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ABSTRACT
MLworkflows suffer from fragmentation across SQL engines, Python
feature engineering, andML inference services.We present a unified
approach using Arrow Flight RPC to bridge these systems through
User-Defined Exchange Functions (UDXFs). Our framework enables
seamless composition of ML operations while maintaining lineage
and enabling cross-system optimizations. We demonstrate 5–20%
performance improvements on XGBoost inference through auto-
matic predicate push-down optimizations that prune unreachable
decision tree paths.
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1 PROBLEM: MLWORKFLOW
FRAGMENTATION

ML pipelines typically span SQL engines, Python scripts, ML frame-
works, and REST APIs. Each transition breaks lineage tracking and
forces custom integration code, making pipelines brittle and hard
to optimize.

2 SOLUTION: FLIGHT-BASED UDXFS
We address this fragmentation through three integrated techniques
that compose into a unified ML execution framework:

2.1 Arrow Flight as a Universal Interface
Instead of engine-specific UDFs, we package ML operations as
User-Defined Exchange Functions (UDXFs) served over Arrow Flight
RPC [1]. This treats SQL engines as RecordBatch transformers—a
fundamental architectural shift requiring custom SafeTee and Record-
BatchReader interfaces to enable truly streaming execution. Our
implementation solves RecordBatch stream exhaustion issues that
cause incorrect results in systems like DuckDB.
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2.2 Deferred Execution with Lineage
Preservation

Rather than immediate execution, we build a deferred relational
graph using Ibis [2] expressions. This captures the complete ML
workflow as a composable computation graph, enabling optimiza-
tions across system boundaries while preserving full lineage for
replicability.

2.3 Cross-System Query Optimization
The deferred execution model enables novel optimizations. As a
simple demonstration of using top-level query information for be-
spoke optimization, we show predicate push-down into XGBoost
models: SQL filters are automatically extracted and used to prune
unreachable decision tree paths via our experimental Quickgrove
library [3]. While this approach yields measurable performance
improvements, it remains opaque and algorithm-specific. More prin-
cipled approaches like declarative sub-operators [5] offer a superior
path forward, decomposing complex operators into declarative
primitives that enable systematic optimization—a key direction for
our future work.

3 DEMONSTRATION: END-TO-END
MORTGAGE SCORING

Our live demonstration uses Fannie Mae mortgage data [4] with
a pre-trained XGBoost model served as a Flight UDXF. We apply
filters like WHERE credit_score > 700 and show how the system
rewrites the XGBoost UDXF to skip tree branches that cannot
affect high-credit-score loans. Attendees will see execution plan
differences and measured performance improvements in real-time,
receiving complete source code and deployment guides.
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