
DeepSearch: LLM-powered Data Acquisition for Machine
Learning

Kaiyu Li
Wilfrid Laurier University

Waterloo, Canada
kli@wlu.ca

Zhongxin Hu
York University

North York, Canada
zxh@yorku.ca

Yuxin Gao
University of Toronto

Toronto, Canada
yuxin@uoft.ca

Yuyang Wu
Wilfrid Laurier University

Waterloo, Canada
wuxx7310@mylaurier.ca

ABSTRACT
In this paper, we present a novel yet practical problem—target-
driven dataset acquisition (TDDA)—which seeks to acquire suitable
training data formachine learning tasks based on a natural language
(NL) query. This setting poses several practical challenges: users
often lack clarity about which features are needed, face incomplete
metadata, and must navigate complex join relationships across
multiple tables. As a result, they are unable to formulate a precise
query that integrates all steps of the TDDA data science pipeline.

To address this challenge, we propose DeepSearch, an end-to-end
framework that solves the TDDA problem by leveraging the capa-
bilities of large language models (LLMs). DeepSearch orchestrates
the entire process by (1) inferring plausible features, (2) mapping
them to actual columns within the data lake, (3) identifying joinable
tables, (4) and ultimately constructing the final training dataset. Ex-
periments on both synthetic and real-world scenarios demonstrate
the effectiveness of DeepSearch. Drawing from our preliminary
results and observations, we highlight several promising directions
for future research. We hope this work sparks greater interest in
addressing this important yet underexplored problem.

VLDBWorkshop Reference Format:
Kaiyu Li, Zhongxin Hu, Yuxin Gao, and Yuyang Wu. DeepSearch:
LLM-powered Data Acquisition for Machine Learning. VLDB 2025
Workshop: The 2nd International Workshop on Data-driven AI (DATAI).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/AIeasy/DataSearchTool.

1 INTRODUCTION
The focus of machine learning (ML) has shifted from solely de-
signing effective models to also acquiring high-quality training
datasets [15–17, 23]. To address this, platforms such as data lakes [3,
6] and data marketplaces [8] have emerged to help users search

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

for relevant datasets. However, despite these systems, acquiring
datasets that are readily usable for training ML models remains
challenging due to several practical issues.
C1: Uncertainty in Feature Specification. Before acquiring the
dataset for a machine learning task, users often struggle to antici-
pate which features the dataset should include, making it hard to
formulate precise queries in either natural language or SQL [18, 24].
This is typically due to limited domain knowledge or insufficient
prior exploration [12]. For example, in a customer churn prediction
task, while the target variable such as a customer’s churn status is
clear, the relevant input features that influence it are not always
obvious to data analysts.
C2: Limited Understanding of Metadata. In poorly maintained
data lakes, schema documentation is often incomplete [22]. In some
data marketplaces, schema details may not be disclosed until the
purchase is completed due to trading policies [25]. Even when
schemas are provided, their large scale, structural complexity, and
inconsistency across datasets make it difficult for users to align
them with their needs [1, 19]. For example, consider a social sci-
ence researcher aiming to train an ML model to predict student
dropout risk. While she may have a clear idea of the relevant fea-
tures, navigating a data lake can still be challenging. She might not
know whether to search for a table named student_records or aca-
demic_status, or what each table contains. Besides, without knowing
how dropout status is labeled (e.g., status = ‘inactive’ or comple-
tion_flag = 0), or which features are available (e.g., attendance, age,
and grade), it’s hard to form a precise query.
C3: Optimal Join Plan Selection. In data lakes or marketplaces
with many tables, there are often multiple joinable tables, resulting
in a large number of possible join plans for a given query [6]. With-
out physically performing the joins, generating the final dataset,
training a model, and evaluating its performance, it is difficult to
assess the quality of a join plan. As a result, identifying the optimal
join strategy that produces the best training dataset for a machine
learning task is challenging, since it involves exploring numerous
computationally expensive join combinations. For example, when
predicting student dropout using tables such as transcripts, course
enrollments, and financial aid records, it’s often unclear which ta-
bles should be joined. The inclusion or exclusion of certain tables
can significantly affect both the size and quality of the resulting
dataset, making it difficult to determine the optimal join plan.

https://github.com/AIeasy/DataSearchTool
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Output: Data Product

PSIN SMK BMI AGE CHD LOC CHARGE

Data Lake

Joinable Tables

Patients
PSIN

Cencus
SIN

Agent #3Candidate Tables

Smoker SMK

Agent #2Agent #1

PSIN Age
Smoker BMI

...CHD

Find a dataset for training
a model to predict patients’
medical insurance cost.

Input: NL Query

Figure 1: Example of TDDA Using DeepSearch.

This paper introduces the problem of acquiring training data
based solely on a natural language query that specifies the target
variable for a supervised learning task (regression or classifica-
tion). We define this task as target-driven dataset acquisition (TDDA),
which is constrained by three key challenges: C1, C2, and C3.
Our Proposal. The emergence of large language models (LLMs)
enables the interpretation of user intent and the identification of
relevant tables from a data lake or marketplace based on prompt
semantics [27]. However, directly feeding the user query and all
available tables into an LLM is impractical due to context window
limitations [21]. Moreover, general-purpose LLMs are currently not
capable of executing the full TDDA pipeline automatically, which
involves complex steps like feature selection and join plan optimiza-
tion [14]. Therefore, we propose breaking down the TDDA pipeline
into manageable sub-tasks, each handled by a dedicated LLM agent,
and integrating them into a cohesive end-to-end workflow.

We propose DeepSearch, an end-to-end framework for TDDA
tasks. To address C1, we introduce an LLM-powered agent that
conducts feature conjecture by generating candidate features po-
tentially relevant to the query. To address C2, we employ a second
agent that maps these candidate features to actual columns in the
data lake, while also mitigating potential hallucinations introduced
during the conjecture step. The agent identifies the candidate ta-
bles that includes the matched columns, and discovers joinable
relationships among them. Finally, to solve C3, we apply a greedy
heuristic to efficiently construct an efficient join plan, producing
the resulting dataset—referred to as the data product.
Contributions. We introduce the novel and practical task of TDDA
in the context of a cold-start setting or a data lake that has not been
carefully curated, and we propose an end-to-end framework to ad-
dress this challenge. Preliminary experiments on both synthetic and
real-world datasets using state-of-the-art large language models
demonstrate the effectiveness of our approach in targeted scenar-
ios and offer insights to guide future research. To the best of our
knowledge, this is the first work to formally study the TDDA prob-
lem. Based on our empirical findings, we outline several promising
directions for future investigation.

2 TARGET-DRIVEN DATASET ACQUISITION
FOR MACHINE LEARNING

2.1 Problem Definition
DataModel.Without loss of generality, we focus on the TDDA prob-
lemwithin a data lake. A data lakeD = {𝐷1, 𝐷2, . . . , 𝐷𝑛} consists of
𝑛 relational tables, where each table 𝐷𝑖 contains multiple rows and
columns. These tables may originate from different departments
or institutions. Some tables can be joined via primary-foreign key
relationships, while others allow row-level alignment across tables
𝐷𝑖 and 𝐷 𝑗 using shared identifiers such as unique IDs. For instance,
student information tables in a university database can be joined
with government census data using social insurance numbers.

We focus on a challenging scenariowheremetadata, table schemas,
and information about joinable tables are unavailable. This situ-
ation commonly arises when a data lake is in its early stages or
has not been carefully curated [13, 22]. It’s important to note that,
in this work, we limit our scope to relational tables and leave the
exploration of other data formats as future work.
NL Query. In this paper, we focus on a practical scenario where a
non-expert user submits a natural language (NL) query to discover
training data for a supervised learning task (i.e., regression or classi-
fication). The user is uncertain about which features or columns are
needed, lacks knowledge of the dataset’s statistical requirements,
and is either unable or unwilling to perform data engineering tasks
such as feature engineering, identifying joinable tables in a large
data lakeD, or writing SQL queries [9, 12]. The only input provided
is a NL query𝑄 that specifies the prediction target. For example, as
shown in Figure 1, a user might input: “Find a dataset for training
a model to predict patients’ medical insurance cost,” and expect the
system to return a ready-to-use training dataset in tabular form.

Definition 2.1 (Target-Driven Dataset Acquisition for ML). The
Target-Driven Dataset Acquisition (TDDA) for ML problem takes as
input a data lake D without metadata or schema details, and an
ambiguous NL query 𝑄 that specifies only the target variable for a
supervised learning task. The objective is to produce a complete

2

System Prompt

You are an expert DBA, who is an expert at matching
columns to a list of semantic feature names.

INPUT
-- Header (comma-separated):
-- First row (comma-separated):
-- Target features (in order):
-- Special feature :
-- Dataset name:

{header}

{row}

{targets}

{special}

{dname}

TASK
1. Split the header by commas into a list. Use **0-based
indexing** (the first column is index 0).

2. For each target feature, find the column(s) whose meaning
is an exact match or the closest reasonable synonym.

	 - If several columns apply, list them all.

	 - If nothing fits, return 'none'.

3. Output a bullet list in the format

	 feature name -> column name (index = n)

	 keeping the original header spelling.

4. If a special feature is not None, find the column(s) whose
meaning is an exact match or the closest synonym. If not
found, make it None.

OUTPUT

(Only the bullet list, nothing else, the special feature should be
the first item in the list)

Figure 2: The Prompt Template for Columns Matching.

table that includes the given target variable along with appropriate
independent variables, ready for training a machine learning model.

2.2 DeepSearch Framework
A naive approach to the TDDA problem is to feed the user query and
all available table information into a single prompt, allowing an LLM
to identify relevant columns, locate the corresponding tables, de-
termine joinable relations, and generate the final dataset. However,
this strategy is impractical. LLMs are prone to hallucination, often
misinterpreting table semantics and selecting irrelevant columns.
Existing models also struggle with complex data workflows involv-
ing multiple tables and intricate join logic [10, 20]. Additionally,
LLMs are limited by context window constraints (e.g., GPT-4o’s
128k-token limit [21]), making it infeasible to handle large-scale
schema information in one pass.

To address these challenges, we decompose the TDDA task into
smaller, well-defined sub-tasks, each handled by a specialized agent
within a modular pipeline. In this paper, we propose DeepSearch,
a framework designed to operationalize this decomposition, as il-
lustrated in Figure 1. The DeepSearch workflow consists of four
key stages: Feature Conjecture (Agent 1), Candidate Table Match-
ing (Agent 2), Joinable Tables Discovery (Agent 3), and Join Plan
Selection using a heuristic greedy algorithm.
Step 1: Feature Conjecture. To improve reliability and reduce
hallucinations in the early stage of the pipeline, we design the first
step of DeepSearch to decouple feature conjecture from schema
inspection and table matching. In this step, Agent 1 receives the
user query 𝑄 and, using a carefully crafted prompt, generates a list
of plausible features relevant to the user’s objective. The prompt
deliberately excludes any table schema to prevent the model from

forming spurious associations between irrelevant columns in the
data lake and the target variable. Instead, the LLM relies solely on
the query and its reasoning capabilities to hypothesize meaningful
features. The resulting list of candidate features is then passed to
Agent 2 for candidate table mapping. For example, as shown in Fig-
ure 1, given the query “Find a dataset for training a model to predict
patients’ medical insurance cost,” Agent 1 may propose features
such as Patient Social Insurance Number (PSIN), Age, Smoking
Status (Smoker), Number of Children (CHD), and BMI. This setup
ensures that the system grounds its reasoning in task semantics
before interacting with the data lake.
Step 2: Candidate Table Matching. After generating the list of
potential features, Agent 2 identifies relevant tables in the data lake
D that may contain these features. A natural approach is to employ
a retrieval-augmented generation (RAG) mechanism to search for
candidate columns [7]. While RAG leverages semantic embeddings
for retrieval, in practice, it can struggle to identify relevant columns
when names are ambiguous or lack clear semantic cues, particularly
in poorly maintained data lakes without metadata [2]. This limita-
tion is evidenced in our preliminary experiments. For example, as
shown in Figure 1, the column SMK encodes smoking status but
shows little linguistic resemblance to the word “smoker,” making it
difficult to match even for human annotators.

Given that the data lake is assumed to be poorly maintained and
lacks reliable schema metadata, conventional schema-based meth-
ods are unsuitable for this task. To overcome this limitation, we
employ an in-context few-shot learning approach that enables the
LLM to infer the semantics of each column using example-driven
prompts. Specifically, we provide the model with randomly sampled
rows from the original tables to help it interpret the meaning of
each column in context. The prompt template used for this pro-
cess is shown in Figure 2. At the end of this stage, DeepSearch
identifies a set of𝑚 candidate tables containing potentially rele-
vant columns. Among these, tables that include the target variable
are designated as target tables, while the remaining tables, named
independent tables, may contribute complementary features. These
candidate tables are then forwarded to Agent 3.
Step 3: Joinable Tables Discovery. Given the𝑚 candidate tables,
Agent 3 is tasked with identifying potential joinable relationships
among them. Similar to Agent 2, we employ an in-context few-shot
learning approach to infer joinability between tables. Specifically,
for each pair of candidate tables, we provide the model with the
column names and two randomly sampled rows from each table to
help assess whether a meaningful join relationship exists between
them. For example, as illustrated in Figure 1, a hospital patient
information table and a government census table may be joinable
via the social insurance number column.

At the end of this step, the candidate tables are organized into a
graph 𝐺 = (𝑉 , 𝐸), where each vertex 𝑣𝑖 ∈ 𝑉 represents a candidate
table. For any 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , an edge (𝑣𝑖 , 𝑣 𝑗) ∈ 𝐸 exists if the corre-
sponding two tables are determined to be joinable. We denote the
subset of vertices corresponding to all the target tables, i.e., tables
that contain the target variable, as 𝑉target ⊆ 𝑉 .
Step 4: Join Plan Selection The final step involves identifying
an optimal strategy for selecting and joining a subset of the 𝑚
candidate tables to construct a training dataset that maximizes

3

predictive performance. After formalizing the candidate tables and
their joinable relationships as a graph 𝐺 = (𝑉 , 𝐸), with 𝑉target ⊆ 𝑉

denoting the set of target tables, a join plan is represented by a
connected subgraph of 𝐺 . Only the subgraphs that include at least
one node from 𝑉target are considered valid, as the presence of the
target variable is essential to define a supervised learning task. Each
valid subgraph is associatedwith a utility score, i.e., the performance
of a machine learning model trained on the corresponding joined
dataset. The objective is to find the subgraph that includes at least
one target table and maximizes this utility. However, enumerating
all possible join plans, training models on the resulting datasets,
and evaluating their performance is computationally infeasible
particularly in large data lakes where the candidate table graph can
be extremely large. Therefore, in our preliminary investigation of
the TDDA problem, we propose a heuristic utility function based on
the number of relevant features (identified by Agent 1) covered by
the joined tables. We formally define the problem as follows.

Definition 2.2 (Optimal Join Plan Selection for TDDA). Given
a graph 𝐺 = (𝑉 , 𝐸) representing the candidate tables and their
joinable relationships in a TDDA problem, and 𝑉target ⊆ 𝑉 denoting
the target tables, the objective is to identify a connected subgraph
𝑃 ⊆ 𝐺 such that 𝑃 ∩𝑉target ̸= ∅ and⋃︁𝑣∈𝑃 𝐶(𝑣) is maximized, where
𝐶(𝑣) denotes the number of relevant features contained in the table
corresponding to vertex 𝑣 .

The problem is a classical Connected Maximum Coverage Prob-
lem, which has been proven to be NP-hard [4]. To address this
computational challenge, we adopt a greedy heuristic for efficient
approximation. Specifically, we begin with the candidate table that
achieves the highest 𝑅2 score, indicating its strong predictive power
for the target variable. From this starting point, we perform a
breadth-first search (BFS) to iteratively join neighboring tables
that contribute additional relevant features, continuing until no fur-
ther new relevant features are found. While this approach does not
guarantee an optimal solution, it significantly reduces computation
time and yields practical results in our settings.

3 EXPERIMENT
3.1 Setup
3.1.1 Datasets andQueries. We used two data lakes: one sourced
from Kaggle, comprising a mix of synthetic and real-world data,
and another from the benchmark dataset Lakebench [6], which
consists of government statistical data. The characteristics of the
datasets and associated queries are summarized in Table 1.

(1) Kaggle Dataset [11].We started by selecting 20 tables from
Kaggle, with 10 designated for classification tasks and 10 for re-
gression tasks. To simulate a more realistic data lake environment,
we adopted the data fragmentation strategy from Lakebench [6],
randomly shuffling the column order within each table and hor-
izontally splitting them by columns. This process produced 120
fragmented tables, among which 414 valid joinable table pairs were
identified based on shared keys or identifiers. Based on the original
dataset descriptions and usage contexts, we composed 6 NL queries
for classification tasks and 14 for regression tasks.
(2) OpenS Dataset [6].We used a data lake from the LakeBench
benchmark, which includedmultiple open datasets used for join and

Table 1: Characteristics of datasets and queries.
Dataset #Tables #Edges #Queries (Classification / Regression)
Kaggle 120 414 6 /14
OpenS 1534 54805 3 / 8

union-based queries. Due to the difficulty of identifying joinable
tables suitable for machine learning, we focused on a single data
lake: the Open Statistics dataset from Singapore government reports
(OpenS). OpenS contains 1,534 tables, with 54,805 joinable table
pairs. After performing the joins, we dropped tables with fewer than
500 rows. We then applied 𝑅2 regression to assess the suitability of
the joined tables for machine learning, filtering out those with an 𝑅2
score below 0.9. Finally, three graduate students manually reviewed
the remaining tables for their potential in supervised learning. After
removing duplicate queries, we curated 8 valid regression queries
and 3 valid classification queries.

3.1.2 Method Selection. We explored several baseline methods,
such as using BM25 to index table columns. However, these ap-
proaches were unable to retrieve the correct tables for the TDDA
task and failed to produce valid data products. As a result, we report
only the performance of DeepSearch under different settings as our
preliminary investigation.

3.1.3 Metrics. We first evaluated the success rate of DeepSearch
in returning a dataset suitable for training the requested machine
learningmodel. Next, to evaluate the quality of the returned datasets,
we measured the performance of the trained models—reporting the
𝑅2 score for regression tasks and the F1 score for classification tasks.
Additionally, we calculated column recall (ColRecall), defined as the
proportion of ground-truth columns that are present in the returned
dataset. We also assessed relevance (Relevance) by measuring the
proportion of tables in the candidate pool (returned by Agent 2)
that are relevant to the query, reflecting the effectiveness of fuzzy
table matching. Finally, we recorded the execution time.

3.1.4 LLM models. We used GPT-4 [21], DeepSeek-R1 [5], and
Gemini-1.5 [26] in our experiments, representing a diverse set of
state-of-the-art LLMs. GPT-4 is known for its strong performance
and benchmark-setting capabilities. DeepSeek-R1 offers a competi-
tive open-source alternative focused on transparency. Gemini-1.5
was selected for its advanced reasoning abilities.

3.1.5 Machine. The experiments were conducted on an Ubuntu
system featuring an Intel Core i9-10850K CPU, 32GB of RAM, and
an NVIDIA RTX 3080 GPU.

3.2 Results
The experimental result are shown in Table 2. Overall, DeepSearch
performs well across various metrics—including success rate, 𝑅2 for
regression, F1 score for classification, column recall (ColRecall), and
table relevance (Relevance)—and maintains reasonable execution
time (a few minutes) when using the GPT-4 model on the Kaggle
dataset. However, its performance diminishes when applied to the
OpenS dataset or when alternative models are used.

The performance difference between the Kaggle and OpenS
datasets is primarily attributed to differences in metadata qual-
ity. Kaggle tables typically feature meaningful, descriptive titles
and column names written in full English words, which facilitates

4

Table 2: Experimental results of DeepSearch.

GPT-4 DeepSeek-R1 Gemini-1.5
Classification Regression Classification Regression Classification Regression

Kaggle OpenS Kaggle OpenS Kaggle OpenS Kaggle OpenS Kaggle OpenS Kaggle OpenS
Success Rate 0.667 0.667 0.857 0.75 0.667 0.333 0.571 0.25 0.667 0.333 0.428 0.375
𝑅2 (F1) /

Ground Truth
0.656 /
0.974

0.60 /
0.998

0.647 /
0.778

0.675 /
0.994

0.612 /
0.974

0.29 /
0.998

0.325 /
0.778

0.23 /
0.974

0.601 /
0.974

0.30 /
0.998

0.38 /
0.778

0.325 /
0.994

Time (s) 308.1 338.3 315.9 259.6 92.6 502.35 104.5 554.33 658.59 2201.14 807.4 2409.12
ColRecall 0.558 0.28 0.718 0.42 0.5 0.33 0.47 0.11 0.41 0.333 0.23 0.21
Relevance 0.631 0.61 0.756 0.69 0.60 0.33 0.521 0.25 0.52 0.33 0.378 0.31

feature inference and table selection. In contrast, OpenS tables of-
ten lack informative titles, and their column names are usually
obscure, like ‘SG’ or ‘P’, making it more challenging for the model
to interpret their content.

Among the models tested, GPT-4 demonstrates the strongest per-
formance, exhibiting a robust ability to understand and generalize
in complex data acquisition tasks. Gemini-1.5, despite its strengths
in multimodal reasoning and coding, proves less effective when it
comes to data lake exploration and schema inference. DeepSeek-R1,
designed primarily for conversational tasks, falls short in handling
complex data science queries, leading to weaker performance in
the TDDA benchmark.

Across all models and datasets, query execution times generally
remain within a few minutes, which is reasonable given the current
scale of data lakes. However, as the number of tables increases,
the runtime tends to grow roughly linearly. Looking ahead, we
believe that more advanced indexing techniques will be necessary
to efficiently retrieve relevant tables instead of linearly scanning.
Among the three models, DeepSeek-R1 was the fastest on Kaggle
datasets, but this speed came at the expense of declined accuracy,
particularly in tasks requiring complex reasoning.

We also conducted ablation studies to examine howDeepSearch’s
performance varies with different parameters. Increasing the num-
ber of example rows from each table which provides more context
can enhance performance, as it allows the model to gather richer
semantic cues about each column. In larger data lakes, identifying
relevant candidate tables becomes more challenging than in some
data lakes, which raises the likelihood of matching columns with
potentially relevant names in irrelevant tables, causing DeepSearch
may inadvertently include irrelevant tables, ultimately reducing
the effectiveness of the final dataset.

4 CASE STUDY
In this section, we present three real-world cases from our exper-
iments to illustrate how DeepSearch operates in practice and to
highlight the challenges of TDDA for ML. The selected cases, drawn
from the Kaggle datasets used in our evaluation, span three do-
mains: real estate, medical insurance, and biology. Each example
corresponds to a specific query, showcasing distinct performance.

Query 1: Please find a dataset suitable for training a regression
model to predict the house price.

This case represents a perfect match. The agents successfully
identified 5 candidate tables from the data lake, connected by 10
possible join relationships. All selected tables were relevant to the
query, including the ground-truth table. Ultimately, DeepSearch se-
lected the table with the highest 𝑅2 score, which precisely matched
the ground truth. The entire process took 466.61 seconds to com-
plete the TDDA workflow.

Query 2: Identify a data set for training a model to predict
patient medical insurance costs using their health-related in-
formation.

This case demonstrates a failure in performance. DeepSearch
retrieved 19 candidate tables, though only 6 of them were actu-
ally relevant to the query (including the ground truth). Finally, the
system incorrectly selected unrelated tables concerning housing
prices to construct the final data product. This failure stems from
the LLM’s overly general feature conjecture, where it mistakenly
associated price- and tax-related features with patient medical pay-
ments. This example highlights the importance of providing richer
context in the query to guide the LLM more effectively, particularly
in large data lakes with many potentially misleading tables.

Query 3: Please help me find a dataset for training a classifica-
tionmodel to predict prospective students’ chances of acceptance
of an MBA program.

This query was successful, though it did not recover the ground-
truth table. DeepSearch identified 8 candidate tables, 6 of which
were relevant to the query, including the ground truth. Finally,
it selected and joined two relevant but non-ground-truth tables
to construct the final dataset. The resulting classification model
achieved an F1 score of 0.9676, slightly below the ground-truth,
indicating that while the output was not optimal, it was effective.
Inspiration. Based on our case-by-case analysis, we identify two
key directions for future improvement. First, DeepSearch’s success
heavily depends on the quality of feature conjecture and relevant
table matching. When too many irrelevant candidate tables are se-
lected, the system may fail to construct a usable dataset. To address
this, future work could explore improved prompting strategies to
provide richer query context or incorporate more effective retrieval-
augmented generation (RAG) techniques to enhance table selection.

5

Second, evenwhen relevant candidate tables are correctly identified,
DeepSearch does not always recover the ground-truth table, which
can negatively impact model performance, even if the resulting
dataset is usable. Addressing this challenge may require developing
more robust methods for evaluating join plans.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose DeepSearch, an end-to-end framework
for target-driven dataset acquisition for machine learning tasks.
DeepSearch employs a multi-agent architecture that decomposes
the data acquisition process into sub-tasks, each guided by carefully
crafted prompts to a dedicated agent powered by large language
models. As the first empirical study of this problem, our approach
demonstrates effectiveness when the data lake is small and the se-
mantics of the tables in it are clear. However, it struggles in complex
scenarios—particularly when tasks involve diverse features or the
data lake contains many confusing or irrelevant tables. Looking
ahead, we identify several directions for future research.
Scalability to Large Data Lakes. Currently, DeepSearch performs
adequately on small data lakes, with discovery time typically within
a few minutes. However, this time grows linearly with the number
of tables, since Agent 2 must scan all tables for candidate joins.
Future work will explore indexing strategies to reduce retrieval
time and improve scalability.
Optimal Joining Path Selection.At the final stage of DeepSearch,
multiple join pathsmay yield valid datasets, but enumerating all pos-
sibilities is computationally expensive. We will investigate heuris-
tics to estimate join selectivity and data utility without performing
the joins. Besides, we will consider extend current work to sup-
port joins across heterogeneous data types, enabling richer feature
construction, e.g., graphs or semi-structured sources.
Handling Data Quality Issues. Real-world datasets often con-
tain missing values or inconsistent records, which can affect join
quality and downstream model performance. Entity resolution is
another challenge—for example, recognizing that “Wilfrid Laurier
University” and “WLU” refer to the same entity. We aim to rethink
data cleaning and resolution techniques under the setting of TDDA.
Domain-Specific Scenarios. In specialized domains such as health-
care, domain knowledge is critical for feature understanding and
table matching. We plan to explore RAG techniques enhanced with
domain-specific knowledge graphs and evaluate whether fine-tuned
LLMs can better support domain-sensitive TDDA tasks.
Human-in-the-Loop Interaction. LLMs still face limitations in
resolving task ambiguity. Future work will explore human-in-the-
loop designs to incorporate human feedback into the TDDA pipeline,
helping clarify intent and improve the accuracy.

REFERENCES
[1] Nour Alhammad, Alex Bogatu, and Norman W Paton. 2022. Towards Schema

Inference for Data Lakes. arXiv preprint arXiv:2206.03881 (2022).
[2] Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu, Zach Brannelly, and

Mohamed Abdelrazek. 2024. Seven Failure Points When Engineering a Retrieval
Augmented Generation System. arXiv:2401.05856 [cs.SE] https://arxiv.org/abs/
2401.05856

[3] Chengliang Chai, Yuhao Deng, Yutong Zhan, Ziqi Cao, Yuanfang Zhang, Lei Cao,
Yuping Wang, Zhiwei Zhang, Ye Yuan, Guoren Wang, et al. 2024. LakeCompass:
An End-to-End System for Data Maintenance, Search and Analysis in Data Lakes.
Proceedings of the VLDB Endowment 17, 12 (2024), 4381–4384.

[4] Gianlorenzo D’Angelo and Esmaeil Delfaraz. 2025. Approximation Algorithms
for Connected Maximum Coverage, Minimum Connected Set Cover, and Node-
Weighted Group Steiner Tree. arXiv preprint arXiv:2504.07725 (2025).

[5] DeepSeek-AI, Daya Guo, Qihao Zhu, Dejian Yang, Haowei Zhang, Junxiao Song,
and Wenfeng Liang. 2025. DeepSeek-R1: Incentivizing Reasoning Capability in
LLMs via Reinforcement Learning. arXiv:2501.12948 [cs.CL] https://arxiv.org/
abs/2501.12948

[6] Yuhao Deng, Chengliang Chai, Lei Cao, Qin Yuan, Siyuan Chen, Yanrui Yu,
Zhaoze Sun, JunyiWang, Jiajun Li, Ziqi Cao, et al. 2024. Lakebench: A benchmark
for discovering joinable and unionable tables in data lakes. Proceedings of the
VLDB Endowment 17, 8 (2024), 1925–1938.

[7] Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin,
Tat-Seng Chua, and Qing Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 6491–6501.

[8] Raul Castro Fernandez, Pranav Subramaniam, and Michael J Franklin. 2020. Data
market platforms: Trading data assets to solve data problems. arXiv preprint
arXiv:2002.01047 (2020).

[9] Amy K. Heger, Liz B. Marquis, Mihaela Vorvoreanu, Hanna Wallach, and
Jennifer Wortman Vaughan. 2022. Understanding Machine Learning Practi-
tioners’ Data Documentation Perceptions, Needs, Challenges, and Desiderata.
arXiv:2206.02923 [cs.HC] https://arxiv.org/abs/2206.02923

[10] Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang,
Chenxing Wei, Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. 2024. Data interpreter:
An llm agent for data science. arXiv preprint arXiv:2402.18679 (2024).

[11] Kaggle. n.d.. Kaggle: Your Machine Learning and Data Science Community.
https://www.kaggle.com. Accessed: May 31, 2025.

[12] Wataru Kawabe and Yusuke Sugano. 2024. DuetML: Human-LLM Collabo-
rative Machine Learning Framework for Non-Expert Users. arXiv preprint
arXiv:2411.18908 (2024).

[13] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J Miller. 2022.
Integrating data lake tables. Proceedings of the VLDB Endowment 16, 4 (2022),
932–945.

[14] Dawei Li, Zhen Tan, and Huan Liu. 2025. Exploring large language models
for feature selection: A data-centric perspective. ACM SIGKDD Explorations
Newsletter 26, 2 (2025), 44–53.

[15] Kaiyu Li, Guoliang Li, Yong Wang, Yan Huang, Zitao Liu, and Zhongqin Wu.
2021. CrowdRL: An end-to-end reinforcement learning framework for data
labelling. In 2021 IEEE 37th International Conference on Data Engineering (ICDE).
IEEE, 289–300.

[16] Kaiyu Li, Xiaohui Yu, and Jian Pei. 2025. CDA: Cost-Sensitive Data Acquisition
for Incomplete Datasets. In 2025 IEEE 41st International Conference on Data
Engineering (ICDE). IEEE Computer Society, 1551–1564.

[17] Kaiyu Li, Xiaohang Zhang, and Guoliang Li. 2018. A rating-ranking method
for crowdsourced top-k computation. In Proceedings of the 2018 International
Conference on Management of Data. 975–990.

[18] Rachel Lin, Bhavya Chopra,Wenjing Lin, Shreya Shankar, MadelonHulsebos, and
Aditya Parameswaran. 2025. AI-Assisted Dataset Discovery with DATASCOUT.
(2025).

[19] FatemehNargesian, Erkang Zhu, Renée JMiller, KenQ Pu, and Patricia CArocena.
2019. Data lake management: challenges and opportunities. Proceedings of the
VLDB Endowment 12, 12 (2019), 1986–1989.

[20] Taiyu Oh, George Karagiannis, Mohsen Ghaffari, and Theodoros Rekatsinas.
2024. Thinking with Tables: Tabular Structures Enhance LLM Comprehension
for Data-Analytics Requests. arXiv preprint arXiv:2412.17189 (2024). https:
//arxiv.org/abs/2412.17189

[21] OpenAI. 2024. GPT-4o Overview. https://platform.openai.com/docs/models/gpt-
4o-mini. Accessed: 2025-05-30.

[22] Pegdwendé N Sawadogo, Etienne Scholly, Cécile Favre, Eric Ferey, Sabine Loud-
cher, and Jérôme Darmont. 2019. Metadata systems for data lakes: models and
features. In New Trends in Databases and Information Systems: ADBIS 2019 Short
Papers, Bled, Slovenia, September 8–11, 2019, Proceedings 23. Springer, 440–451.

[23] Chen Shani, Jonathan Zarecki, and Dafna Shahaf. 2023. The lean data scientist:
recent advances toward overcoming the data bottleneck. Commun. ACM 66, 2
(2023), 92–102.

[24] Aditi Singh, Akash Shetty, Abul Ehtesham, Saket Kumar, and Tala Talaei Khoei.
2025. A Survey of Large Language Model-Based Generative AI for Text-to-
SQL: Benchmarks, Applications, Use Cases, and Challenges. In 2025 IEEE 15th
Annual Computing and Communication Workshop and Conference (CCWC). IEEE,
00015–00021.

[25] Markus Spiekermann. 2019. Data marketplaces: Trends and monetisation of data
goods. Intereconomics 54, 4 (2019), 208–216.

[26] Gemini Team. 2024. Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. https://arxiv.org/abs/2403.05530. arXiv:2403.05530.

[27] Xinyang Zhao, Xuanhe Zhou, and Guoliang Li. 2024. Chat2data: An interactive
data analysis system with rag, vector databases and llms. Proceedings of the
VLDB Endowment 17, 12 (2024), 4481–4484.

6

https://arxiv.org/abs/2401.05856
https://arxiv.org/abs/2401.05856
https://arxiv.org/abs/2401.05856
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2206.02923
https://arxiv.org/abs/2206.02923
https://www.kaggle.com
https://arxiv.org/abs/2412.17189
https://arxiv.org/abs/2412.17189
https://platform.openai.com/docs/models/gpt-4o-mini
https://platform.openai.com/docs/models/gpt-4o-mini
https://arxiv.org/abs/2403.05530

	Abstract
	1 Introduction
	2 Target-driven dataset acquisition for machine learning
	2.1 Problem Definition
	2.2 DeepSearch Framework

	3 Experiment
	3.1 Setup
	3.2 Results

	4 Case Study
	5 Conclusion and Future Work
	References

