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ABSTRACT
Federated query optimization remains a persistent challenge in
modern data systems due to the heterogeneity of execution engines
and the overhead of estimating costs across external data sources.
This challenge is further amplified by the rise of generative AI and
retrieval-augmented generation (RAG) applications, which often
require real-time access to diverse, distributed databases. In this pa-
per, we introduce Dingo, a pluggable federated query optimizer that
can be integrated into any SQL-based federated query engine with
minimal effort. Existing federated optimizers typically suffer from
two key limitations: (1) they depend on costly and often unreliable
cost estimates from external systems, and (2) they require deep,
system-specific integration with each external database system.
Dingo addresses both issues by using a learned cost model trained
on past query executions to avoid remote estimation, and by oper-
ating entirely outside the query engine, creating subquery views
in external databases and rewriting queries to enforce pushdown.
Dingo’s generic architecture supports seamless integration across
a wide range of systems, from lightweight in-process engines like
DuckDB and DataFusion to cloud-scale platforms such as Redshift
and Spark SQL. Evaluation on the Join Order Benchmark demon-
strates that Dingo achieves average query speedups of up to 5.5x,
while requiring fewer than 50 lines of integration code per engine.
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1 INTRODUCTION
In the complex infrastructure of the modern lakehouse architecture,
data are usually distributed across multiple, diverse data systems.
This has led to the development of query engines with federated
processing capabilities, enabling users to simultaneously query
multiple databases, using a unified, SQL-based interface. As an ex-
ample, it is common for a user or an application to issue a query
that joins a "small" table in a relational database with a bigger table
that resides in a cloud service, like Amazon S31 or Delta Lake2.
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1https://aws.amazon.com/s3
2https://delta.io/

Over the last years, a number of data warehouses developed by
some of the largest database vendors have implemented federated
query features, including Redshift [2], Spark SQL [1], DuckDB [21],
Presto [23], Athena Federated Query3, BigQuery4 or Dremio 5.
This fact provides clear evidence for the popularity of federated
query engines. Taking into account the heterogeneity of the under-
lying systems that a federated engine integrates with, optimizing
federated queries is one of the most challenging tasks for these sys-
tems. Usually, a federated query engine follows a one-size-fits-all
approach, to connect with as many external database systems as
possible. In summary, the query lifecycle in most federated systems
(e.g. Redshift, Presto) is straightforward. First, the federated engine
transfers all the tables and views included in the query from the ex-
ternal database systems to the federated execution engine through
the network. A number of specific rule-based optimizations, e.g.
subquery pushdown to the external database, might also be applied.
Finally, the resulting query plan is executed in the federated engine.

Ideally, an efficient optimizer should be able to generate more
sophisticated federated query plans, like in traditional databases.
For example, instead of just pushing down filters to the external
databases, the optimizer could consider pushing down larger parts
of the federated query, like a join sub-tree. However, the heteroge-
neous nature and architectural differences of the external systems
make the task of deciding which parts of the query to push down
and where particularly complex. One of the main challenges is the
complexity of estimating the subquery execution cost in an external
system. This is a tricky task, for a number of factors. For example,
due to the lack of access to statistics in the remote database system,
estimating the local execution cost (in the external system) and re-
sult cardinality is very challenging. Furthermore, the larger search
space that derives from the additional planning decisions (i.e., if and
where to push down a subquery) due to federated execution, makes
optimization even more challenging. As a result, the majority of
federated engines apply very few rule-based optimizations, like
filter pushdown.

1.1 Always Pushing Down Does Not Fit All
Let us consider the straight-forward rule-based pushdown approach
to optimize federated queries. We analyze the query plan, and do
the required transformations in order to pushdown everything that
is possible to be pushed down, including larger parts of the query
tree, like joins. In the following two examples, we demonstrate
that the problem is more complex and it cannot always be solved
by applying such rules. We consider a federated version of the

3https://aws.amazon.com/athena
4https://cloud.google.com/bigquery
5https://www.dremio.com
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Join Order Benchmark6, in which tables are located in an AWS
RDS infrastructure, consisting of one MySQL, and one Aurora Post-
gresSQL instance. All tables are loaded as DataFrames in Python
using ConnectorX [26], and the queries are executed using DuckDB.
For both queries that we will be examining in this example, the
main bottleneck is the join of 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 with some other table,
due to its relatively large size. We use a random placement of the
tables depicted in Table 1(we omit the rest of the tables for space
efficiency):

Table 1: Table Locations

Database Tables

PostgreSQL cast_info, role_type, company_name, name,
movie_keyword

MySQL aka_name, title

We start with query 8c7. In this query, bottleneck is the join of
𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 with either 𝑡𝑖𝑡𝑙𝑒 or 𝑟𝑜𝑙𝑒_𝑡𝑦𝑝𝑒 . As 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 is colocated
with 𝑟𝑜𝑙𝑒_𝑡𝑦𝑝𝑒 in Postgres, we can only consider pushing down
𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 ⊲⊳ 𝑟𝑜𝑙𝑒_𝑡𝑦𝑝𝑒 to Postgres, or, we can fetch both tables as
DataFrames and execute the join in DuckDB. As we can see in Fig-
ure 1, query 8c can be 10 times faster if subquery pushdown is uti-
lized. The reason is that 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 ⊲⊳ 𝑟𝑜𝑙𝑒_𝑡𝑦𝑝𝑒 is quickly executed
in Postgres, while the filter 𝜎𝑟𝑡 .𝑟𝑜𝑙𝑒=′𝑤𝑟𝑖𝑡𝑒𝑟 ′ on 𝑟𝑜𝑤_𝑡𝑦𝑝𝑒 results
to an intermediate result much smaller even from the 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜
itself that we would need to fetch through the network. On the
other hand, this is not the case for query 16a. In this query, the
only pushdown we can consider along with 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 is the join
𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 ⊲⊳ 𝑚𝑜𝑣𝑖𝑒_𝑘𝑒𝑦𝑤𝑜𝑟𝑑 . However, by performing this push-
down, the query becomes 1.7 times slower compared to the vanilla
implementation. The reason is that 𝑐𝑎𝑠𝑡_𝑖𝑛𝑓 𝑜 ⊲⊳ 𝑚𝑜𝑣𝑖𝑒_𝑘𝑒𝑦𝑤𝑜𝑟𝑑
creates a large intermediate result and the data transfer becomes
a bottleneck. Thus, for this query it is preferable to fetch all ta-
bles and execute in DuckDB. This experiment demonstrates that
pushing down arbitrarily does not always work as desired, and the
optimizer should take into consideration more factors when decid-
ing which parts of the queries should be pushed down, including
intermediate result size and the performance of the external engine.
A learned optimizer that could predict these two would be able
to generate an efficient query plan consisting of only beneficial
pushdown decisions.

1.2 Pluggable Federated Query Optimization
Building query optimizers is provably one of the most challenging
tasks in database system implementation. For example Spark SQL
introduced a cost-based query optimizer three years after its ini-
tial release, while there have been changes in PostgreSQL despite
its 20 years old maturity. Similarly, most of the federated query
optimizer implementations are tightly-coupled with the federated
query engine, and the integration with either new federated en-
gines or external database systems is impossible. In summary, we

6https://github.com/gregrahn/join-order-benchmark
7https://github.com/gregrahn/join-order-benchmark/blob/master/8c.sql
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Figure 1: Execution times for queries 8c and 16a with and
without pushdown.

identify the following challenges in federated query optimizer im-
plementation.
(1) Hard Integration. The design of existing federated query opti-
mizers make integration with external engines impractical. While
these works implement external engine wrappers and custom cost
models to enable more fine-grained federated query plan genera-
tion, developing custom wrappers and cost models for new systems
is a tedious task, making the integration with new systems ex-
tremely difficult and time-consuming.
(2) Expensive Optimization. Next, as already demonstrated in
previous works, the communication with external systems to obtain
cost estimates can slow optimization down, something known as
cost of costing [4]. This cost becomes even higher due to the vast
search space of the potential federated query plans.
(3) Lack of Portability. Existing federated query optimization ap-
proaches are implemented on top of a specific engine. For example,
Garlic [16] can only work on Db2, while MuSQLE [12] and System-
PV [17] are implemented for Spark SQL. As a result, applying these
optimizers to new systems requires a significant number of changes
and modifications in order to integrate them with more federated
engines.

All these challenges have led to some interesting directions for
more pluggable optimizer architectures. One of them is the idea
of a Query Optimizer as a Service [15] for cloud databases, which
isolates the cardinality estimator, the cost model, and the query
planner as external services that can be used from the query op-
timizer of multiple different systems. At the same time, transfer
learning has been proposed as a tool for transferring knowledge from
one query optimizer to another [28]. All these directions could be
extremely beneficial for a federated query optimizer. Combining all
these challenges and ideas, we try to answer the following question:

"Can we build a pluggable federated query optimizer that can
integrate with any external database and federated query engine

with 1. minimum engineering effort and 2. minimum communication
overhead during optimization?"

To address this question, we present Dingo [13](FeDerated, Ma-
chine Learning-based Query Optimizer), an engine-agnostic fed-
erated query optimizer, that copes with the heterogeneity of the
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underlying infrastructure. Using machine learning, Dingo learns
the performance of the external database systems, without relying
on any system-specific knowledge. Instead, it treats the external
systems as black boxes. The key idea behind our approach is the
following.
Low-overhead cost estimation. In contrast to previous approaches
that depend on cost estimates obtained from external systems (e.g.
by parsing the output of EXPLAIN clause [27]), we use a unified
query vector model, to represent queries in the vector space. This
model focuses on the query tree level only, making it flexible enough
to work with any external system that supports SQL. Using this
model, query trees can be simply transformed to vectors, and fed
to various machine learning models in order to learn and predict
the performance of the external systems. We can then leverage
these learned cost models in order to develop a federated query
optimizer that can easily connect to different systems, and has zero
communication cost during optimization.
Easy integration. At the same time, Dingo follows a flexible feder-
ated plan execution scheme that allows it to be easily used as an ex-
ternal optimizer over any federated query engine that is connected
over any set of external database systems. Given a federated query
plan, Dingo creates views of the subqueries that will be pushed
down to the external databases, and rewrites the initial, federated
query by replacing the pushed-down query parts with the view
names. Thus, when a view name is referenced from the outer query,
Dingo triggers the local execution of the subquery to the external
engine. Moreover, Dingo leverages ideas from both transfer learn-
ing and online learning, enabling it to reuse pre-existing knowledge
over new federated engines, as well as to adapt over time to work-
load changes by improving its model. Dingo’s ability to adapt and
optimize queries over multiple federated query engines makes it
easily pluggable over query engines with federation capabilities
with minimum effort. We demonstrate this by evaluating Dingo
over a set of the most widely known cloud databases, including
AWS Redshift and Spark SQL on Elastic MapReduce (EMR).

In summary, our contributions are the following:

• We present Dingo, the first learned federated query opti-
mizer that is able to integrate with any SQL-based database
system with minimum engineering effort.

• We introduce a pluggable federated query optimization and
plan execution scheme based on view creation, enabling
Dingo to optimize queries over any federated engine that
is connected over any set of external database systems that
support SQL execution via JDBC connection.

• We showcase Dingo’s ability to operate as an external op-
timizer over a variety of federated query engines, ranging
from cloud databases (Redshift and Spark SQL) to in-process
query engines (DuckDB).

• We show how Dingo leverages ideas from transfer and on-
line learning, enabling it to re-use knowledge from known
federated query engines to unseen ones, and gradually
adapt to the current workload by periodically re-training
its cost models.

• We present a thorough experimental evaluation over Spark
SQL and Redshift, and we showcase that Dingo can im-
prove the average query execution time of the Join Order
Benchmark up to 5.5 times.

System Overview. In this work, our primary focus is on building a
pluggable and composable query optimizer for federated query en-
gines. Most of our design decisions center around modularity—for
example, enabling easy selection or extension of the cost model.
As a result, we deliberately made simplifications in certain com-
ponents to highlight the architectural contribution. Specifically,
to avoid complications from cardinality or cost estimation errors,
we assumed a static workload and dataset. Additionally, we used
a straightforward learned cost model that vectorizes queries and
feeds them into a multi-layer perceptron regressor for training and
inference. We implement Dingo on top of Apache Calcite [3], by
modifying the standard Volcano/Cascades optimization scheme
to make the optimizer aware of the table locations (external en-
gines), and the possible execution engines for each operator. For the
learned cost models, Dingo uses the Deep Java Library8. For our cur-
rent prototype, we are making the assumption of a static workload
and data, using the Join Order Benchmark. Figure 2 depicts Dingo’s
architecture, which consists of the following five components: The
query vectorizer, the profiler, the learned cost models, the federated
query optimizer, and the plan executor (query rewriting and view
creator).
Query Vectorizer. The query vectorizer takes an input SQL query
in its Abstract Syntax Tree (AST) form. It extracts the query seman-
tics and outputs the corresponding query vector. To construct the
vectors, we use unique identifiers to index the tables and columns.
For example, given the projection vector 𝑃 , the element 𝑃𝑖 denotes
whether the column with id 𝑖 is included in the SELECT clause of
the query. Our vectorization scheme captures both query and ex-
ecution location information. For instance, joins are represented
using an adjacency matrix 𝐽 , where the 𝐽𝑙,𝑟 = 𝑒 indicates a join
between tables 𝑙 and 𝑟 which will be executed in the engine 𝑒 . The
final query vector is a flattened version of the union of the vectors
of each relational operator, as well as the join adjacency matrix.
Profiler. The profiler collects metrics during query execution that
are used later to train the learned cost models. In order to generate
more training samples, the profiler collects execution metrics from
the individual parts of the query, whenever that is possible. For
example, given the federated query plan depicted in Figure 4, the
profiler will create three training samples, that is, one of the whole
query execution in the federated engine (FederatedJoin), one for
the join that is being pushed down to Postgres (ExternalJoin)
and one of the table scan in MySQL (ExternalScan). Using this
approach, Dingo is able to improve its learned cost model both for
the federated engine, as well as for the external ones.
Learned Cost Model. The learned cost model is one of the key
components of Dingo that makes the plan enumeration fast. In-
stead of communicating with the external engines, Dingo asks the
learned cost model for subquery cost estimations. The learned cost
model is completely integrated with our query optimizer, and it is
invoked during plan enumeration in order to compare the cost of
the candidate intermediate plans. In this prototype, we are using a

8https://djl.ai/
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very simple predictive model based on a neural network with a sin-
gle hidden layer of 1024 units, using the ReLU activation function.
We treat the cost estimation as regression problem, and our model
predicts the query execution time in seconds. Our experimental
evaluation showcases that even using a simple linear neural net-
work like this, the optimizer learns effective optimization decisions
quickly using periodical retraining and outperforms the vanilla
versions of the integrated federated query engines.
Federated Query Optimizer. The federated query optimizer ex-
tends the Calcite Volcano/Cascades planner, using some of the
default transformation rules, as well as some custom federated rules
that we developed in order to enable the optimizer to make location-
aware decisions and decide which parts of the query should be
pushed down for local execution to the external engines (see Fig-
ure 4). Beyond the transformation rules, our planner is integrated
with the vectorizer and the learned cost model in order to vectorize
the candidate plans and estimate their costs during enumeration.
Executor — Rewriter. Dingo implements a generic plan executor,
making it able to integrate with minimal effort with most of the
well-known distributed query engines. Currently, Dingo can be
used as an external federated query optimizer for AWS Redshift,
Spark SQL and DuckDB. The plan executor analyzes the federated
query plan and for each external operator (e.g. ExternalJoin) it
generates the equivalent SQL code, with which it generates a view
in the external engine. Then, it replaces the parts of the outer query
that are pushed down with FederatedScan operators that load
the result of the created view. This triggers the local execution of
the subquery to the external query engine. The initial outer query
is then rewritten, and all the parts of the query that are pushed
down are replaced with the corresponding view names. For in-
stance, given the query plan depicted in Figure 4, the final rewritten
federated query will become:

SELECT *
FROM federatedScan1 fs1, title
WHERE fs1.movie_id = title.id

where the reference to fs1 enforces the local execution of the
join between cast_info and role_type to Postgres and fetches
the result to the federated execution engine, which then joins it
with the table title. A similar approach is followed for embedded
engines (e.g. DuckDB or DataFusion) by generating the equivalent
Python code using DataFrames (see Figure 3).

2 EXPERIMENTAL EVALUATION
In this section we present the results of our experimental evaluation.
We evaluate Dingo as an external optimizer for Spark SQL and
Amazon Redshift using the Join Order Benchmark (JOB).
Setup.All experiments were conducted on AWS. For Spark SQL, we
deployed a 5-node Elastic MapReduce (EMR) cluster with m2.xlarge
instances. The JOB tables were arbitrarily placed across Amazon
Aurora PostgreSQL and MySQL (RDS). Table 2 depicts the location
of each table. We consider both online and offline training scenarios
for Dingo’s learned cost model. For cost estimation, we use a simple
multi-layer perceptron regression model implemented with the
Deep Java Library (DJL). As emphasized earlier, the focus of this
work is on building a pluggable architecture for federated query
optimization, including pluggable cost models. While our current
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Figure 2: Dingo’s Architecture

1 fs0 = cx.read_sql(psql_conn, """
2 SELECT cast_info.movie_id
3 FROM cast_info
4 INNER JOIN (SELECT *
5 FROM role_type
6 WHERE role = 'writer') AS t
7 ON cast_info.role_id = t.id')"""
8

9 fs1 = cx.read_sql('SELECT id, title FROM title')
10

11 query = """
12 SELECT MIN(federatedScan1.title)
13 FROM federatedScan0
14 INNER JOIN federatedScan1
15 ON federatedScan0.movie_id = federatedScan1.id"""

Figure 3: Pandas Federated Plan Code

1 FederatedJoin(condition=[=($2, $9)], joinType=[inner])
2 ExternalJoin(condition=[=($6, $7)], engine=[Postgres])
3 ExternalScan(table=[cast_info], engine=[Postgres])
4 ExternalFilter(condition=[=($1, 'writer')])
5 ExternalScan(table=[role_type], engine=[Postgres])
6 ExternalScan(table=[title], engine=MySQL)

Figure 4: Federated Query Plan

4



113 226 339
Query

0

200

400

600

800
Ex

ec
ut

io
n 

Ti
m

e 
(s

) Spark Dingo
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model is intentionally kept simple, Dingo’s design supports easy
integration with more advanced techniques for learned cardinality
estimation and cost modeling, making it a flexible foundation for
future research.

Table 2: Table Mapping by Engine

Engine Tables

PostgreSQL aka_title, cast_info, char_name,
comp_cast_type, company_name, com-
pany_type, complete_cast, keyword, link_type,
movie_companies, movie_info, movie_info_idx,
movie_keyword, movie_link, name, per-
son_info, role_type

MySQL aka_name, info_type, kind_type, title

Online Training. In the online scenario, Dingo encounters each
query for the first time. The learned cost models are retrained every
𝑛 queries, where 𝑛 is a user-defined parameter (we use 𝑛 = 10).
Figure 5 illustrates how Dingo adapts over time. We repeated the
113 JOB queries four times, simulating multiple rounds of a repet-
itive workload. Initially, Dingo may make suboptimal pushdown
decisions, reflected in early performance spikes. However, through
periodic retraining, Dingo adapts quickly, outperforming vanilla
Spark SQL. On average, Dingo achieves a 5.5x speedup, with some
queries experiencing up to 68x improvements. These gains are at-
tributed to Dingo’s ability to predict pushdown effectiveness and
avoid unnecessary data movement across engines.
Offline Training. This scenario demonstrates Dingo’s perfor-
mance when provided with a well-trained, highly accurate cost
model. Our goal here is to showcase the effectiveness of Dingo’s
architecture across different systems when cost estimation is not a
bottleneck. To prepare the model, we trained Dingo offline using
a random selection of queries and multiple alternative plans per
query. This allowed Dingo to explore the plan space and learn both
effective and ineffective pushdown decisions prior to evaluation.
Figures 6 and 7 show the cumulative execution time after each
query, with the Y-axis representing total time in seconds and the
X-axis indicating the query number. In both Spark SQL and Red-
shift, Dingo significantly accelerates execution: the performance
gap becomes evident within the first 20 queries. Table 3 summarizes

Table 3: Performance (Speedup) Improvement Summary

System Workload Average Max

Redshift 1.87 2.31 8.69
Spark SQL 2.87 5.29 68.09
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Figure 6: Spark SQL vs Dingo (AWS EMR)
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Figure 7: Redshift vs Dingo (AWS EMR)

the performance gains, reporting the total workload speedup, the
average speedup per query, and themaximum single-query
speedup. Notably, Dingo improves workload performance by 2.87x
in Spark SQL and 1.87x in Redshift, with a maximum individual
query improvement of over 68x in Spark SQL.

Across all engines, the average optimization time per query
remains low (only 0.65 seconds), underscoring Dingo’s practicality
even in latency-sensitive workloads.

3 RELATEDWORK
Federated Query Optimization. There has been a significant
effort on federated query optimization research [14, 19, 25] that
aims at optimizing queries across diverse data sources. For instance,
Garlic [16] introduces a federated query optimizer based on a cost-
based, dynamic-programming approach that uses data wrappers in
order to integrate, and execute queries across different data sources.
On the other hand, MuSQLE [12] and System-PV [17] introduce fed-
erated query optimization approaches that perform optimizations
both in the external, and the federated query engines. Similar ap-
proaches are being followed in polystores [7, 18]. These approaches
depend strongly on cost model implementation for the external
systems. This process makes the integration with new systems im-
practical. Moreover, the communication needed with the external
systems to obtain cost estimates of local query executions leads
to excessive overheads that make the optimization process slow
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(cost-of-costing). To the best of our knowledge, there has been
only a single approach by Liqi Xu et al. [27] on learned federated
query optimization. However, this work does not consider splitting
further the complement queries, ignoring potential query plans
that could achieve better performance. Other research has inves-
tigated in-situ cross-database processing [9], which is orthogonal
to our focus. We target systems that use a dedicated mediator for
federated query processing. Finally, BRAD [11] explores cost- and
performance-based optimization across cloud databases, but with
a different scope. Rather than decomposing a single query across
multiple systems, BRAD routes entire queries to a single best-fit
engine and holistically optimizes infrastructure provisioning.
Composable Architectures. There has been extensive work on
composable data system architectures across different components.
For example, Apache Calcite [6] is a widely used framework for
building query optimizers and has been adopted in several pro-
duction systems. Velox [20], on the other hand, provides a high-
performance implementation of low-level query operators and
can serve as the execution backend for new systems. Similarly,
Gluten [24] enables Java-based engines to offload execution to na-
tive libraries such as Velox. Furthermore, CompoDB [10] offers
standardized interfaces for constructing modular database system
architectures. Finally, there has also been significant work on data
exchange interfaces across heterogeneous data sources, such as
E-Scan [22] and XDBC [8].

4 LESSONS LEARNED AND VISION
Building a query optimizer is both challenging and rewarding. In
this section, we briefly reflect on our experience developing Dingo
and highlight the key takeaways.

4.1 Portability
We initially built Dingo on top of Spark SQL, assuming a query
engine capable of JDBC connections to external systems. This setup
enabled us to construct federated query plans and enforce subquery
pushdown by routing parts of the plan to external engines. How-
ever, we quickly realized that not all execution engines support
such functionality. To enhance portability and ensure compatibility
with any engine that supports basic table federation, we adopted a
simpler and more general approach: generating views in external
systems for each subquery targeted for pushdown. We then rewrite
the original federated query by replacing each pushed-down sub-
query with a reference to its corresponding view. Executing the
rewritten query on the federated engine automatically triggers
the execution of the subquery in the appropriate external system,
without requiring tight integration or specialized connectors.

4.2 Slow Retrieval of External Join Results
In some execution engines, retrieving the result of a pushed-down
subquery that includes a join can be prohibitively slow. For exam-
ple, Spark SQL by default fetches the result of such a subquery
using a single partition. When the intermediate result is large, this
becomes a significant bottleneck in the query’s critical path. A
common workaround is to parallelize the retrieval by setting the
partitionColumn, lowerBound, upperBound, and numPartitions
options. This allows Spark to distribute the load across multiple

workers. However, this approach shifts the burden to the external
database, which must now execute numPartitions join queries,
each restricted to a range of values on the partitionColumn. If the
column’s value distribution is skewed, this can lead to severe load
imbalance across partitions and suboptimal parallelism.

4.3 Subquery Pushdown is Critical
Determining which parts of a query to group and push down is
a critical decision. A well-chosen pushdown can accelerate query
execution by orders of magnitude, while a poor choice may over-
whelm the system or result in massive intermediate data that slows
everything down. In some cases, pushing down a large or poorly
filtered subquery may perform worse than simply fetching all base
tables into the federated engine and executing the query there.
Optimizers must carefully weigh the trade-offs when constructing
federated plans.

4.4 Regression vs Classification
While Dingo currently relies on a regression-based learned cost
model, our ongoing experimentation suggests that a classification-
based approach may be more promising. Our existing model uses a
single regressor to estimate subquery costs across different engines,
with the target engine encoded as a feature in the query vector.
However, we found that this setup often leads to poor generalization.
In particular, estimating intermediate result sizes proved difficult,
and the model frequently produced large errors. In contrast, our
preliminary experiments indicate that a classifier can more reliably
decide whether a given subquery should be pushed down or not.
Instead of predicting absolute costs, the classifier performs a binary
decision that aligns more directly with the optimizer’s needs. Prior
work has shown the effectiveness of pairwise plan comparison [5],
but to our knowledge, this technique has not yet been explored
in the context of federated query optimization. As part of future
work, we plan to extend Dingo with support for classification-based
decision-making along these lines.

5 CONCLUSIONS
In this paper, we presented our experience building Dingo, a learned
federated query optimizer. Prior approaches to federated optimiza-
tion often incurred significant development overhead due to the
need for custom data wrappers and cost models tailored to each
external system. Additionally, these solutions lacked generality,
making integration with new engines difficult and time-consuming.
Dingo addresses these challenges through a pluggable architecture
that supports subquery pushdown via automatic view generation
and query rewriting. By leveraging learned cost models, Dingo
eliminates the communication overhead during optimization and
removes the need for engine-specific wrappers or cost estimators.
Our evaluation shows that Dingo can significantly accelerate real-
world commercial systems such as Amazon Redshift and Spark
SQL, achieving up to a 5x speedup on the Join Order Benchmark
workload.
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