Eudoxia: a FaaS scheduling simulator for the composable

lakehouse
Tapan Srivastava® Jacopo Tagliabue® Ciro Greco
tapansriv@uchicago.edu jacopo.tagliabue@bauplanlabs.com ciro.greco@bauplanlabs.com
University of Chicago Bauplan Labs Bauplan Labs
Chicago, Illinois, USA New York, USA New York, USA

ABSTRACT

Due to the variety of its target use cases and the large API surface
area to cover, a data lakehouse (DLH) is a natural candidate for
a composable data system. Bauplan is a composable DLH built
on “spare data parts” and a unified Function-as-a-Service (FaaS)
runtime for SQL queries and Python pipelines. While FaaS simplifies
both building and using the system, it introduces novel challenges
in scheduling and optimization of data workloads. In this work,
starting from the programming model of the composable DLH,
we characterize the underlying scheduling problem and motivate
simulations as an effective tools to iterate on the DLH. We then
introduce and release to the community Eupoxia , a deterministic
simulator for scheduling data workloads as cloud functions. We
show that EUDOXIA can simulate a wide range of workloads and
enables highly customizable user implementations of scheduling
algorithms, providing a cheap mechanism for developers to evaluate
different scheduling algorithms against their infrastructure.

VLDB Workshop Reference Format:

Tapan Srivastava, Jacopo Tagliabue, and Ciro Greco. Eudoxia: a FaaS
scheduling simulator for the composable lakehouse. VLDB 2025 Workshop:
Third International Workshop on Composable Data Management Systems.

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/BauplanLabs/eudoxia.

1 INTRODUCTION

“In Eudoxia, (...), a carpet is preserved in which you
can observe the city’s true form. At first sight noth-
ing seems to resemble Eudoxia less than the design
of that carpet (...), but if you pause and examine it
carefully, you become convinced that each place in
the carpet corresponds to a place in the city and all
the things contained in the city are included in the
design.” (I. Calvino, Invisible Cities)

The Data Lakehouse (DLH) [39], is becoming the de facto cloud

standard for analytics and Artificial Intelligence (AI) workloads.

The DLH promises many improvements over its predecessors, the

“These authors contributed equally: JT led ideation, TS design and implementation. JT,
TS, CG all contributed to the final draft.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

data lake and warehouse, such as cheap and durable foundation
through object storage, compute decoupling, multi-language sup-
port, unified table semantics, and governance [19].

The breadth of DLH use cases makes it a natural target for the
philosophy of composable data systems [23]. In this spirit, Bauplan
is a DLH built from “spare parts” [31]: while presenting to users a
unified API for assets and compute [30], the system is built from
modularized components that reuse existing data tools through
novel interfaces: e.g. Arrow fragments for differential caching [29],
Kuzu for DAG planning [18], DuckDB as SQL engine [24], Arrow
Flight for client-server communication [6].

Bauplan serves interactive and batch use cases through a unified
Function-as-a-Service (FaaS) runtime running on standard VMs
[28]. The complexity of resource management in a dynamic, multi-
language DLH thus reduces to “just” scheduling functions. Building
and testing distributed systems is complex, costly, and error-prone
in monolithic systems [10, 17, 37] and is even more so in composable
data systems. In order to test our intuitions and safely benchmark
policies, we decided to build and release a DLH simulator.

In this work, we present EuDOX1A, a scheduling simulator de-
signed for the composable DLH. Our contributions are threefold:

(1) We describe a composable lakehouse architecture from a
programming and execution model perspective, showing
how expressing all workloads as functions provides a simple
and consistent abstraction for users and the platform alike.

(2) We formalize the scheduling problem in this setting and
outline the key requirements for any viable solution.

(3) We introduce Eupoxia as a modular, open-source simulator:
we detail our design choices, demonstrate typical usage
patterns and provide preliminary validation using standard
OLAP workloads against cloud production systems.

While Eupoxi1a’s development was motivated by Bauplan’s archi-
tecture, we release it to the community! with a permissive license
because we believe its impact to be potentially broader — either
directly as a pluggable module in similar data systems, or indirectly
through its abstractions and design principles.

The paper is organized as follows. In Section 2, we introduce
background on composable DLHs, which serves as the main moti-
vation for this work; Section 3 describes the scheduling problem
in detail and presents the high-level structure of the proposed sys-
tem; Section 4 illustrates how to invoke and run the simulator,
how to configure parameters for Eunoxia , how to register custom
scheduling algorithms, and how we validated our approach to have
confidence in the results produced by the simulator. We conclude
by positioning our work in the context of the existing literature
(Section 5) and of future developments (Section 6).

!https://github.com/BauplanLabs/eudoxia

https://github.com/BauplanLabs/eudoxia
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://github.com/BauplanLabs/eudoxia

2 BACKGROUND AND MOTIVATION

The flexibility of serving interactive and batch use cases for both
analytics focused (SQL) and Al focused (Python) runtimes is a dis-
tinctive feature of DLHs. To motivate the need for a new scheduler
simulator, we walk backwards from the developer experience de-
signed to simplify user interaction with heterogeneous workloads
(Section 2.1), and from the corresponding architectural choices
(Section 2.2): as we shall see, the Bauplan DLH is composable and
modular at the logical level too.

2.1 Writing everything as a function

In contrast with the hard to learn, difficult to debug Big Data (e.g.
Spark [32, 36]) and DAG frameworks (e.g. Airflow [38]), coding in
Bauplan does not require learning new programming concepts. In
particular, data computation can only be expressed through (SQL or
Python) functions with signature Table(s) -> Table — environment
variables are either passed as runtime argument (e.g. bauplan
run --namespace xxx) or stored next to the code itself 2

We illustrate this with a concrete example. Consider the Bauplan
data pipeline comprising following two files, parent . sgl and
children.py:

—- bauplan_name parent
SELECT col_1, col_2, col_3 FROM raw

Listing 1: parent.sql

@bauplan.model ()

@bauplan.python("3.10", pip={"pandas": "1.5"})

def child(data=bauplan.Model ("parent")):
return data.do_something ()

@bauplan.model (materialize=True)

@bauplan.python ("3.11")

def grand_child(data=bauplan.Model ("child")) :
return data.do_something()

Listing 2: children.py

Pipelines are simply DAGs of functions chained together by
naming convention: the first function to be run is parent . sql,
whose input is a Table called raw, which is stored in object storage
and registered in the system catalog. The output of this function
is also represented as a Table. This approach is connected to the
dbt framework, which pioneered this “functional” approach for
data analysts chaining SQL queries together. The second function,
child, contained in the Python file, takes the parent query as
input and produces a new Table, which is in turn the input of the
final function. Users interact with data and compute declaratively,
using Bauplan tables over data branches, which are semantic, git-like
abstractions over Apache Iceberg tables. As such, the underlying
catalog and the data files are abstracted away from users.

We find three major types of interactions between users and
DLHs, presented in (roughly) descending order of expected latency:

2To make this work self-contained, we briefly survey here the relevant DLH pieces. For
a fuller background picture on the cloud architecture and not the developer experience,
please see [28].

(1) batch data pipelines: Usually scheduled, these pipelines com-
bine SQL and Python steps and are used in production en-
vironments. They prioritize throughput over latency, as no
user is actively waiting for results.

(2) iterative data pipelines: Triggered during development or de-
bugging, these pipelines benefit from fast feedback loops to
improve developer productivity. While not latency-critical
in production terms, delays here can slow down iteration
speed and increase cognitive load.

(3) interactive queries: Often issued by analysts or business
users in SQL or Python, these queries demand low latency
and quick feedback. They represent the “live” interface with
data and typically require fast, responsive infrastructure.

Because functions can read directly from base tables or from
the outputs of other functions, each of the above interactions is
representable by composing together Python and SQL blocks with
specific signatures.

While the functional abstraction may seem limiting at first, it
enables two critical features. First, it lowers the barrier to begin
using the system, allowing for example interns with no prior cloud
experience to push pipelines to production in their first day of work.
Second, within the architecture executing pipelines boils down to
orchestrating atomic blocks with the same shape and signature,
“only” differing by priority.

2.2 Running everything as a function

Users often must use different interfaces to execute each of the
different types of DLH workloads (batch, iterative, and interactive)
as described in Section 2.1. For example, a user may run a query in
a SQL editor supported by a data warehouse, develop in a notebook
(supported by a Spark cluster and Jupyter server), and run pipelines
as a Spark script on a schedule (supported by a submit job API,
a cluster, and an orchestrator).

Table 1 summarizes the distinctive, composable nature of a code-
first lakehouse. The uniformity at the developer experience level is
mirrored by uniformity at the infrastructure level, where all inter-
actions are served by composing together containerized functions
over object storage as shown in Fig. 1. Due to several optimizations
[28], ephemeral functions spawn in milliseconds inside off-the-shelf
virtual machines (VMs), which greatly simplifies the life-cycle man-
agement of containers. Even system-level actions, such as checking
out a data branch, reading from parquet files to serve a SQL query,
or materializing a result back into the catalog, are written as func-
tions and are added to the user-specified DAG by a logical planner
[31]. In other words, any task executed on Bauplan is a DAG of
system-provided and user-specified ephemeral functions in the
view of both the user and the system. No container, warehouse, or
engine exists before or after a request, as any resources or state
are spawned on demand. Indeed, even the additional bidirectional
communication required at the end of more interactive workloads
are achieved by running an Arrow Flight server as an ephemeral
container in the same model as all other functions.

This architecture reframes DLH scheduling as the problem of
orchestrating functions onto pools of resources with varying la-
tency requirements. We find that the most critical insights we’ve
gained from both intuition and empirical evidence align with results

shared from the systems community: first, interleaving interactive
and non-interactive workloads end up being more computational
efficient than separating these workloads onto different systems (i.e.
running a query on a warehouse and a pipeline on a Spark cluster)
[25, 35]; second, using functions as building blocks nudges users
to write small, re-usable code that is easier for them to maintain,
and importantly easier for the scheduler to reason about [13]. Im-
portantly, existing FaaS schedulers cannot be re-used as is because
these systems—e.g. AWS Lambda [1], Azure Functions [2], Open-
Whisk [3]-are designed to support the execution of simple, fast,
stateless, standalone functions with small output sizes.

However, the uniformity of the function interface comes with
a trade-off: limited horizontal scaling. While this interface easily
supports long pipelines, cross-host communication, and vertical
scaling of individual functions [28], each function remains the unit
of scheduling and cannot be split across multiple VMs. In traditional
big data systems, this has been seen as a limitation, but in practice,
many modern workloads can be handled comfortably within a
single high-memory VM due to the sharp drop in memory costs
(e.g., 1TB fell from $4K in 2014 to $1K in 2023 [21]) and the relatively
stable size of analytical datasets (i.e. most OLAP workloads today
are under 250GB at the p99.9th percentile [34]). This perspective
reflects a broader shift toward what some have called “Reasonable
Scale” [20, 26, 27], a pragmatic approach that favors simplicity and
efficiency over aggressive horizontal scaling at all costs.

In conclusion, we can now see how Bauplan’s function-first
approach benefits both users and developers. Using system and user
functions as the building blocks of the runtime allows a granular
understanding of workloads and provides many opportunities to
interleave different workload types depending on their latency
requirements. Enabling granular scheduling—pausing and resuming
DAGs mid-air, moving functions between hosts etc.—is a desired
consequence of our architecture but presents a challenge of finding
an effective, if not optimal, scheduling algorithm. Considering a
DLH that uses a single runtime makes the problem significantly
more tractable and simplifies modeling the platform, but there is still
a need to evaluate different scheduling algorithms. This motivates
our scheduling simulator, Eudoxia, which we now discuss.

Table 1: Interaction types, user interfaces and infrastructure
requirements for different DLH designs.

Interaction UXx Infrastructure
Traditional DLH
Batch pipeline Submit API One-off cluster

Notebook Session Dev. cluster
Web Editor (JDBC Driver) Warehouse

Dev. pipeline
Inter. query

FaaS DLH

Batch pipeline bauplan run Functions
Dev. pipeline bauplan run Functions
Inter. query bauplan query Functions

Bauplan VM

/ E I Iceberg read \

Iceberg read | Iceberg write

(e
G2 AlLg—eALea
(e

Iceberg read

‘ object storage ‘

Figure 1: Bauplan workers are off-the-shelf VMs, provid-
ing stateless compute capacity over object storage. Within
an organization, users and machines (Apache Airflow, AWS
Lambda on a schedule etc.) may submit interactive read-only
queries (red) or asynchronous read-write pipelines (blue).
What scheduling policy for functions can maximize a de-
sired metric (e.g. throughput)?

3 SIMULATOR DESIGN

We first provide an overview of the motivation and goals behind
the simulator in Section 3.1 before discussing the design and major
abstractions of the simulator in Section 3.2.

3.1 Overview

A composable lakehouse can be tested in a variety of ways, from
cheap but case-based unit and integration tests to very expensive
but general formal methods. Simulations rely on a deterministic
model of the system (like formal methods) but are low-cost and ex-
perimentally driven (like integration tests) and thus are a promising
way to evaluate scheduling policies in a complex cloud setup.

As a system providing a FaaS interface, implementing an effi-
cient and effective scheduling algorithm is vital as users will be
submitting pipelines without any consideration for hardware or
scheduling. Thus our scheduling simulator must be able to evalu-
ate different scheduling algorithm implementations both in terms
of performance metrics (e.g. throughput and latency) as well as
monetary cost (e.g. excess cloud resources or premium storage). A
successful solution to this problem will therefore be able to give us
confidence over scheduling policies without spending the time and
money to evaluate the same policies in a real cloud environment.

3.2 Design Principles and Major Abstractions

We now present the architecture for our proposed solution. This
design, shown in Figure 2, is modular to be able to test any schedul-
ing algorithm, to allow for workload customization via parameters
set by developers, and to support alternate executor models. We de-
compose this design into three components. Our simulator operates
as a high-level loop, and during each iteration each of these three
components complete whatever work is possible for them. Each
iteration represents 1 CPU tick or approximately 10 microseconds.

3.2.1 Workload Generation. In a real setup, various users submit
pipelines to the system at random intervals. The workload gen-
erator simulates this part of the system by generating pipelines

an
Params

Initializer Pipelines Assignments

=

Visualizer

Figure 2: Simulator Architecture. Users set parameters and
pass this to the initializer for Eupoxia which starts a loop
of three components, the Workload Generator, Scheduler,
and Executor. Once that loop completes, visualizers or other
downstream applications can access execution statistics.

and sending them to the system at user-defined intervals to be
scheduled and executed. The workload generator accepts a wide
range of parameters which specify how frequently new pipelines
arrive, how many resources pipelines require, how long pipelines
will take to complete depending on the physical resources (RAM
and CPU) allocated to them, among others. Full documentation is
available with our artifact. Additionally, this interface allows users
to format existing traces and feed them into the simulator rather
than generating random ones.

We model user-submitted pipelines as directed acyclic graphs
(DAGsS). Each node in a pipeline is called an operator, which repre-
sents individual functions such as SQL queries or Python functions.
Each operator is generated with some required amount of RAM to
execute, representing the largest allocation of memory the operator
will require to complete. Each operator is also generated with a CPU
scaling function, which returns how long the operator will take
to complete based on how many CPUs are allocated (for example,
a heavy IO task may not scale with CPUs at all, while a stateless
filter can scale linearly with more CPUs). Any value associated
with a pipeline is randomly drawn from a distribution centered at
one of the user-provided (or system default) parameters. Modeling
pipelines as DAGs allows for user jobs to be arbitrarily split up
by the scheduler to enable fine-grained parallelism, which may be
helpful to ensure that large pipelines with many parallel operators
with heavy RAM requirements can execute.

Finally, each pipeline has one of three Priority Levels, based on
the DLH scenarios described in Section 2.1: in ascending order, we
have batch data pipelines, iterative data pipelines, interactive query.
At each tick when pipelines are generated, they are passed to the
scheduler. For most ticks, no new pipelines will be generated.

3.2.2 Executor. The user also specifies how many CPUs and RAM
are available to allocate to jobs and whether more resources can be
accessed for additional monetary cost, i.e. using cloud scaling. The
user can specify how many pools of resources there are, what the
balance of resources are in each pool, and so on.

The executor manages these simulated physical resources. We
define an abstraction, the Container, which holds a set of Operators

to execute, a number of CPUs, and amount of RAM. When created
each container uses the set of operators provided to calculate how
many ticks it will for that container to complete or how many
ticks before it will trigger an out-of-memory error based on the
parameters in the workload generator and the resources allocated.

The executor can also be extended to simulate more complex
realities of FaaS system deployment. For instance, cold starts or
network variability can be supported by simply adding a random
number ticks, drawn from some known distribution that reflects
real system observations, to the execution time of a Container. Spot
instance revocation can be supported by adding a random chance
of sudden failure to a Container, using the same mechanisms as
failures or preemptions. The base design of the Executor is flexible
enough to support as rich of a setup as necessary.

3.2.3 Scheduler. The Scheduler allocates resources to sets of Oper-
ators (as the Scheduler can subdivide pipelines in allocation) and
instructs the Executor what Containers to create or preempt, i.e.
terminate to free up resources. The Scheduler manages queues,
makes allocation decisions, decides what jobs receive allocations
sooner than others, and how priority levels are managed.

Each scheduler implementation must simply match a required
type signature: accepting a set of Pipelines from the workload
generator, and outputting a list of new Container allocations and
Container preemptions to the Executor. At runtime, the user will
register different scheduler implementations with the simulator
and specify which one it should use during execution.

4 EUDOXIA 101

In this section we will describe how users interact with Eupoxia,
provide a sample program and a short description of key parameter
options. Then we present a preliminary validation of our simulator
approach using real traces executed on Bauplan.

4.1 Developer experience

We first present how users would start a new EuDoOXIA instance
(Section 4.1.1) before presenting the scheduling algorithms already
implemented (Section 4.1.2) and how users can write and register
their own implementations (Section 4.1.3).

4.1.1 Starting a New Instance. We aimed to make it as easy as
possible to start working with Eupoxia’s APIL. To start a simulator
instance, users specify input parameters and select a scheduler im-
plementation, either one of the three scheduler algorithms already
implemented or a custom implementation written in Python and
registered at runtime. Parameters are set in a TOML file, with each
parameter in its own line formatted as parameter = value. The most
important parameters here are the following:3

® DURATION: how many simulated seconds the simulator will
run for. Each iteration of the primary loop corresponds
to 10 microseconds, intended to roughly approximate the
length of 1 CPU cycle. We call each iteration a tick.

® WAITING_TICKS_MEAN: on average how many ticks (10 mi-
croseconds) pass between pipelines being generated and
sent to the system to be executed.

3Full documentation is available with the code artifact.

e NUM_PooLs: how many resource pools will exist. In general
all available resources are split evenly to start.
e SCHEDULING_ALGO: what scheduling algorithm to use.

Here is how easy is to start an instance: RUN_SIMULATOR instan-
tiates EuDOx1A with the parameters in PROJECT.TOML:

import eudoxia

def main():
paramfile = "project.toml"
eudoxia.run_simulator (paramfile)

Listing 3: Minimal code to start a simulation

The RUN_SIMULATOR method will then begin the core loop de-
scribed in Section 3, containing the workload generation, scheduler,
and executor. Eunox1A will use the DURATION parameter to compute
the number of iterations the loop runs for and will pass each param-
eter to its appropriate component(s). Once Eupoxia is launched,
each component will log its current actions, and CPU and RAM
utilization will be logged after each tick for each pool of resources.

4.1.2 New Scheduling Protocols. Eunpoxia has three built-in imple-
mentations for schedulers.

The first is the NAIVE scheduler, which uses one pool of resources.
It assigns all available resources to the next pipeline. When that
pipeline completes, it repeats with the next pipeline in the queue.

The next is the pPrIORITY scheduler, which also assumes one
pool of resources. It accounts for both the size of the pool and the
priority of pipeline that was submitted (either BATCH, QUERY, or
INTERACTIVE). New workloads are assigned a container with 10%
of the total amount of resources. The scheduler proceeds until it
has allocated all resources. If a pipeline completes, those resources
are allocated to the next pipeline in the queue.

If a pipeline fails due to insufficient resources, i.e. an out-of-
memory (OOM) error, then those resources are freed but the pipeline
re-enters the waiting queue of the scheduler with information about
what resources were allocated to the container which failed.

If a previously-failed pipeline arrives, the scheduler attempts
to double the resources previously allocated up to a maximum of
50% of total CPU or RAM, at which point the scheduler returns the
failure to the user. If there are not sufficient available resources to
double the allocation, the job is put back on the queue to wait.

Finally, in the event that all resources are allocated and a high pri-
ority pipeline, such as a QUERY, arrives, the scheduler scans the cur-
rently running containers for any which are running a low-priority
job (such as a BaTcH workload). That container is preempted, free-
ing its resources to be used for the QUERY. The BATCH pipeline is
put back on the waiting queue with a log of what resources were
last allocated to it; however, this pipeline does not also receive the
flag indicating it failed. So when the BATCH pipeline next arrives the
scheduler will allocate the same resources it allocated previously.

The third scheduling algorithm is the PrRIORITY-POOL scheduler.
This operates similarly to the PrRIORITY scheduler but with multiple
resource pools in the Executor. Every time the Scheduler considers
a new pipeline, it identifies which pool has the most available
resources and allocates a container on that pool. It also handles
preemption in the same way, but this time on multiple pools.

4.1.3 Registering New Scheduler Implementations. EUDOXIA lets
users write custom schedulers by writing an initialization function,
writing a scheduler function, and using two decorators.

The initialization function accepts an instance of the SCHEDULER
class and returns nothing. This function initializes any needed
data structures within the SCHEDULER. The scheduler function must
accept three parameters and return two values. The parameters are:

(1) An instance of the SCHEDULER class.
(2) A list of pipelines which failed in the previous tick
(3) Alist of pipelines which were newly created in this tick

The list of newly created pipelines is often empty, as the workload
generation step creates new pipelines at random intervals. Similarly,
the list of failures only includes jobs which the executor failed, such
as for an OOM error. This does not include pipelines which the
scheduler preempted. If the scheduler wishes to preempt pipelines it
must manage those queues itself to ensure no pipelines fall through
the cracks. Finally, the algorithm must return two values:

(1) SuspENsIONs: these are a set of pipelines that the scheduler
is instructing the Executor to preempt so that its resources
may be freed. For the priority scheduler, it places pipelines
to be preempted in an internal SUSPENDING queue, which af-
ter one tick it moves back into the standard waiting queues.

(2) AsSIGNMENTS: the second return value is a list of new assign-
ments instructing the Executor what resources to allocate
to a container and what job to run inside that container.

Putting these requirements together, extending Eunoxia with a
custom scheduler is as simple as the snippets below — note how the
two decorators in ALGORITHM.PY and the parameter in PROJECT.TOML
reference the same key:*

from eudoxia.core import Scheduler

from eudoxia.core import Failure, Assignment, Pipeline

from eudoxia.algorithm import register_scheduler,
register_scheduler_init

from typing import List

@register_scheduler_init (key="my-scheduler")
def scheduler_init (sch: Scheduler):

@register_scheduler (key="my-scheduler")
def scheduler_algo(sch: Scheduler, f: List[Failure], p:
List [Pipeline]):

return suspends, assignments

Listing 4: algorithm.py: scheduler function.

scheduling_algo = "my-scheduler"

Listing 5: project.toml: custom parameter.

from algorithm import scheduler_init, scheduler_algo
import eudoxia
def main () :
paramfile = "project.toml"
eudoxia.run_simulator (paramfile)

Listing 6: main.py: custom imports and instantiation.

4Users should import SCHEDULER_INIT and SCHEDULER_ALGO in MAIN.PY first so that
the decorators register the keys before the instance starts.

4.2 Preliminary Validation

While developer experience, clarity in abstractions and extensibility
are crucial aspects for its adoption, Eunoxi1a’s utility depends on
reliability and robustness.

The simulation generates pipelines which have two key values:
(1) how the number of CPUs allocated impacts the pipeline’s execu-
tion time (if at all) and (2) the minimum RAM allocation needed to
avoid an out-of-memory error. The scheduling algorithms do not
have access to these values or scaling functions; however, once the
pipeline is allocated to a container of resources, those values are
used to determine what the true execution time for a pipeline on a
container will be. We believe that this is a realistic setup that can
effectively represent any kind of workload in the appropriate and
necessary dimensions.

We first validate this approach by running data workloads against
a Bauplan cloud instance, measuring runtime statistics such as CPU
and RAM utilization along with runtime and comparing this to the
runtime estimated by EUDOX1A on a pipeline with similar statistics.
We run the common data analytics benchmark TPC-H [33] and run
its 22 queries against a 10GB dataset on a instance running on an
AWS c5ad.4xlarge instance with 16 vCPUs and 32GB of RAM. As
described, each query is compiled by Bauplan into a small number
of execution blocks (i.e. functions), and we observe CPU and RAM
usage during execution. Each query is run alone on the instance,
and we disable caching. For three queries (11, 16, and 22), the run-
time was so short that resource utilization statistics could not be
gathered from underlying telemetry systems. The percent error in
runtime of the scheduler versus the true runtime as executed on
a Bauplan instance ranges from 0.44% to 3.08% with an average of
1.74% error. We additionally plot the real and simulated runtimes
for a subset of TPC-H queries for ease of visual interpretation in
Figure 3. We see that the simulated runtime well approximates
the true execution time, indicating that the simulator can be relied
upon to give realistic results.

Furthermore, because EunOXx1A supports varying CPU scaling
functions and enables real traces to be plugged in rather than using
random generation, the system can easily emulate how the bench-
mark’s performance would vary if different compute resources are
allocated or if the benchmark ran on larger datasets. The modular
design enables users to reproduce other results cheaply, test how
algorithms would hold up against different types of workloads,
or consider how a current implementation would fare against a
changing setup.

5 RELATED WORK

Composable data systems. The FaaS lakehouse modeled by Eu-
DOXIA is built in the composable data system tradition [23]. In a
sense, the deconstructed lakehouse [31] is the natural generaliza-
tion of the “Deconstructed Database” [14]. The rapid growth of
DataFusion [15] in the composable data community is fostering an
eco-system of novel single-node systems [4, 5] that could benefit
from the simulation methodology and code in Eunoxia .

Cloud Scheduling. There is a broad range of work in the realm
of scheduling or scheduling workloads in cloud environments that
is relevant to Eupoxia . Motlagh et. al. [9] provides an analytical
framework to evaluate different scheduling approaches. Similarly,

s Bauplan Execution
= Scheduler

Runtime (seconds)

2 4 6 14 17 19 21

8
TPC-H Query Number

Figure 3: Distribution of percent error of simulator estimates
for runtime vs. real runtime for TPC-H queries at 10GB.

Hai et. all [12] proposes a new scheduling approach but does so
with a broad cloud usage pattern in mind. In contrast, EUDOXIA is
designed for specifically a data lakehouse/composable data system
environment. Rather than trying to survey a range of approaches
or techniques, Eunox1a focuses specifically on an application de-
ployment on a single Bauplan instance on an EC2 node.

Another common goal for schedulers is to abide by quality-of-
service (QoS) guidelines. While this is a vital part of the cloud
ecosystem, our goal behind Euboxia was to consider, experiment,
and use that simulator to evaluate future scheduling approaches.

Finally, a broad range of literature covers scheduling under power
constraints. Specifically, as power-constrained applications throttle
query performance in some instances as they limit CPU frequency,
etc. There is a broad range of work in this area, including (7, 8, 11,
16, 22]. However, EUDOXIA is generally uninterested in how power
consumption limits resources availability and workload runtime,
as blob storage and VM services offered by cloud vendors abstract
away the power consumption needs for cloud infrastructure.

6 CONCLUSION

In this paper, we described a composable lakehouse, Bauplan, from
the perspective of its programming and execution model, which
reduced the main use cases to scheduling functions with different
priorities. While the developer experience gets simplified, we face
greater optimization challenges compared to general purpose FaaS
systems due to our target workload, which prevented us from re-
using existing FaaS schedulers. As simulations are a cost-effective
ways to test cloud distributed systems, we introduced our simulator,
Eupox1a , to enable robust but cheap evaluation of the effect of
different scheduling algorithms. Through concrete examples, we
described Eupoxi1a design principles and developer experience, and
we provided a preliminary quantitative validation running standard
OLAP benchmarks in production and in the simulator.

Eudoxia is easy to extend and applicable beyond its initial sim-
ulation scope. For example, plugging real-world scaling functions
estimated from traces is trivial and may be useful for other use
cases. In the same vein, while most of our simulations are single
pool because of Bauplan’s design, benchmarking functions across
capacity pools is a useful feature in distributed systems. We release
the code to the community with a permissive license as we believe
our abstractions and lessons - if not Eunoxia itself — to be of use
to the broader composable data system community.

REFERENCES

(1]

[10]

[11

[12]

[13]

[14]

[15]

[16]

[17]

[18

[19]

[20

[21]

[22]

[23]

2024. AWS Lambda.
Invoke.html

2024. Azure Functions. https://azure.microsoft.com/en-us/products/functions/.
2024. Open Whisk. https://github.com/apache/openwhisk.

2025. Arroyo. 2023. Arroyo - Serverless Stream Processing.
https://www.arroyo.dev/.

2025. InfluxDB: open source time series, metrics, and analytics database.
https://influxdata.com/.

Apache Arrow Flight [n.d.]. Arrow Flight RPC — Apache Arrow v20.0.0. https:
//arrow.apache.org/docs/format/Flight html

Peter E. Bailey, Aniruddha Marathe, David K. Lowenthal, Barry Rountree, and
Martin Schulz. 2015. Finding the limits of power-constrained application per-
formance. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Austin, Texas) (SC ’15). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 79, 12 pages.
https://doi.org/10.1145/2807591.2807637

Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. 2009. Modeling and
simulation of scalable Cloud computing environments and the CloudSim toolkit:
Challenges and opportunities. In 2009 International Conference on High Perfor-
mance Computing and Simulation. 1-11. https://doi.org/10.1109/HPCSIM.2009.
5192685

Carlo Curino, Evan P.C. Jones, Samuel Madden, and Hari Balakrishnan. 2011.
Workload-aware database monitoring and consolidation. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data (Athens,
Greece) (SIGMOD ’11). Association for Computing Machinery, New York, NY,
USA, 313-324. https://doi.org/10.1145/1989323.1989357

Darren Dao, Jeannie Albrecht, Charles Killian, and Amin Vahdat. 2009. Live
Debugging of Distributed Systems. In Compiler Construction, Oege de Moor and
Michael I. Schwartzbach (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
94-108.

Neha Gholkar, Frank Mueller, and Barry Rountree. 2016. Power Tuning HPC
Jobs on Power-Constrained Systems. In Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation (Haifa, Israel) (PACT ’16).
Association for Computing Machinery, New York, NY, USA, 179-191. https:
//doi.org/10.1145/2967938.2967961

Tao Hai, Jincheng Zhou, Dayang Jawawi, Dan Wang, Uzoma Oduah, Cresantus
Biamba, and Sanjiv Kumar Jain. 2023. Task scheduling in cloud environment:
optimization, security prioritization and processor selection schemes. Journal of
Cloud Computing 12, 1 (2023), 15.

Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: a platform
for fine-grained resource sharing in the data center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation (Boston,
MA) (NSDI'11). USENIX Association, USA, 295-308.

Amandeep Khurana and Julien Le Dem. 2018. The Modern Data Architecture
The Deconstructed Database. (2018).

Andrew Lamb, Yijie Shen, Daniél Heres, Jayjeet Chakraborty, Mehmet Ozan
Kabak, Liang-Chi Hsieh, and Chao Sun. 2024. Apache Arrow DataFusion: A
Fast, Embeddable, Modular Analytic Query Engine. In Companion of the 2024
International Conference on Management of Data (Santiago AA, Chile) (SIGMOD
’24). Association for Computing Machinery, New York, NY, USA, 5-17. https:
//doi.org/10.1145/3626246.3653368

Weiwei Lin, Siyao Xu, Ligang He, and Jin Li. 2017. Multi-resource scheduling
and power simulation for cloud computing. Information Sciences 397-398 (2017),
168-186. https://doi.org/10.1016/j.ins.2017.02.054

Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,
Ming Wu, M Frans Kaashoek, and Zheng Zhang. 2008. D3S: Debugging deployed
distributed systems. In NSDL

Semih Salihoglu Luca Bigon, Jacopo Tagliabue. 2025. DAG lakehouse planning
with an ephemeral and embedded graph database. Proceedings of Workshops at
the 51th International Conference on Very Large Data Bases (2025).

Dipankar Mazumdar, Jason Hughes, and JB Onofre. 2023. The Data Lakehouse:
Data Warehousing and More. arXiv:2310.08697 [cs.DB] https://arxiv.org/abs/
2310.08697

Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability!
But at what COST?. In USENIX Workshop on Hot Topics in Operating Systems.
Our World in Data. 2024. Historical price of computer memory and stor-
age. https://ourworldindata.org/grapher/historical- cost-of-computer-memory-
and-storage?time=2010..]atest&facet=metric.

Tapasya Patki, Zachary Frye, Harsh Bhatia, Francesco Di Natale, James Glosli,
Helgi Ingolfsson, and Barry Rountree. 2019. Comparing GPU Power and Fre-
quency Capping: A Case Study with the MuMMI Workflow. In 2019 IEEE/ACM
Workflows in Support of Large-Scale Science (WORKS). 31-39. https://doi.org/10.
1109/WORKS49585.2019.00009

Pedro Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider, Wes McKin-
ney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The Composable

https://docs.aws.amazon.com/lambda/latest/api/API_

[25

[26

[27

[28

™~
29,

[30

(31

[35

(36]

[37

[38

[39

Data Management System Manifesto. Proc. VLDB Endow. 16, 10 (June 2023),
2679-2685. https://doi.org/10.14778/3603581.3603604

Jacopo Tagliabue Ryan Curtin. 2025. The Deconstructed Warehouse: An
Ephemeral Query Engine Design for Apache Iceberg. Proceedings of Workshops
at the 51th International Conference on Very Large Data Bases (2025).

Alireza Sahraei, Soteris Demetriou, Amirali Sobhgol, Haoran Zhang, Abhigna
Nagaraja, Neeraj Pathak, Girish Joshi, Carla Souza, Bo Huang, Wyatt Cook,
Andrii Golovei, Pradeep Venkat, Andrew Mcfague, Dimitrios Skarlatos, Vipul
Patel, Ravinder Thind, Ernesto Gonzalez, Yun Jin, and Chungiang Tang. 2023.
XFaa$S: Hyperscale and Low Cost Serverless Functions at Meta. In Proceedings of
the 29th Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP
’23). Association for Computing Machinery, New York, NY, USA, 231-246. https:
//doi.org/10.1145/3600006.3613155

Jacopo Tagliabue. 2021. You Do Not Need a Bigger Boat: Recommendations at
Reasonable Scale in a (Mostly) Serverless and Open Stack (RecSys °21). Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3460231.
3474604

Jacopo Tagliabue, Hugo Bowne-Anderson, Ville Tuulos, Savin Goyal, Romain
Cledat, and David Berg. 2023. Reasonable Scale Machine Learning with Open-
Source Metaflow. ArXiv abs/2303.11761 (2023).

Jacopo Tagliabue, Tyler Caraza-Harter, and Ciro Greco. 2024. Bauplan: Zero-copy,
Scale-up FaaS for Data Pipelines. In Proceedings of the 10th International Workshop
on Serverless Computing (Hong Kong, Hong Kong) (WoSC10 "24). Association
for Computing Machinery, New York, NY, USA, 31-36. https://doi.org/10.1145/
3702634.3702955

Jacopo Tagliabue, Ryan Curtin, and Ciro Greco. 2024. Faa$S and Furious: abstrac-
tions and differential caching for efficient data pre-processing . In 2024 IEEE Inter-
national Conference on Big Data (BigData). IEEE Computer Society, Los Alamitos,
CA, USA, 3562-3567. https://doi.org/10.1109/BigData62323.2024.10825377
Jacopo Tagliabue and Ciro Greco. 2024. Reproducible data science over data lakes:
replayable data pipelines with Bauplan and Nessie. In Proceedings of the Eighth
Workshop on Data Management for End-to-End Machine Learning (Santiago, AA,
Chile) (DEEM °24). Association for Computing Machinery, New York, NY, USA,
67-71. https://doi.org/10.1145/3650203.3663335

Jacopo Tagliabue, Ciro Greco, and Luca Bigon. 2023. Building a Serverless
Data Lakehouse from Spare Parts. ArXiv abs/2308.05368 (2023). https://api.
semanticscholar.org/CorpusID:260775634

Shanjiang Tang, Bingsheng He, Ce Yu, Yusen Li, and Kun Li. 2022. A Survey on
Spark Ecosystem: Big Data Processing Infrastructure, Machine Learning, and
Applications. IEEE Transactions on Knowledge and Data Engineering 34, 1 (2022),
71-91. https://doi.org/10.1109/TKDE.2020.2975652

TPC-H [n.d.]. TPC-H Homepage. https://www.tpc.org/tpch/

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. 2024. Why TPC is Not Enough: An Analysis of the Amazon Redshift
Fleet. Proc. VLDB Endow. 17, 11 (July 2024), 3694-3706. https://doi.org/10.14778/
3681954.3682031

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems
(Bordeaux, France) (EuroSys ’'15). Association for Computing Machinery, New
York, NY, USA, Article 18, 17 pages. https://doi.org/10.1145/2741948.2741964
Zehao Wang. 2021. Understanding the Challenges and Assisting Developers with
Developing Spark Applications. 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion) (2021), 132-134.
Michael Whittaker, Cristina Teodoropol, Peter Alvaro, and Joseph M. Hellerstein.
2018. Debugging Distributed Systems with Why-Across-Time Provenance. In
Proceedings of the ACM Symposium on Cloud Computing (Carlsbad, CA, USA)
(SoCC ’18). Association for Computing Machinery, New York, NY, USA, 333-346.
https://doi.org/10.1145/3267809.3267839

Jerin Yasmin, Jiale Wang, Yuan Tian, and Bram Adams. 2024. An Empirical Study
of Developers’ Challenges in Implementing Workflows as Code: A Case Study
on Apache Airflow. ArXiv abs/2406.00180 (2024). https://api.semanticscholar.
org/CorpusID:270213226

Matei A. Zaharia, Ali Ghodsi, Reynold Xin, and Michael Armbrust. 2021. Lake-
house: A New Generation of Open Platforms that Unify Data Warehousing and
Advanced Analytics. In Conference on Innovative Data Systems Research.

https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/api/API_Invoke.html
https://arrow.apache.org/docs/format/Flight.html
https://arrow.apache.org/docs/format/Flight.html
https://doi.org/10.1145/2807591.2807637
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1145/1989323.1989357
https://doi.org/10.1145/2967938.2967961
https://doi.org/10.1145/2967938.2967961
https://doi.org/10.1145/3626246.3653368
https://doi.org/10.1145/3626246.3653368
https://doi.org/10.1016/j.ins.2017.02.054
https://arxiv.org/abs/2310.08697
https://arxiv.org/abs/2310.08697
https://arxiv.org/abs/2310.08697
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric
https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage?time=2010..latest&facet=metric
https://doi.org/10.1109/WORKS49585.2019.00009
https://doi.org/10.1109/WORKS49585.2019.00009
https://doi.org/10.14778/3603581.3603604
https://doi.org/10.1145/3600006.3613155
https://doi.org/10.1145/3600006.3613155
https://doi.org/10.1145/3460231.3474604
https://doi.org/10.1145/3460231.3474604
https://doi.org/10.1145/3702634.3702955
https://doi.org/10.1145/3702634.3702955
https://doi.org/10.1109/BigData62323.2024.10825377
https://doi.org/10.1145/3650203.3663335
https://api.semanticscholar.org/CorpusID:260775634
https://api.semanticscholar.org/CorpusID:260775634
https://doi.org/10.1109/TKDE.2020.2975652
https://www.tpc.org/tpch/
https://doi.org/10.14778/3681954.3682031
https://doi.org/10.14778/3681954.3682031
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/3267809.3267839
https://api.semanticscholar.org/CorpusID:270213226
https://api.semanticscholar.org/CorpusID:270213226

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Writing everything as a function
	2.2 Running everything as a function

	3 Simulator Design
	3.1 Overview
	3.2 Design Principles and Major Abstractions

	4 Eudoxia 101
	4.1 Developer experience
	4.2 Preliminary Validation

	5 Related Work
	6 Conclusion
	References

