optional[str] = '',
field_mapping: Optional[Dict[str, str]] = None,
date_partition_column: Optional[str] = '')

C.2.1 Description Represents a file-based data source for Feast.

C.2.2 Properties
• file_options: Retrieves the file options of this data source.

C.2.3 Methods
• to_proto(): Converts a DataSourceProto object to its protobuf represen-

tation.
– Returns:A feast.core.DataSource_pb2.DataSource protobuf ob-

ject.

C.3 Feature
Feast API for creating feature.
class feast.feature.Feature(name: str,

dtype: feast.value_type.ValueType,
labels: Optional[MutableMapping[str, str]] = None)

C.3.1 Description Represents a feature field type in Feast.

C.3.2 Properties
• dtype: Getter for the data type of this field.
• labels: Getter for the labels associated with this field.
• name: Getter for the name of this field.

C.3.3 Methods
• from_proto(feature_proto): Creates a Feature object from a FeatureSpecV2

Protocol Buffer object.
– Parameters:

∗ feature_proto – A FeatureSpecV2 Protocol Buffer object.
– Returns: A Feature object.

• to_proto(): Converts the Feature object to its Protocol Buffer representa-
tion.

– Returns:A feast.core.Feature_pb2.FeatureSpecV2 Protocol Buffer
object.

C.4 Feast Materialize
Materialize API for Feast

• feast materialize: Materializes given from_date and to_date

	Abstract
	1 Introduction
	2 Related Work
	2.1 General Purpose Feature Stores
	2.2 Platform Specific Feature Stores

	3 SQL-ML
	3.1 SQL Extensions
	3.2 Metadata Extensions
	3.3 Planner & Execution Extensions

	4 Feature Maintenance
	4.1 Feature Update
	4.2 Feature Backfill
	4.3 Global Optimization
	4.4 Feature Maintenance Summary

	5 Feature Serving
	6 Evaluations
	6.1 User Experience Test
	6.2 Global Optimizations Test

	7 Conclusion and Future Work
	References
	A Heart Disease Source Data
	A.1 heart_data table definition
	A.2 patient_details table definition

	B Heart Disease Feature Store
	B.1 FEATURE STORE
	B.2 FEATURE DEFINITIONS
	B.3 Prediction query using UDF

	C Feast API
	C.1 Entity
	C.2 FileSource
	C.3 Feature
	C.4 Feast Materialize

