
Composing XGBoost UDFs with Arrow Flight

Hussain Sultan
Xorq Labs

New York, United States
hussain@letsql.com

ABSTRACT
MLworkflows suffer from fragmentation across SQL engines, Python
feature engineering, andML inference services.We present a unified
approach using Arrow Flight RPC to bridge these systems through
User-Defined Exchange Functions (UDXFs). Our framework enables
seamless composition of ML operations while maintaining lineage
and enabling cross-system optimizations. We demonstrate 5–20%
performance improvements on XGBoost inference through auto-
matic predicate push-down optimizations that prune unreachable
decision tree paths.

VLDBWorkshop Reference Format:
Hussain Sultan. Composing XGBoost UDFs with Arrow Flight. VLDB 2025
Workshop: Third InternationalWorkshop onComposable DataManagement
Systems.

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts are available at https://github.
com/xorq-labs/xorq.

1 PROBLEM: MLWORKFLOW
FRAGMENTATION

ML pipelines typically span SQL engines, Python scripts, ML frame-
works, and REST APIs. Each transition breaks lineage tracking and
forces custom integration code, making pipelines brittle and hard
to optimize.

2 SOLUTION: FLIGHT-BASED UDXFS
We address this fragmentation through three integrated techniques
that compose into a unified ML execution framework:

2.1 Arrow Flight as a Universal Interface
Instead of engine-specific UDFs, we package ML operations as
User-Defined Exchange Functions (UDXFs) served over Arrow Flight
RPC [1]. This treats SQL engines as RecordBatch transformers—a
fundamental architectural shift requiring custom SafeTee and Record-
BatchReader interfaces to enable truly streaming execution. Our
implementation solves RecordBatch stream exhaustion issues that
cause incorrect results in systems like DuckDB.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For uses beyond those covered, email info@vldb.org. Copyright is held by
the owner/author(s); publication rights licensed to the VLDB Endowment.
ISSN 2150-8097.

2.2 Deferred Execution with Lineage
Preservation

Rather than immediate execution, we build a deferred relational
graph using Ibis [2] expressions. This captures the complete ML
workflow as a composable computation graph, enabling optimiza-
tions across system boundaries while preserving full lineage for
replicability.

2.3 Cross-System Query Optimization
The deferred execution model enables novel optimizations. As a
simple demonstration of using top-level query information for be-
spoke optimization, we show predicate push-down into XGBoost
models: SQL filters are automatically extracted and used to prune
unreachable decision tree paths via our experimental Quickgrove
library [3]. While this approach yields measurable performance
improvements, it remains opaque and algorithm-specific. More prin-
cipled approaches like declarative sub-operators [5] offer a superior
path forward, decomposing complex operators into declarative
primitives that enable systematic optimization—a key direction for
our future work.

3 DEMONSTRATION: END-TO-END
MORTGAGE SCORING

Our live demonstration uses Fannie Mae mortgage data [4] with
a pre-trained XGBoost model served as a Flight UDXF. We apply
filters like WHERE credit_score > 700 and show how the system
rewrites the XGBoost UDXF to skip tree branches that cannot
affect high-credit-score loans. Attendees will see execution plan
differences and measured performance improvements in real-time,
receiving complete source code and deployment guides.

REFERENCES
[1] Arrow Flight: A High-Performance Protocol for Data Services. ar-

row.apache.org/docs/format/Flight.html (2023).
[2] Ibis: Python data analysis framework for Hadoop and SQL engines. github.com/ibis-

project/ibis (2024).
[3] Quickgrove: Fast Tree Inference Library. github.com/xorq-labs/quickgrove (2024).
[4] Fannie Mae Single-Family Loan Performance Data.

capitalmarkets.fanniemae.com/credit-risk-transfer (2023).
[5] Jungmair, M. and Giceva, J.,Declarative Sub-Operators for Universal Data Processing.

Proceedings of the VLDB Endowment, 16(11), 3461-3474 (2023).
[6] Raven et al., End-to-End Optimization of ML Prediction Queries. arXiv:2206.00136

(2022).
[7] Xorq: Composable Data Management Framework. github.com/xorq-labs/xorq

(2024).
[8] UDF Rewriting with Predicate Push-downs. ibis-project.org/posts/udf-rewriting/

(2024).

https://github.com/xorq-labs/xorq
https://github.com/xorq-labs/xorq
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

	Abstract
	1 Problem: ML Workflow Fragmentation
	2 Solution: Flight-Based UDXFs
	2.1 Arrow Flight as a Universal Interface
	2.2 Deferred Execution with Lineage Preservation
	2.3 Cross-System Query Optimization

	3 Demonstration: End-to-End Mortgage Scoring
	References

