
DAG lakehouse planning with an ephemeral and embedded
graph database

Luca Bigon
Bauplan Labs

luca.bigon@bauplanlabs.com

Jacopo Tagliabue
Bauplan Labs

jacopo.tagliabue@bauplanlabs.com

Semih Salihoğlu
Kùzu Inc.

semih@kuzudb.com

Figure 1: A two nodes DAG in Bauplan.

ABSTRACT
Bauplan is a code-first lakehouse built by vertically integrating
modular data components through APIs – catalog, I/O [3], runtime,
Flight server etc. [5]. To shield users from the underlying complex-
ity, Bauplan provides a declarative functional framework to express
multi-language data pipelines over Iceberg tables (Fig. 1). The plan-
ner is a module taking as input user code, and producing a logical
plan with the DAG topology (Fig. 2, top). The planner then maps
declarative user instructions to platform operations, finalizing the
physical plan (Fig. 2, bottom) needed by workers [4].

Characteristically, the planner needs to perform static inferences
over DAGs (with opaque nodes). Similar to database planners, Bau-
plan’s planner combines filters for efficient I/O scans, and validates
column matching of adjacent nodes. Similar to FaaS planners, it
unifies Python packages along the transitive dependency graph,
and infers function ordering from their signature. We present a
graph-based planning module that uses an embedded graph database
management system (GDBMS) – Kùzu [1] – in a novel way:
1. User code is parsed and inserted into an ephemeral graph data-

base in Kùzu, which represents both data and runtime entities.
2. We execute static checks and planning steps using Cypher queries

(e.g. do all children functions have a parent?).
3. The final graph is serialized into Protobuf for execution by down-

stream workers, and then destroyed.
Our initial planner was a home-grown Python library with re-

cursion for inference and static checks, which was both slow and
error-prone. Instead, following the philosophy of composable data
systems [2], we chose to utilize a GDBMS that gave us: (i) a high-
level query language, simplifying our inference through recursive
queries; (ii) optimized query execution leveraging multi-core hard-
ware.

Given the on-demand nature of our workloads, we wish to move
the embedded GDBMS in memory, further simplifying our infras-
tructure and speeding up queries. In collaboration with the Kùzu

Figure 2: The logical plan is created by parsing user code, the
physical plan is obtained running Cypher on Kùzu.

team, we developed an in-memory version of their database, so
that we could leverage a new, ephemeral graph at every run: as a
result, we currently create tens of thousands of ephemeral graph
databases on-the-fly per day. The in-memory version provided op-
timized inference without infrastructure dependencies, updates to
our build system, or changes in the life-cycle of user requests. To-
day, a single request may involve >500 Cypher statements, which
are all executed with sub-second latency.

Our planner achieved a 20x speedup over the original solution,
with composability also improving engineering efficiency and de-
buggability [2]: since the DAG plan is now expressed in a language-
agnostic representation, it can be dumped, inspected, tested and
visualized without depending on the rest of the distributed sys-
tem. While our planning needs are lakehouse-oriented, we believe
our solution to be of broader interest since graphs are a natural
representation for many states in data systems.

VLDBWorkshop Reference Format:
Luca Bigon, Jacopo Tagliabue, and Semih Salihoğlu. DAG lakehouse
planning with an ephemeral and embedded graph database. VLDB 2025
Workshop: Third International Workshop on Composable Data
Management Systems.
REFERENCES
[1] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. 2023.

Kùzu Graph Database Management System. In The Conference on Innovative Data
Systems Research.

[2] Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes McKin-
ney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The Composable
Data Management System Manifesto. PVLDB 16, 10 (June 2023), 2679–2685.

[3] Jacopo Tagliabue Ryan Curtin. 2025. The Deconstructed Warehouse: An
Ephemeral Query Engine Design for Apache Iceberg. Proceedings of Workshops at
the 51th International Conference on Very Large Data Bases (2025).

[4] Jacopo Tagliabue, Tyler Caraza-Harter, and Ciro Greco. 2024. Bauplan: Zero-copy,
Scale-up FaaS for Data Pipelines. InWoSC.

[5] Jacopo Tagliabue, Ciro Greco, and Luca Bigon. 2023. Building a Serverless Data
Lakehouse from Spare Parts. ArXiv abs/2308.05368 (2023).

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

	Abstract
	References

