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ABSTRACT

Error detection and cleaning of customer and employee data, in-
cluding names, addresses, and phone numbers, is a critical task in
many organizations. Errors in personal contact information, such as
misspellings or format inconsistencies, can lead to failed deliveries
or delayed tax document distribution. Most enterprise data quality
tools offer error detection based on pre-defined rules. These tools
often fall short in detecting unexpected and contextual data errors,
such as valid but mismatched postal codes and cities.

In this paper, we investigate and benchmark the performance
of four large language models (Llama-3, Llama-4, DeepSeek-R1,
ChatGPT-4.1), the error detection and data cleaning tools Raha and
Baran, as well an Autoencoder to (1) detect unexpected and contex-
tual errors, (2) suggest cleaning steps, and (3) explain error detection
in personal contact information. On average, we demonstrate that
LLMs outperform Raha and Baran as well as the Autoencoder for
error detection and correction. All prompts are provided to repeat
and extend our experiments. We further contribute with a synthetic
benchmark dataset as well as a data polluter that introduces error
types specific to personal contact information. Both components
were developed together with domain experts from Austrian Post
to replicate key characteristics of real-world data. We conclude that
large language models can detect unexpected and contextual data
errors, which are often overlooked by traditional data quality tools.
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Table 1: Personal contact data with different error types.

Name Email City PostalCode

Jan Beck jan.beck@ait.at Salzburg, Altstadt 5020

Kai Eckl janbeck@ait.at Salzburg -
Ina Aler ina.auer cas.org Linz 40b0
Ina Auer ina.auer@cas.org Lienz 4020

Type of error: = Contradictions

Syntactic formatting error types Additional information

1 INTRODUCTION

Most organizations manage personal contact information as part
of their master data, for example, data about customers, business
partners, applicants, or employees [21]. Personal contact informa-
tion can change due to relocations or life events and is typically
protected by privacy regulations such as the GDPR (General Data
Protection Regulation) [10] in Europe or the HIPAA (Health Insur-
ance Portability and Accountability Act) [42] in US healthcare.
Beyond legal requirements to keep personal data up-to-date and
correct, organizations themselves have strong incentives to ensure
high-quality personal and address data, e.g., to reduce unnecessary
mailing costs and CO; emissions while strengthening customer
satisfaction [30]. Organizations established data governance of-
fices [34] as specialized units to ensure personal data accuracy and
security. In a 2025 study, the German Post found that every 8th
customer address is incorrect and that the biggest source of errors
is outdated customer addresses [30]. In countries with less strict
privacy regulations like China [41, 43] or India [39], addresses can
contain as many as 200-300 words, possibly including directions to
reach a place, mobile numbers, or delivery instructions [39].
Problem statement. Common errors in personal and address
data include misspelled words from data entry mistakes (e.g., “Ina
Aler”, “Lienz” instead of “Linz”), incomplete records (e.g., “Kai Eckl”
missing a PostalCode), or fields containing irrelevant information
(e.g., “Salzburg, Altstadt”) [30] as exemplary shown in Table 1. State
of the art data quality (DQ) tools (cf. [7, 9, 40]) typically offer lookup
tables to validate addresses and also support the detection of ex-
pected errors with pre-defined rules. Developing these rules re-
quires significant effort by domain experts — according to Tamm
and Nikiforova [40], only ten out of 151 commercial DQ tools can
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automatically detect and propose DQ rules. Also, rule-based solu-
tions fall short in identifying unexpected and contextual errors in
personal and address data that appear correct. For example, email
addresses can only be validated for syntax (presence of “@”), with
semantic correctness requiring contacting the person directly.

Objective. Our research aims to (1) detect unexpected and con-
textual errors in personal and address data, e.g., “Kai Eckl” having
the email “jan.beck@ait.at” in Table 1, (2) suggest cleaning steps to
a user, and (3) explain the cause of the identified error, e.g., that an
error was detected since the first and last names do not match.

Contribution. To achieve this goal, we investigate the perfor-
mance of large language models (LLMs) to automatically detect
and clean personal contact information. In total, we benchmark
three local LLMs (Llama-3, Llama-4, DeepSeek-R1), ChatGPT-4.1,
the error detection and cleaning tools Raha [25] & Baran [23], as
well as Autoencoder for their suitability to perform these tasks. We
analyze model performance per data type, pollution level, as well as
error types to provide guidelines on where to use LLMs and where
not to. We further contribute with a public (synthetic) benchmark
dataset and all LLM prompts to repeat and extend our research on
error detection and cleaning of personal and address data.

Results. Our experiments show that Llama-3 outperforms the
other models in error detection while ChatGPT-4.1 excels in data
cleaning. Our results show that

(1) the error type significantly affects performance,

(2) attribute cardinality has a greater influence on error detec-
tion and cleaning performance than the data type, and

(3) pollution levels between 0-40% have negligible impact.

Outline. We discuss related work in Section 2 and describe the
the evaluation setup, which we developed to conduct our experi-
ments in Section 3. The results of the evaluation are discussed in
Section 4 and Section 5 provides an outlook on future work.

2 RELATED WORK

Error detection and cleaning are essential components of any data
science pipeline. Therefore, many data quality tools have been
developed to detect and clean data errors [7, 9, 29], the majority
supporting a user in writing and executing data quality rules. In
addition to classic rule-based or similarity-based approaches (as
for example implemented in Great Expectations! or Deequ [36]),
several open-source research tools have been developed that aim
at automatically learning data validation and cleaning rules with
machine learning (ML), such as, [24, 32, 38]. For example, Raha [25]
& Baran [23] are semi-supervised open-source tools to detect and
clean data errors with ML methods, such as Gradient Boosting. An-
other ML-based approach to error detection and cleaning are trans-
formers, which are deep neural networks that learn the context of
data and generate the most plausible value for a given context [15].

With the rise of large language models (LLMs), error detection
and cleaning can exploit contextual knowledge to detect subtle
(unexpected) errors and inconsistencies, which were nearly impos-
sible to detect previously. Zhang et al. [44] demonstrate the high
potential of LLMs in identifying previously unseen data errors and
suggesting cleaning steps. It is noteworthy to mention that enter-
prise DQ tools are so far relatively conservative in employing ML
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or LLMs for error detection and cleaning, as indicated by Gartner’s
“Magic Quadrant for Augmented Data Quality Solutions” [7].

While fully automated data cleaning is still a too complex task
for current LLMs [44], we aim to show their potential specifically
for the domain of personal and address data cleaning. We therefore
benchmark different LLMs on the one hand to a transformer-based
model, and on the other hand to Raha & Baran as representatives
for machine-learning based error detection since they clearly out-
perform all other comparable tools [27, 44].

Error detection and cleaning of personal and address data fea-
tures specific challenges, such as the parsing and standardizing of
addresses that are available as concatenated strings [1, 19], correct-
ing spelling and semantic mistakes [5], matching geodata infor-
mation to an address [18], or extracting addresses from images of
package labels [2, 6]. In our research, we focus on machine-readable
personal and address data (e.g., stored in database or CSV file) that
has already been split into separate columns but still requires checks
for spelling mistakes and contextual consistency.

Transformer-based models [8, 14] and LLMs [43] have already
been explored in previous work for personal and address data clean-
ing. Those works show that these models have an advantage over
classic distance-based and rule-based approaches, especially with
respect to detecting and correcting contextual data errors. Yang et al.
[43] show that LLMS are better than transformer-based models like
BART [20], which aligns very well with our findings in this paper.
In contrast to Yang et al. [43], who use a fine-tuned RAG (Retrieval
Augmented Generation) model for address cleaning, we evaluate
the suitability of out-of-the-box (not fine-tuned) LLMs with a zero-
shot approach since we do not assume training data to be available.
However, to the best of our knowledge, none of these works inves-
tigated the performance of LLMs and transformer-based models
with respect to different data types as well as error types. We deem
this as an important finding especially for application in practice,
where it is important to decide where to use language-based models
and where rule-based systems.

3 EXPERIMENTAL SETUP

Figure 1 provides an overview of the experimental setup used to
conduct our study. We discuss the methods used in Section 3.1,
details of the implementation in Section 3.2, both the company
and the synthetic datasets in Section 3.3, and the error pollution to
introduce errors with ground truth in Section 3.4.

The process of error detection and correction within our experi-
ments can be shown with an example from Table 1. Assume that
City contains an incorrect character, which turns the correct city
name “Linz” to a still valid Austrian city name “Lienz”, which is
however incorrect in the context of the record considering postal
code and street name (omitted for brevity). During the experiments,
all attributes of a record are provided as input data to the different
methods. If a method detects the respective error (i.e., that City is
incorrect), it also provides a cleaning suggestion (e.g., to replace
“Lienz” with “Linz” based on knowledge about the PostalCode).

3.1 Error Detection and Cleaning Methods

Overall, we evaluate the ability of three different methods to detect
and clean errors in personal contact information: (1) four LLMs,
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Figure 1: Experimental setup of the evaluation of the data detection and cleaning methods.

(2) Raha & Baran as representatives of state-of-the-art data cleaning
tools, and an (3) Autoencoder. Given a set of input data (see Sec-
tion 3.3) each method computes the results, which are subsequently
compared to the ground truth. We use the F1 score to indicate the
performance of each method.

3.1.1  LLMSs. We use pre-trained models for all LLMs and provided
the data via prompting to perform the error detection and correction
task. The prompt was created and refined beforehand, then applied
consistently to each record of the dataset and can be reused across
different types of personal contact data. We refined the prompt in
four steps — see GitHub? to access all prompts — and used the last
one (p4) for our experiments. The LLM response is subsequently
parsed to extract the error detection and correction results.

3.1.2 Raha and Baran. Raha and Baran require a clean and a dirty
dataset for training. For evaluating the benchmark dataset (see
Section 3.3) we simply used a clean dataset (before pollution) as
well as a dirty dataset (after pollution) for training. We used the
same benchmark dataset (5,000 records) for training Raha and Baran
to perform the experiments on the company dataset, since we aimed
to model a real-world scenario without the availability of clean data.

3.1.3  Autoencoder. The architecture of the Autoencoder model is a
bidirectional LSTM (long short-term memory) layer, an LSTM layer
with attention, and a dense output layer. To train the Autoencoder
model, we generated a clean dataset (50,000 records) that differs
from the evaluation dataset. Some samples may be found in both.

3.2 Implementation

The experimental evaluation was conducted in Python. The Au-
toencoder was built and trained on a local server (CPU: Intel Xeon
E5-2698 v4, GPU: 4x NVIDIA Tesla V100 DGXS 64GB, RAM: 256GB)
using the KERAS® framework. For Raha [25] and Baran [23], we
use the latest commit [22] of the original Python implementations
as proposed in the respective publications. Both were run on the
same server as the Autoencoder. The experiments with local LLMs
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are performed using the Python OpenAI* package for API calls to
each of the following three LLMs:
e Llama-3: casperhansen/llama-3.3-70b-instruct-awq,
e Llama-4: RedHatAl/Llama-4-Scout-17B-16E-Instruct-FP8-
dynamic, and
e DeepSeek-R1: Valdemardi/DeepSeek-R1-Distill-Qwen-32B-
AWQ.
Those models are chosen based on their performance on the Chatbot
Arena LLM Leaderboard® and their compatibility with our comput-
ing infrastructure. Our local high-performance computing platform
has a single AMD EPYC 7643 with 48-cores, 2.3 GHz CPU and four
NVIDIA A100 GPUs, each with 160GB of high-bandwidth memory.
The system is equipped with 1TB of RAM. ChatGPT-4.1 is evaluated
with the batch processing feature from OpenAl.

3.3 Personal and Address Datasets

For our experiments, we use a proprietary company dataset pro-
vided by the Austrian Post (postal service) about Austrian personal
and address data, which is a combination of synthetic and real data.
Since this dataset cannot be made publicly available, we developed
a synthetic benchmark dataset that replicates its key characteristics
and which we publish to enable reproducible research®.

Company dataset. While the addresses in the company dataset
are real-world data, the personal data have been synthetically gen-
erated and polluted to ensure compliance with privacy regulations.
The company dataset contains 14 attributes, consisting of:

e 7 personal data attributes: FirstName, LastName, Email,
Country, DialingCode, PhoneNumber, and DateOfBirth

e 7 address data attributes: Street, HouseNumber, Stairway,
Door, PostalCode, City, and CountryCode

The following 7 attributes contained errors: Email, Street, City,
Country, DateOfBirth, HouseNumber, and PostalCode. Incorrect
values were marked with one out of six different labels, referring
to a previously defined rule that was violated. As these rules were
applied to one or multiple attributes, multiple rules can match a
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single error type. Five labels can be mapped to the error types
(ER1a—c) from Table 2 and the sixth label can be mapped to (ER4).

Benchmark dataset. The benchmark data has the same schema
as the company data and replicates its key characteristics. Since
the benchmark dataset does not contain any personally identifiable
information, we publish it to validate and further extend our ex-
periments on personal contact data error detection and cleaning.
The benchmark data also allows us to systematically introduce
commonly observed real-world data errors (both the type and fre-
quency) with known ground truth. This controlled environment
allowed for a sound evaluation of different models’ performance in
error detection and data cleaning tasks, facilitating the identifica-
tion of strengths and weaknesses of each approach.

For the generation of the benchmark dataset, we used real Aus-
trian addresses, combined with fictional person data to make it
more realistic. Hence, country code was always set to Austria and
the DialingCode was selected from a list of Austrian DialingCodes.
An Austrian telephone number consists of 3 to 7 numbers, which
were selected randomly. The FirstName and LastNames were ran-
domly selected from official lists to simulate real persons. For the
DateOfBirth, a date within the allowed bounds was generated ran-
domly. The real Austrian addresses were randomly picked from the
official Austrian address register [11].

3.4 Data Pollution

We polluted the person and address benchmark data with different
error types to enable systematic evaluation of the error detection
and cleaning methods. Although there are a number of open-source
data pollution tools like BART [4], GouDa [33], or Jenga [35], we
decided to develop our own pollution strategy together with domain
experts from Austrian Post to support common data error types
(ER) specific to person and address data.

In alignment with related work on data error classification [13,
16, 17, 28, 31], we distinguish on a high-level between two syntactic
(ER1-2) and four semantic error types (ER3-6). For the syntactic
errors types, we investigated the impact of inserted/updated/deleted
(ER1a) letters, (ER1b) numbers, or (ER1c) special characters that
violate a specific data format, as well as (ER2) words that start with
lowercase although uppercase is required. Such formatting errors
(discussed as “heterogeneous formatting” in [16, 28]) encompass
violations of the structure and composition of the data, such as the
presence of incorrect characters [16]. These errors can be detected
independently of a specific application or data semantics by just
investigating the format.

For semantic data errors, we consider the following four types:

e Additional information (ER3): Additional, irrelevant in-
formation is present in a field (also mentioned in [13] and
as “embedded values” in [31]), such as City="Salzburg, Alt-
stadt” instead of City="Salzburg” as outlined in Table 1.

e Contradictions (ER4): A value that is individually valid,
but contradicts with other fields of the same record, e.g.,
PostalCode=1220 where City="Salzburg” for the same record
(note that 1220 is a postal code for Vienna). This error type
is also discussed in [26] as well as in [16] under the umbrella
term “incorrect value”.

e Valid-value typo (ER5): Typographical errors (also: typos)
are misspellings caused by keystroke mistakes during data
entry [37]. We use the term valid-value typo to describe ty-
pos that result in a valid but incorrect value. In other words,
the value is inside the domain (generally valid), but does
not represent the intended value of its real-world represen-
tation. An example is City="Lienz” instead of City="Linz”.

e Value misplacement (ER6): The value from one attribute
is included in another attribute, also discussed as “embed-
ded values” in [31], which are mainly caused by problems
during the data entry process, i.e., the data were entered in
the wrong attribute. An example is FirstName="Jan Beck”
which includes already the last name of the person.

For our experiments, we generated batches of 5,000 records for
different pollution levels (2.5%, 10%, 15%, 20%, 25%, 30%, 40%) and
polluted each batch with all 8 error types evenly distributed.

4 RESULTS AND DISCUSSION

In this section, we experimentally evaluate the ability of the models
described in Section 3.1 to detect and clean data errors: per data
type in Section 4.1, per error type in Section 4.2, per pollution level
in Section 4.3, and the runtime performance in Section 4.4. We
use the F1 score as a metric to compare the results of the different
models, having a range between 1 to 0, where 1 is the best result
and 0 means that no error has been found. Since the F1 scores only
show minimal variation by pollution level (SD: 0.12), the results are
aggregates across all levels. The F1 score is the harmonic mean of
recall and precision, where both values are comparable for Autoen-
coder, Raha, and Baran. For the LLMs, recall is generally higher
than precision, which means that LLMs are good in detecting and
correcting errors, but also introduce many false positives. For exam-
ple, for the FirstName column, the average precision of all LLMs is
0.5 and the recall is 0.8 (leading to a F1 score of 0.57), which means
that 80% of the errors in FirstName were detected and 50% of all
detected errors were also labeled errors.

4.1 Evaluation per Data Type

The first experiment investigates the impact of the datatype on
detection and cleaning performance as shown in Table 3. In our data,
we have three different data types: string (7 attributes), integer
(6 attributes), and date (1 attribute). Results for error detection are
discussed in Section 4.1.1 and for data cleaning in Section 4.1.2.

4.1.1  Error detection. Table 3 shows that the LLMs constantly
outperform the other methods (Raha and Autoencoder) in error
detection, but different LLMs perform best for different attributes.

Benchmark data. For the benchmark data, DeepSeek-R1 demon-
strates the lowest error detection performance among all LLMs, ex-
cept for the DateOfBirth attribute, where it achieves the highest F1
score. Llama-4 shows results comparable to Llama-3 and ChatGPT-
4.1, but generally underperforms the other two models except for
Street and HouseNumber. Llama-3 outperforms ChatGPT-4.1 across
most attributes, except for Email and PhoneNumber.

We further investigated the attributes with the lowest F1 scores,
indicating the most difficult to detect error types: Email, PhoneNum-
ber, and DialingCode. For Email, there were several false positives,



Table 2: Mapping of error types to the corresponding attributes in which they were polluted for the benchmark datasets.

Address data Personal data
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Syntactic formatting error types
(ER1a) Letters X X X X X X X
(ER1b) Numbers X X X X X X X
(ER1c) Special characters X X X X X X X X X X X X X
(ER2)  Start with lowercase X X X X X
Semantic error types
(ER3)  Additional information X X
(ER4)  Contradictions X X X X X
(ER5)  Valid-value typo X X X X
(ER6)  Value misplacement X X X X X X X X X X X X X X

Table 3: Error detection and cleaning performance (F1 score) per model and dataset. Best F1 score per attribute is marked bold.

Benchmark dataset

H Company dataset

string ‘ date ‘ integer H string ‘ date ‘ integer
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Error detection

Autoencoder | 0.00 0.00 0.01 0.03 0.02 0.05 0.03| 0.03| 000 0.00 0.00 0.00 0.00 0.00 0.06 0.36 0.05 0.43 0.00 | 0.06 0.00
Raha 0.03 0.04 0.03 0.04 0.04 0.06 0.04| 005]| 0.02 0.03 0.02 0.02 0.02 0.04 0.00 0.52 0.05 0.57 0.52 | 0.06 0.46
DeepSeek-R1 | 0.39 037 0.07 027 035 0.17 0.69 | 0.33 | 045 0.06 0.05 032 037 0.13 0.12 092 0.22 0.85 098 | 0.17 0.83
Llama-4 0.73 0.51 0.03 038 0.59 0.18 0.83 | 0.11 | 0.39 0.03 0.03 0.72 0.69 0.13 0.08 0.97 034 0.88 0.92 | 0.63 0.79
Llama-3 081 0.78 0.06 031 053 0.22 098 | 030 | 095 0.08 003 0.81 0.75 0.21 | 0.18 095 0.44 0.86 0.99 | 0.30 0.75

ChatGPT-4.1 0.72 0.59 0.08 0.19 053 012 094 | 0.29 | 0.30 0.08 0.08 055 053 0.16

Error cleaning

Autoencoder | 0.00 0.00 0.01 0.03 0.02 0.05 0.03 | 0.03| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 0.00 0.00
Baran 0.02 0.04 0.00 0.03 0.03 0.04 0.00 | 002 0.00 0.02 0.02 0.00 001 0.02 0.00 0.52 0.05 0.57 0.52 | 0.06 0.46
DeepSeek-R1 | 0.47 0.32 0.03 0.09 0.14 0.08 0.05| 0.11 | 0.19 0.00 0.01 092 0.82 0.03 | 0.01 0.67 0.00 0.69 0.37 | 0.00 0.60
Llama-4 049 034 0.01 0.14 025 0.14 0.02| 0.02 | 0.15 0.00 0.01 0.8 083 0.07 0.00 0.80 0.01 0.78 0.26 | 0.00 0.73
Llama-3 0.51 0.68 0.02 0.12 039 0.17 0.08 | 0.11 | 0.39 0.00 0.01 0.93 090 0.11 0.00 0.83 0.00 0.80 0.36 | 0.00 0.69

ChatGPT-4.1 0.67 056 0.06 014 046 0.12 0.14 | 0.16 | 041 0.00 0.02 089 074 0.27

where an LLM cautiously detected an error, which was not polluted.
Examples are email addresses that did not have a typical Austrian
domain or mismatches between the name in the Email and the
corresponding FirstName and LastName attribute values (e.g., “Kai
Eckl” having an email “jan.beck@ait.at”). The high number of false
positives for LLMs can be explained by (i) the wide range of valid
values, e.g., for email addresses, (ii) limited (domain) knowledge
about a specific data type, and can also be attributed to (iii) artifacts
inherent to the synthetic benchmark dataset. The LLMs marked
several unlikely values as data errors (e.g., an Email whose domain
was associated with the French government but was linked to an
Austrian address). This artifact was not intentionally introduced

during the pollution process, but very unlikely after closer investi-
gation. Although lowering the F1 score, this behavior supports our
claim to detect unexpected and contextual data errors.

Phone numbers are often classified as incorrect by LLMs due
to perceived length issues, e.g., “77712” is incorrectly flagged as
erroneous since it is too short. The LLM explanation states that
“correct Austrian telephone numbers should have 7-8 digits.” How-
ever, according to Austrian law there are old telephone numbers
that may be shorter than 7 digits, indicating limited knowledge of
valid Austrian phone number formats in the evaluated LLMs.

For the DialingCode, LLMs frequently detect inconsistencies
between the PhoneNumber and DialingCode as well as between



City and DialingCode, which are causes for false positive error
detections. The detected inconsistencies between City and Dialing-
Code are specifically interesting because mobile numbers are not
geographically bound and should not depend on the DialingCode.

The LLMs also tend to flag the two attributes City and Postal-
Code (which are conceptually linked) jointly as incorrect even
if only one attribute contains an error. The same holds for the
conceptually linked attributes DialingCode, PhoneNumber, and
CountryCode. This leads to false positives for the correct attributes.
Since CountryCode is an integer, it should not contain non-numeric
characters. However, all four LLMs mistakenly consider a missing
leading “+” in CountryCode as an error. This limitation stems from
the lack of access to attribute metadata for the LLMs, preventing
them from recognizing that the “+” is not allowed in integers.

The error detection performance of the LLMs for City and Postal-
Code is also affected by the limited knowledge of smaller Austrian
towns, particularly when multiple cities share one postal code.
Street name validation also suffers from the fact that small towns
often use the the town name as the street name.

Company data. Table 3 shows that the local LLMs also constantly
outperform Raha and the Autoencoder on the company dataset. All
models achieved higher F1 scores than for the benchmark dataset,
particularly Raha and Autoencoder. An exception is the House-
Number, likely due to mainly having missing values (instead of
syntactic formatting issues in the benchmark data). According to
our analysis, reasons for detecting false positive errors by LLMs
are comparable to the reasons discussed for the benchmark data.

Summary. We can conclude that there is no single data type that
significantly impacts model performance compared to others. The
main difference in error detection performance between attributes
stems from the cardinality (range of valid values). Attributes like
Email or PhoneNumber have a wide range of valid values, leading
to many false positives (F1: 0.08 for both attributes). For attributes
like Country (F1: 0.98) or CountryCode (F1: 0.95) the cardinality
is very restricted in our use case, leading to high accuracy. Also
interestingly, the local LLMs outperform ChatGPT-4.1 in all but
three attributes. Autoencoder and Raha perform worse than the
LLMs, but exhibit similar performance per data types.

4.1.2  Data cleaning. Table 3 shows that the correction (cleaning) of
errors is more challenging, with the best F1 scores for each attribute
typically being lower than the best F1 score for error detection.

Benchmark data. For the benchmark data, ChatGPT-4.1 generally
shows better performance than the local LLMs. Notably, Baran
delivered the best results for DialingCode, outperforming all LLMs.

For the LLMs, we observed that error correction for integer
attributes is generally easier than for string or date attributes. Inter-
estingly, Baran and Autoencoder perform similarly across all data
types. Furthermore, attributes with limited contextual information
(e.g., DateOfBirth) were found to perform worse than those with
more informative context (e.g., PostalCode). While it is unlikely that
an LLM can find information about a person’s correct date of birth
in its training data, it is expected to have learned the appropriate
postal codes for specific City and Street combinations.

Company data. Table 3 shows similar discrepancies between the
detection and correction results for the company dataset than with
the benchmark data. Again the LLMs perform better than the other
methods. However, Baran shows a better performance than the
LLMs for DateOfBirth, CountryCode, and HouseNumber, likely
because it generates correction values for all detected errors, which
increases the chance to correct DateOfBirth and HouseNumber
successfully. The LLMs do not automatically suggest a corrected
value, but may only inform the user about the correct format and
that further investigation is required due to missing knowledge.

In the case CountryCode, the LLM’s corrections ( “AT” or “Aus-
tria”) are often incorrect, as only “AUT’ is valid in our use case.
Here, Baran has learned the correct code from the data. The high
correction accuracy suggests that this information would also be
useful to be handed over as input to an LLM (e.g., via the prompt)
to further improve performance.

Summary. The results of the data cleaning experiments again
show that the data type has less impact on model performance
than the attribute cardinality. Overall, the LLMs outperform the
Autoencoder and Baran in data cleaning. Some attributes (e.g., Di-
alingCode, Street) show significantly better performance on the
company dataset. Here we assume that similar error types that
occur in these attributes have a higher impact, as discussed in the
following subsections.

4.2 Evaluation per Error Type

In this subsection, we discuss the results for the 8 different error
types, first for the detection and then for the cleaning suggestions.
Figure 2 shows the results in four subplots (1a, 1b, 2a, 2b) with the
F1 score being at the y-axis and the attribute names on the x-axis.
Each subplot is further split into one plot per error type. As Raha
is only used for error detection and Baran is only for data cleaning,
we use the same color and symbol for both tools throughout the
plots. This means the results marked by a pink star in plots 1a and
2a are produced by Raha and in 1b and 2b by Baran.

4.2.1  Error detection. For the error detection, the LLMs outperform
the Autoencoder and Baran across nearly all attributes and error
types, as visualized in Figure 2(1a). Note that not all error types
are applicable to every attribute; as summarized in Table 2. The
evaluation is based on the respective subset of the dataset that
contains instances of the error type under investigation.

The results show that LLMs perform better in detecting (ER1)
formatting errors, (ER3) additional information, and (ER6) value
misplacement when compared to the other error types. In con-
trast, Autoencoder and Baran demonstrate a better performance in
identifying (ER4) contradictions and (ER5) valid-value typos.

Syntactic error types. Similar to the result per data type, LLMs
performed worse for Email, PhoneNumber, and DialingCode in
comparison to other attributes. For the Email this is because email
addresses are very versatile and a rule is often only that a “@” and
a domain have to exist at the end for a correct email. CountryCode,
DialingCode, and PhoneNumber are often not only marked as incor-
rect if they are actually incorrect (true positive), but also due to other
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Figure 2: Error detection and cleaning performance (F1 score) per data type. Plots 1a and 1b stem from the benchmark dataset

and plots 2a and 2b from the company dataset.

attributes being incorrect. For example, for the incorrect Dialing-
Code “68=6", a correct CountryCode “43” and a correct PhoneNum-
ber “750530”, all three attributes are marked as incorrect because the
combination of CountryCode-DialingCode-PhoneNumber would
lead to an incorrect phone number. This results in one true positive
and two false positives. Sometimes, the LLMs were also unsure if
those attributes were correct due to their inability to check them
and still marked them as incorrect.

Note that (ER2) start with lowercase does not apply to all string-
based attributes, such as, Email. We did not specifically prompt
the LLMs to detect and correct inconsistent cases. Interestingly,
Raha performs poorly in detecting (ER2), which might indicate
that (ER2) was not sufficiently present in the dataset used to train
Raha. In addition, there are notable differences in the results for
FirstName and LastName. The LLM-provided explanations suggest
that it is more likely to identify FirstName as requiring the first
letter uppercase than LastName.

Semantic error types. For the semantic error types, (ER3) addi-
tional information is particularly challenging to detect because it

requires the classification of valid information as incorrect due to
too much information. While the different performance for City
and PostalCode might seem surprising, it turned out that the iden-
tification of additional characters (especially letters and special
characters) is much easier in numeric attributes than in textual
attributes due to the restricted domain.

For the detection of (ER4) contradictions, contextual knowledge
(from other attributes) is required, which is why the LLMs also
clearly outperformed Raha and Autoencoder. Interestingly, (ER4)
error detection in the Street attribute is worse than for other error
types. From the explanations, we can conclude that the LLMs of-
ten do not validate the existence of a street within a city, despite
the clear instruction through the prompt to consider all attributes
jointly. In contrast, information in City and PostalCode are typically
considered in combination. Interestingly, Llama-4 has problems de-
tecting errors in CountryCode compared to the other LLMs.

(ER5) valid-value typo yields similar results to (ER4), but with a
better performance on error detection in the Street attribute. Here,
we speculate that this higher error detection rate is due to the
closeness of (ER4) to regular typos. In contrast to contradictions



where any valid value can appear, for (ER5) only valid and similar
values are used, e.g., “Seeackerweg” instead of “Seeauerweg”. Error
detection performance on PostalCode was worse, possibly due to
the LLM’s inconsistent consideration of the Street when check-
ing for errors. This is particularly relevant in larger cities, where
multiple PostalCode codes correspond to the same City. Here, the
Street information, combined with the City, can help identifying
the correct PostalCode in these cases.

For (ER6) value misplacement, the results are similar to those of
the syntactic formatting error type. Here LLMs have the advantage
of using the context, which makes it easier to detect if further values
are included that do not fit the actual value.

Company data. As outlined in Section 3.4, the company dataset
contains two error types (ER1) syntactic error types and (ER4) con-
tradictions. The results for the company dataset (see Figure 2 2a)
show that the LLM constantly outperforms Raha and the Autoen-
coder. Note that Raha tends to mark nearly every record as incorrect
for some attributes, which leads to very good results when only
considering the attributes that are labeled as incorrect. The obser-
vations from the benchmark dataset on (ER1) and (ER4) can be
transferred to the company partner dataset.

4.2.2 Data cleaning. The cleaning capabilities of the methods re-
veal that some error types, like value misplacement are easier to
correct than others, such as contradictions. In alighment with the
detection results, the LLMs also outperform the other methods in er-
ror cleaning. However, even though LLMs are effective in detecting
CountryCode errors, they are not as effective in correcting them, as
they often correct to “Austria” or “AT” instead of the correct code
for this data set “AUT”.

Syntactic error types. Correcting (ER1) formatting errors like
inserted/updated/deleted letters, numbers, or special characters is
challenging because replacing a character makes it hard to infer the
original value. For some attributes like City or FirstName, LLMs
can easily guess the correct value using the knowledge gained
during training. However, attributes like PhoneNumber or Email
are more difficult to correct because an LLM is unlikely to have
trained knowledge about these specific values. For (ER2) start with
lowercase, error correction seems very straightforward due to the
high performance across the models.

Semantic error types. Once (ER3) additional information is de-
tected, the correction is very easy, as it simply requires removing the
irrelevant information. (ER4) contradictions and (ER5) valid-value
typos are the hardest error types to correct. The challenge lies in
determining which attribute contains the correct value and which
one is incorrect since obviously both values are generally valid
(inside the domain). For example, if the combination of PostalCode
and a City is incorrect, but each value itself is considered correct,
it is unclear which value should be corrected. In some cases, fur-
ther attributes provide additional insights such as the Street, which
however does not always hold for very common street names. Cor-
recting (ER6) value misplacements is straightforward with respect
to their detection (cf. Figure 2).

Company data. The results from the company dataset in Figure 2
show that for attributes where illegal characters are added, the

cleaning works well. For attributes where the entire value is missing
(e.g., HouseNumber in ER1) or characters are removed (e.g., Email in
ER1), the correct value can only be assumed since the information
provided to the methods is not enough to robustly provide the
correct value. This is also true for the DateOfBirth (ER4). Baran
performs surprisingly well for cleaning HouseNumber, probably
because it uses the clean data set to identify common patterns and
provide cleaned values for incorrect ones.

4.3 Evaluation per Pollution Level

Table 4 shows that the standard deviation (SD) in the F1 score
(averaged over all attributes) per model is rather small for both
error detection and cleaning (< 0.1). We can see that Autoencoder,
Raha, and Baran have more stable results at different levels of
pollution than the LLMs. The lower SD values for data cleaning
across all pollution levels indicate more stable results for this task
compared to error detection.

Table 4: Standard deviation of the F1 score across all pollution
levels and models for error detection and cleaning.

Model SD Detect SD Clean

Autoencoder 0.006 0.006
Raha& Baran 0.012 0.005
DeepSeek-R1 0.098 0.058
Llama-4 0.07 0.067
Llama-3 0.071 0.068
ChatGPT-4.1 0.092 0.079

4.4 Runtime Performance

In this subsection, we compare the execution runtime between the
models. Runtime performance was no priority for our application
use case, but an aspect to consider for future applications.

While the Autoencoder, Raha, and Baran were run on the same
local server (see Section 3.2 for details), LLMs required a more
powerful computing environment. ChatGPT-4.1 was executed via
the batch processing API’, which reduces the cost per token but
introduces variability in execution time, making direct comparison
challenging. Depending on the workload, it can take up to 24 hours
to receive the results. In our experience with a batch size of 5,000
prompts, one batch took about 22 to 48 minutes.

The Autoencoder had a mean execution time of 26 seconds per
record on our hardware, leading to an execution time of 36.1 hours
for one dataset. Running 50 records in parallel reduced the execution
time to 2.32 hours for the whole dataset and 1,68 seconds per record.

For Raha and Baran, we calculated their execution times from
the overall result, because the implementation utilizes parallel pro-
cessing which we could not turn off easily. Raha needed an average
of 2.5 minutes per dataset, which translates to 0.03 seconds per
record. Baran requires 1.1 hours per dataset and 0.79 seconds per
record, making it significantly slower than Raha. The combined
time for cleaning and correcting a record is 0.82 seconds.

For the local LLMs, one prompt takes an average of 14 seconds,
thus 19.44 hours for the entire dataset. Like with Autoencoder, we

7https://platform.openai.com/docs/guides/batch



Table 5: Execution time per model, the fastest time per record
and dataset is marked in bold.

Serial processing  Parallel processing

Model ‘ Record Dataset Record Dataset
Autoencoder 26s 36.111h 1.675s 2326 h
Raha NA NA 0.030s 2.516 m
Baran NA NA 0.79s 1.103 h
Local LLMs' 13.866s 19,258 h 1,585 s 2,201 h
ChatGPT-4.1* NA NA 0,007s 36.111m

[s] seconds; [m] minutes; [h] hours; [NA] no measurement

* can take up to 24 hours; T run on high performance cluster

ran 50 prompt requests in parallel to increase the processing speed
for the entire dataset. The time was reduced to 2.2 hours for the
whole dataset and 1.59 seconds per record.

Our experiments show that Raha and Baran are the fastest mod-
els. While the Autoencoder has similar runtime performance as
the local LLMs, it is run on a local machine and therefore consid-
ered to be faster. The experiments also highlight the importance of
parallelization, especially when detecting errors in larger datasets.

4.5 Summary of Findings

We found that overall ChatGPT-4.1 and Llama-3 performed best
for the detection and cleaning of personal contact information.
The good performance of Llama-3 is particularly relevant, since
personally identifiable information often requires processing by
local LLMs due to privacy concerns.

Our experiments further show that the error type as well as the
cardinality (range of valid values within a data attribute) have the
greatest impact on error detection and cleaning performance across
all models. For the error type, syntactic formatting errors are much
easier to detect and clean than semantic error types, as the latter
tend to require consideration of multiple attributes. In contrast,
the data type (string, integer, or date) as well as the pollution level
(0-40%) have a minor impact on the results, as indicated in Table 3.

Risks of using LLMs. Apart from limited domain knowledge for
very specific domains (e.g., LLMs have troubles in finding the correct
PostalCode to a certain City for small City), a core limitation of
using LLMs is the fact that they do not always return the results
in the requested format, making parsing difficult. Due to these
limitations and the tendency of LLMs to hallucinate, we claim
(in alignment with Zhang et al. [44]) that a fully automated error
detection and cleaning pipeline is not feasible to the current state,
especially for critical domains. However, we believe that using
LLMs within such pipelines is extremely valuable, especially paired
with a human in the loop to verify the results, as detailed below.

Potential of using LLMs. The LLMs can detect and correct errors
without explicit fine-tuning or prompting for specific tasks, for
example, they detected the (ER2) start with lowercase error type
without explicit prompting. This behavior opens up the possibility
that LLMs can identify previously unknown and unexpected error
types. A concrete example that appeared during our experiments

were unexpectedly exchanged values. For example, during our ex-
periments, we found that tuple {Street: “Bregenz”, City: “6900”,
PostalCode: “Schlof3gasse”} in the company data had exchanged
values for Street, City and PostalCode. The LLM detected all three
columns as incorrect, provided the reason that the values are in the
wrong attributes, and suggested the correct exchange to: {Street:
“Schlofigasse”, City: “Bregenz”, PostalCode: “69007}.

The capability of LLMs to provide explanations for detected
error types allows domain experts to understand and learn from
the LLMs, for example, to turn the detection results into rules.

In alignment with Ankireddi [3], we believe that the future will
lead to a next-generation data stewardship, merging LLMs and
human expertise. In such a framework, Al-based automation is not
restricted to rule-based data quality checks, but LLMs that actively
scan datasets to identify inconsistencies and suggest error detection
and correction rules. These error detection and correction steps
are overseen by data stewards who are free to reject what was
suggested by an LLM (human in the loop approach). This specific
combination of LLMs and human intelligence is likely to improve
not only efficiency but also accuracy in data governance initiatives.

5 CONCLUSION

In this paper, we analyzed four LLMs (Llama-3, Llama-4, DeepSeek-
R1, ChatGPT-4.1) and compared it to an Autoencoder and the error
detection and cleaning tools Raha and Baran. The aim of our re-
search was to find a model to (1) detect unexpected and contextual
errors in personal and address data, (2) suggest cleaning steps, and
to (3) explain the cause of the error.

We found that ChatGPT-4.1 and Llama-3 performed best for these
tasks, which is especially relevant for personal contact information
due to privacy concerns. Regarding the influence of different factors
on performance, we found that error types and attribute cardinality
have a significant impact. In contrast, the impact of pollution level
and data type is minimal. A summary of the detailed findings with
respect to error detection and cleaning by data type, pollution level,
and error type is provided in Section 4.5.

For future work, we will explore the tighter integration of LLMs
to error detection and cleaning for personal contact data in organi-
zations from two sides. On the one hand, we would like to transfer
knowledge about formally unexpected and unknown errors from
the LLM to the domain experts, for example, by using explanations
to automatically generate validation rules. Here, we plan to inves-
tigate the quality of the explanations provided and how to reuse
them. On the other hand, we want to integrate domain experts’
knowledge about data quality rules to LLMs. This integration could
be done by enriching the prompts, or alternatively, by using a RAG
(Retrieval Augmented Generation) [12]. RAGs offers a more flexible
alternative to fine-tuning the LLM by providing supplementary
information, for example about small towns in Austria.
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