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ABSTRACT

Lakehouse systems enable the same data to be queried with multi-
ple execution engines. However, selecting the engine best suited
to run a SQL query still requires a priori knowledge of the query’s
computational requirements and an engine’s capabilities, a complex
and manual task that only becomes more difficult with the emer-
gence of new engines and workloads. In this paper, we address this
limitation by proposing a cross-engine optimizer that can automate
engine selection for diverse SQL queries through a learned cost
model. Optimized with hints, a query plan is used for query cost
prediction and routing. Cost prediction is formulated as a multi-task
learning problem, and multiple predictor heads, corresponding to
different engines and provisionings, are used in the model architec-
ture. This eliminates the need to train engine-specific models and
allows the flexible addition of new engines at a minimal fine-tuning
cost. Results on various databases and engines show that using a
query’s optimized logical plan for cost estimation decreases the
average Q-error by even 12.6% over using unoptimized plans as
input. Moreover, the proposed cross-engine optimizer reduces the
total workload runtime by up to 25.2% in a zero-shot setting and
30.4% in a few-shot setting when compared to random routing.

VLDB Workshop Reference Format:

Andras Strausz, Niels Pardon, and Ioana Giurgiu. A Learned Cost
Model-based Cross-engine Optimizer for SQL Workloads. VLDB 2025
Workshop: Third International Workshop on Composable Data
Management Systems.

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/strausza-ibm/cross-engine-optim-artifacts.

1 INTRODUCTION

Data has gone from being scarce to being super-abundant. Never
before has it been so easy to collect large data quantities, due to
the large-scale infrastructures available in the cloud. However, the
increasing workload diversity in modern use-cases (i.e., lately seek-
ing to harness unstructured data to fuel Al innovations) has led
to the proliferation of specialized data management systems, each
targeted to narrow types of workloads. For example, Postgres excels
at executing SELECT queries by using indices, but significantly lags
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behind Spark for general-purpose batch processing where parallel
full scans are key. Presto is built for ad-hoc and interactive work-
loads, whereas Spark pays the penalty of always having to spawn
and shut down workers as soon as workloads start or finish.

This has led to siloed systems, high maintenance costs and
wasted engineering cycles. Even worse, the byproducts of this frag-
mentation — incompatible APIs, disparate functionality, inconsistent
semantics — impact the end users, who commonly need to interact
with multiple distinct systems to complete their tasks and to have
expert knowledge to use them appropriately.

To alleviate some of these caveats, data management systems
have seen a significant shift, from monolithic designs to modular
approaches. Recent studies [12, 24] conceptualize a composable
data system constructed from multiple independent layers: (1) the
user-facing APIs, (2) the optimization layer, (3) the execution layer,
and (4) the storage layer. Such cross-platform systems are hori-
zontally extendable, making it easy to include various execution
engines or storage systems and to express workloads in different
dialects. However, how and where to execute these workloads in a
cost/performance-optimal manner remains highly challenging.
Contributions. To overcome the above limitation, we propose op-
timizing engine selection in a lakehouse for SQL workloads through
a learned cost model (LCM). The optimizer first applies traditional
query-rewriting techniques to supply an optimized logical plan to
the LCM, which we show to be beneficial for the downstream tasks
of query cost prediction and routing. Cost prediction is formulated
as a multi-task learning problem, using a Graph Neural Network
(GNN) architecture to compute a general query representation. The
resulting embedding is shared among multiple predictor heads cor-
responding to different engines and their respective provisionings,
thus eliminating the need to train engine-specific LCMs.

The optimizer is evaluated in a lakehouse system with five dif-
ferent engine configurations on various synthetic and real-world
databases (DBs). In a zero-shot setting, its query-to-engine routing
reduces the workload total runtime by up to 25.2% over a random
routing. In a few-shot setting, results are even better and the opti-
mizer’s routing outperforms random routing by even 30.4%. These
improvements translate to tens of minutes saved in execution even
for small databases, such as IMDB or TPC-H. Lastly, experiments on
introducing a new engine provisioning showcase the optimizer’s
ability to flexibly add a new predictor head in the LCM at a cheap
fine-tuning cost, by training it only on 250 queries.

2 BACKGROUND

Polystores and Federated Data Management Systems. In line
with our objective, polystores [2, 4, 10, 25, 30, 37] and federated
DBs [7, 14, 26, 35] also aim to distribute query workloads across
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Figure 1: Overview of

heterogeneous engines. Specifically, they optimize queries within
a given set of engines and hardware configurations. For example,
RHEEM (2] requires additional work to specify cost templates for
each operator when including a new engine, which can quickly
become a burden for extension. In contrast, we enable the easy
addition of a new engine to the underlying infrastructure to support
the user’s workload.

LCMs for Query Optimization and Cost Estimation. Recently,
LCMs [5, 8, 15, 20, 21, 23, 32, 38, 39] that aim to learn and enhance
the behavior of the DB engine’s optimizer have been proposed.
Some [5, 20, 23] use the traditional optimizer’s hints to improve
the optimization procedure. Others [8, 21, 32, 38] attempt to fully
replace the query otimizer with a learned query rewriter. Finally, a
variety of approaches [13, 31, 33] estimate query cost with LCMs.
Stage [31] proposes a hierarchical modeling strategy, where ei-
ther instance-level or global models are used for the task. For the
latter, the Graph Neural Network (GNN) architecture described
in [13] is used. Similarly, BRAD [33] uses the same architecture to
tackle query-to-engine routing. To select the cost-optimal engine,
it considers multiple cost factors, some estimated by closed-form
functions, and others by learned models. Most importantly, for ex-
ecution time prediction, it uses unoptimized logical query plans.
Each execution engine is considered separately, so an individual
predictor model would need to be trained for each. While we are
inspired by the bottom-up GNN architecture, we propose a multi-
head predictor that simultaneously predicts execution times for all
supported engines and allows new engines to be easily added by
fine-tuning a new predictor head on a small volume of queries.
LCM Architectures. Various architectures have been explored for
LCMs, ranging from flat vectors [11, 16] with Multi Layer Percep-
trons (MLP), to Tree Convolutional Networks [22], Recurrent Neu-
ral Networks [29, 34] and Transformer models [36]. More recently,

the cross-engine optimizer.

GNNs have gained popularity due to their natural representation
of query structures. A message passing algorithm over the query
execution plan has been proposed in [13]. Similarly to sequence
models, by adjusting the message passing order to follow the execu-
tion plan’s topology, nodes receive information from their subtree.
Thus, the computed hidden embedding of a node is a representation
of this subtree. Consequently, the root node’s embedding can be
used as a representation of the complete input graph. Embeddings
are computed using node-specific MLPs, and messages are aggre-
gated by summing. Finally, LLMs have been used to embed the
query text [3], because of their understanding of predicated or even
complete SQL statements. These embeddings can be used either as
a complement to other query or predicate embeddings computed

using numeric features or even as standalone representations.

3 CROSS-ENGINE OPTIMIZER

The cross-engine optimizer acts as a middleware and interacts
with the underlying system’s engines and metadata provider in a
lakehouse. Its objective is, upon receiving a user query, to estimate
the query’s execution time on each engine using an LCM and then

use those for engine selection.

The architecture of the cross-engine optimizer is shown in Fig-
Plan creation
module, which transforms it into an optimized Substrait [28] plan
ML-based
cost-estimation module, which encodes the deserialized plan and
predicts the query’s execution time for each engine. Finally, these

ure 1. The input query is first received by the

with cardinality hints. This plan is forwarded to the

predictions are used for Routing.

3.1 Plan Creation

During plan creation

, the SQL query is transformed into an opti-
mized Substrait plan with hints containing cost-related information



for each relation. The goal is to (1) reduce variance between plans
and ensure the (2) LCM receives an accurate representation of
the query’s plan and estimated cardinalities.

First, the system verifies the query against the database schema
stored in the metastore. Next, it generates the initial Substrait plan,
in which the order of operations is solely determined by the SQL
text. A plan-trimming step is then applied, ensuring that only ref-
erenced fields and tables are included. The trimmed Substrait plan
is further converted into a Calcite [6] plan for query optimization.

The optimization procedure first applies predicate pushdown
along with traditional techniques to merge relations that can be
combined and simplify predicates. Next, a greedy cost-based al-
gorithm is applied to optimize the join order, minimizing the in-
termediate schema after assigning each join. At any point in the
algorithm, the two relational sub-trees estimated to produce the
least number of rows are joined. This algorithm is likely to result
in "bushy" join trees over left-deep trees, which is preferred to re-
duce the overall depth of the tree and, consequently, the number of
message passing rounds during cost estimation.

Finally, the optimized plan is extended with hints, indicative of
the cost of each relational node. These hints are computed following
the selectivity estimation rules defined by Selinger’s method [27]
and are later used during the featurization step. Any data infor-
mation, such as cardinalities of tables or average column width, is
extracted from the lakehouse’s metastore.

3.2 Cost Estimation with LCM

The cost estimation module (2) predicts the execution time of the
input query for each engine in the lakehouse. The cost predictor
is designed with two requirements: (1) Database-agnosticity: it
must support prediction across databases with varying schemas;
(2) Support for a variable number of execution engines: the
modeling approach should provide (a) per-engine execution time
estimates without requiring the training of engine-specific LCMs,
as well as (b) adding a new engine and its corresponding predictor
without expensive data generation or complete retraining.

We adopt the Bottom-up GNN algorithm from [13], but use it
to learn a general query representation rather than for direct cost
prediction. The GNN architecture leverages both node-level feature
embeddings and the query plan’s graph structure to inform its
predictions, making it particularly well-suited for cost prediction.
To generate the query embedding, we extend the original Bottom-
up algorithm and apply mean pooling over all relation nodes in
the plan instead of relying solely on the final node’s embedding.
This choice is driven by the fact that the information propagation
degrades with the depth of the tree, which affects the downstream
task. Mean pooling counteracts this by ensuring that information
is received from each relation node in the tree.

Multiple predictors can use the same embedding by decoupling
the query embedding from downstream prediction tasks. This en-
ables multi-task learning [9], where each task predicts the execution
time for a specific engine provisioning. These prediction tasks are
related and reinforce one another, helping the shared embedding
capture a general representation of the query. The engine-specific
predictor heads learn to associate the general embedding with the

Node type | Features
Table numRows, avgRowSize
Field numNulls, numDistinctVals, dataType*, avgColSize,
maxColSize
Literal dataType™*, size, isCasted
Operation | operationType*
Relation numRows, avgRowSize, relationType*

Table 1: Encoding of different node types. The x denotes one-
hot encoded categorical fields.
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Figure 2: Encoded graph representation of the query shown
in Figure 1.

particular characteristics of each engine for accurate cost estima-
tion. The primary benefit of this approach is that it avoids training
separate entire GNNs for every engine. Specifically, when a new en-
gine is added to the system, only its predictor head must be trained
while the embedding model remains fixed.

3.2.1 Plan encoding. The encoding module de-serializes the
decorated Substrait plan and transforms it to a vectorized graph
representation, which serves as the input to the GNN. To this end,
we first explicitly expand the Substrait tree to include intermediate
schemas during query execution. Finally, each node is encoded to a
flat vector containing relevant information about the node’s cost.

Tree structure. The final representation of the query is a het-
erogeneous graph containing five different node types: Relation,
Operation, Literal, Field, and Table nodes. Substrait uses implicit
schema references in each relation and operation. The implicit
schema is manipulated throughout the execution tree encoded by
the emit field of each relation. To directly include field accesses, a
TableScan scan operation is expanded to separate Table and Field
nodes. Similarly, literals are included as distinct nodes. Further-
more, Substrait’s implicit field references are converted into direct
accesses materialized by edges from Field to Relation nodes.

Node encoding. In addition to creating the graph structure, fea-
turization includes converting each node object to a type-specific,
fixed-length numeric vector. Table, Field and Literal nodes are solely
featurized through attributes about the data they describe.



Algorithm 1 Multi-task predictor with Bottom-up GNN encoder

1: Input: vectorized query graph x, set of engines &

2: Output: per-engine execution time prediction

3: # Create query graph embedding using Bottom-up GNN
4: for v € input graph do

5. h, < EncoderMLPT (x,)

6: for v € topological order do

7 Y,  HiddenMLP1{ uechitdren(o) B ® b

8: # Mean-pool over embeddings of Relation nodes

9: hguery < mean_pool({hj, : v € Relation})

10: # Prediction using separate predictor heads
11: fori € 1...|&| do

12:  J[i] « PredictorMLP; (hgyery)

13: returny

For Operation and Relation nodes, the featurization also includes
the type of the expression (such as Join, Filter for Relation or max,
+, -, etc. for Operation) as a one-hot encoded vector. For Relation,
each relation included in the Substrait specification is represented
as a distinct category. Operation expressions are assigned to cate-
gories via a predefined static mapping that groups expressions with
similar computational complexity. Log-normalization is applied to
all continuous features to avoid large differences in scale between
features. Table 1 lists the features considered for each node type
and Figure 2 depicts an example output of the featurization process.

3.2.2 LCM architecture. The multi-head cost predictor first
employs a GNN to convert the encoded query plan into a low-
dimensional embedding. This embedding is fed into each predictor
head, producing an execution time estimate for the respective execu-
tion engine. The embedding heads are implemented as Multi-layer
Perceptrons (MLPs). Algorithm 1 provides pseudo code for the
multi-task inference process.

The algorithm first projects nodes in the input graph to a com-
mon vector space using type-specific encoders. In particular, for
eachnode with type T € {Relation, Operation, Literal, Field, Table}
, the corresponding encoder EncoderMLP7 : R4T — RY" is applied
(lines 4-5). Afterwards, in the message passing phase, messages are
propagated through the tree in topological order, starting from leaf
nodes and progressing towards the last Relation node. At each step,
nodes send messages to their parent nodes once they have received
all messages from their children. After a node receives messages,
it updates its hidden embedding by first concatenating it to the
sum of received embeddings and feeding this combined embedding
through a second, type-specific MLP, HiddenMLP7 : R4+ _, R4
(lines 6-7). The mean-pooling operation is then applied over all Re-
lation nodes in the graph (line 9) to arrive at the final, learned
representation of the query. This representation is then received
by the engine-specific predictor heads, PredictorMLP; : R?Y R
to compute the final estimates.

Let & = {e1,....e|g|} be a set of engines. For a query x, en-
coded in a vectorized graph format, we record corresponding mea-
surements y € RIEl where the i-th component y[i] is the execu-
tion time of the query measured on engine e;. Furthermore, let
BottomUpGNN(x) : G — R represent the complete bottom-up

Raw Parquet | #Tables | #Rows | #Rel
‘ Size (GB) ‘ Size (GB) ™M)
TPC-H 10 3.2 8 86.6 8
TPC-DS 10 4.2 24 191.5 102
IMDB 3.6 1.8 23 74.3 17
Stack Overflow 44 2.1 9 19.3 12
Donor 1.7 0.75 4 7.5 4

Table 2: Summary of datasets. #Rel is the number of foreign-
key constraints taken into account for query generation.

message passing algorithm, including mean-pooling (lines 4-9) and
producing a d’-dimensional embedding of the input graph. During
training, each task (i.e., predicting the execution time for a specific
engine configuration) is weighted equally. Namely, for a loss func-
tion L(-,-) between predicted and measured execution time, we
compute the prediction error for backpropagation as:
1 .
I= ﬁ Z L (PredictorMLP; (BottomUpGNN(x)), y[i])
ie{l, .8}

During training, an adjusted form of Q-error is employed as the loss
function, computing the standard Q-error for positive estimates
and assigning an arbitrarily large penalty for negative estimates.

4 EVALUATION
4.1 Methodology

4.1.1  Environment. All experiments have been conducted on a
cluster with dual-socket compute nodes, each hosting 2 Intel Xeon
E5-2683 v4 CPUs and 768GB of RAM. The cluster is running on
OpenShift, where the watsonx.data [1] lakehouse is hosted. Since
watsonx.data currently natively supports only PrestoDB and Spark-
SQL, we evaluate on these 2 engine types with 4 provisionings (1
and 4 worker nodes, respectively). Furthermore, all caching capa-
bilities of PrestoDB are disabled to ensure that measurements are
independent. Data is stored in MinIO buckets in parquet format,
and a Hive catalog is used to keep and distribute metadata inside
the lakehouse. For the experiment introducing a new engine, a
PrestoDB provisioning with 8 worker nodes is considered.

4.1.2  Data Collection. 5 different datasets were selected for evalu-
ation: TPC-H and TPC-DS with a scale factor of 10, the IMDB dataset
from the JOB [17], a one-year data dump of Stack Overflow and
the donor dataset from the BIRD-SQL benchmark [18]. Each dataset
contains multiple foreign key relationships and column types, rang-
ing from simple numeric and text values to dates and timestamps.
Some of the key statistics of the datasets are summarized in Table 2.

Since traditional benchmarks include at most a few hundred
queries, insufficient for the LCM training, we use the synthetic
query generator from [13]. Following prior works, queries are lim-
ited to at most 3 joins and a maximum runtime of 1 minute to
allow efficient training data collection. However, the generated
queries include predicates on timestamp and date columns as well
as subqueries and predicates on aggregates (HAVING statements).
As our cross-engine optimizer relies on Calcite’s grammar-driven
SQL parser and its featurization process covers the full range of
relations and data types defined by Substrait, this is the first at-
tempt to support such a broader spectrum of queries systematically.



EncoderMLPr:  (input_dim, 64, 96, 144, 216, 256) X 5
GNN: HiddenMLP7: (512, 384, 384, 384, 256) X 5
PredictorMLP.: (256, 174, 121, 85, 59, 1) X #engines
EncoderMLP7:  (input_dim, 64, 96, 144, 216, 256) X 5
PredictorMLP.: (1024, 174, 121, 85, 59, 1) X #engines
Table 3: Layer sizes of each MLP used for the GNN and
set-based architectures. input_dim refers to the encoded di-
mension (number of features) of each node type.

Set-based:

‘ Qmed  9mean  qp95
Ours 121 147 243
GNN.UP | 1.24 1.55 2.71
SB.OP 1.21 147 2.45

Table 4: Unseen queries: prediction accuracy on unseen

queries.

For each dataset, 5000 queries are generated and executed on each
execution engine.

4.1.3  Evaluation Scenarios. To thoroughly evaluate both the pro-
posed LCM’s accuracy in predicting execution time and its effec-
tiveness for routing queries, we consider 4 scenarios:

(1) Unseen queries: all 5 datasets are merged for training and testing.
For evaluation, 1000 queries are held out from each dataset.

(2) Zero-shot: the LCM is evaluated on a dataset excluded from
training. We report cross-validation results in which, for each fold, 4
datasets serve as the training set and the fifth is used for evaluation.
(3) Few-shot: the LCM is fine-tuned on a small subset of queries
drawn from the test dataset. Only the predictor heads are updated,
while the shared embedding model remains fixed. We use 250 (~5%)
queries for few-shot experiments, split equally between training
and validation.

(4) New engine: a new predictor head is trained for the new engine
in a few-shot setting. This scenario addresses the case where the
current provisioning is insufficient for running the workload under
a preferred time or cost budget.

4.2 Results on LCM’s Accuracy

We begin by analyzing the proposed LCM’s estimation accuracy in
each scenario, using the Q-error metric, averaged over all consid-
ered engines. The metric qpeq for a set of queries Q and a set of
engines & is computed as:

1 dg t
Qmed = — Z median ({max (pre g M ) iq€ Q})
&l el

trueg’ pred
iel... q Predq

Results for IMDB, Stack Overflow and TPC-H are presented below.
Appendix 6.2 includes the evaluation of the remaining datasets.

4.2.1 Baselines. We define 2 baselines to compare against:

(1) GNN.UP: the LCM is trained with validated plans and no opti-
mizations. Specifically, input plans are produced by applying field
trimming to the original Substrait plan and converting subqueries
into joins. This baseline is closest to BRAD [33], which creates the
input graph directly from the SQL text.

(2) SB.OP: we implement an adjusted version of the set-based model
proposed by Kipf et al. [16] with optimized plans. Details are pro-
vided in Appendix 6.1.

IMDB Stack Overflow TPC-H
Qmed Ymean 9qp95 | 9med Yqmean Ygp95 | qmed Ymean qp95
Ours  |L51 181 357|144 195 423|140 171 3.6
GNN.UP | 1.67 2.07 436|145 195 435|149 184 352
SB.OP 1.53 190 4.13|1.47 197 426|143 1.80 3.32

Table 5: Zero-shot: prediction accuracy of zero-shot models.

IMDB Stack Overflow TPC-H
Qmed Y9mean 9qp95 | qmed Y9mean 9p95 | qmed Yqmean Yp95
Ours 137 156 276|135 173 342|129 155 270
GNN.UP| 145 1.73 342|143 187 399|131 163 2387
SB.OP 137 157 272|138 182 3.64|129 159 263

Table 6: Few-shot: prediction accuracy of few-shot models.

4.2.2  Results on unseen queries. Evaluating on queries targeting
the same underlying databases as those used for training leads to
generally accurate predictions, as reported in Table 4. Note that a
median Q-error of 1.21, which is achieved for both our proposed
model and for the set-based architecture, means that, on average
over each predictor head, 50% of the estimates deviate by no more
than 21% from the true, measured execution time.

Comparing optimized and unoptimized plans with the GNN
architecture, we see a 5.2% relative reduction in qmean and a 10.3%
reduction in the tail error qpgs in favor of optimized plans. These
results reinforce the idea that the input plans for the LCM can be
improved through traditional query optimization techniques. The
differences between model architectures are minor and only present
in the tail error by a 0.2 difference in qpgs. Thus, in this scenario,
the GNN architecture cannot extract a considerably larger amount
of additional information from the plan’s structure compared to
the simpler set-based model. Furthermore, the accuracy of different
predictor heads shows only low variance. This implies that the
learned embedding, whether created by the GNN or the set-based
model, is general enough to be used for predicting execution times
on different engines.

4.2.3  Results for zero-shot setting. Results are reported in Table 5.
Zero-shot models exhibit substantially higher Q-errors than mod-
els trained and evaluated on the combined dataset. Nevertheless,
similar trends are observed in the zero-shot setting, where query
optimization also yields more accurate predictions compared with
those obtained using unoptimized plans. In particular, using opti-
mized plans with the GNN architecture improves on the average
Q-error by 9.6% and by 18.2% in qp9s for the IMDB dataset over
using unoptimized plans. On the other hand, results for the Stack
Overflow dataset show a difference only in the tail error. For this
dataset, all considered settings lead to similar metrics, and generally
high tail error. We also observe that the GNN architecture general-
izes better than the set-based model, achieving superior results on
all but one dataset.

4.2.4 Results on few-shot setting. The few-shot setting is designed
to enable the predictor heads to capture dataset-specific cost charac-
teristics by fine-tuning and thus produce more accurate predictions.
Comparing the few-shot results (Table 6) with the zero-shot results
shows that fine-tuning indeed improves the LCM’s accuracy, as
reflected by improvements in each metric across all configurations.



IMDB Stack Overflow TPC-H

Pwg _Pw8 Pw8| Pw8 _Pw8 Pw8| Pw8 _Pw8 Pwg
Dned Imean 9pos |Dmed Imean 4pos |9med Imean 9pos

Ours 154 174 311|143 180 337 | 1.27 150 2.40
GNN.UP| 1.55 190 3389|144 186 373|131 158 257
SBOP | 147 172 318|146 187 3.58| 132 154 254

Table 7: New engine: prediction accuracy of the new predictor.
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Figure 3: Query-level routing using our proposed LCM.

Significant reductions in the Q-error (between 20% and 40%) are
observed particularly in the tail error.

4.2.5 Results on adding a new engine. Finally, Table 7 shows the
Q-error of the LCM after including a new predictor head that repre-
sents an additional engine provisioning (PrestoW8) in the lakehouse.
Recall that the new predictor head is only trained using 250 queries,
keeping the cost of data collection low, as well as the training cost.
Overall, we observe metrics for each dataset that closely match
those from the few-shot experiments. This demonstrates that the
learned embedding allows for including a new predictor for an
engine different than those used in the LCM pre-training.

4.3 Effect on Query Execution Times and
Routing

We analyze the LCM’s effect on query-level routing both in the zero-
shot and few-shot scenarios. Each query is assigned to the execution
engine, which is estimated to lead to the shortest execution time.

4.3.1 Baselines. Two baselines are considered for query routing:
(1) Random: the engine is selected randomly for each query.

(2) Static: the complete workload is executed on the engine that
minimizes the workload’s total runtime. Note that this routing
requires a priori knowledge in determining which engine should
be used for execution.

4.3.2  Results. Figure 3 shows the total execution time of the consid-
ered workloads under different routing strategies. In the zero-shot
setting, relying on the LCM for engine selection reduces total run-
time by up to 25.3% over a random routing, corresponding to a 54.9
minute difference. The improved estimation accuracy in the few-
shot scenario also translates to more accurate routing. Specifically,
using a few-shot predictor reduces total runtime over random rout-
ing by 54.4 minutes (—29.7%) for IMDB, 41.8 minutes (—23.7%) for
Stack Overflow, and 66.1 minutes (—30.4%) for TPC-H. Finally, the
fine-tuned predictors also lead to similar or lower total execution
time compared to static routing. For instance, on the IMDB dataset,
the difference between the LCM-based and static routing grows to
18.8 minutes (12.7%) in favor of the LCM.

We remark the significant differences compared to random rout-
ing, despite the fact that queries are short-running (<1 minute) and
thus limit the gains from engine selection. Scaling data sizes and
raising the timeout threshold will likely offer further improvements.

4.4 LCM Training

Finally, Table 3 summarizes the intermediate sizes of each MLP used
in the GNN and set-based model. The resulting GNN has a total
of 4.7M parameters, whereas the set-based model consists of 1.6M
parameters. The models are trained with the AdamW optimizer [19]
and a learning rate of 0.001 for at least 200 epochs, using early
stopping with a patience of 25 epochs. From each dataset considered
for training, 250 queries are reserved for validation.

Using a single NVIDIA Tesla V100-SXM2 32GB GPU, the training
on the complete dataset (~17k datapoints in the training set) takes
around 7 hours for the GNN and 3 hours for the set-based model.
The fine-tuning process for few-shot takes ~10min for the GNN
model and ~5min for the set-based model. Finally, the inference
time on GPU for a single query is ~4.5 ms with the GNN architecture
and ~0.7 ms with the set-based.

5 CONCLUSIONS

In this paper, we have presented a cross-engine optimizer for exe-
cuting SQL workloads in lakehouse systems, which automates the
engine selection process. This has the benefit of simplifying the
lakehouse architecture and presenting it to the user as a single-
endpoint interface. We have shown that combining traditional
query optimization techniques with an LCM leads to enhanced
prediction accuracy due to the more accurate query plan represen-
tation received and learned by the LCM. Furthermore, we proposed
to formulate cost prediction across multiple engines as a multi-task
learning problem, thereby avoiding the need to train engine-specific
cost models and flexibly supporting the inclusion of new engine
instances at a low cost.

We identify the random query generation as the main limitation,
as it only provides weak control over the nature of the generated
queries, both in terms of their complexity and their semantic plausi-
bility. For example, in some cases, random predicate combinations
often filter out most or even all of the data early, producing near-
empty joins. In other cases, queries become full-table joins, leading
to long execution times. We believe that with the increasing avail-
ability of publicly accessible real-world databases, one can design a
synthetic query generator that produces a larger diversity of mean-
ingful queries, with varying degrees of complexity. Such a query
generator could then be further integrated with the cost estimator,
such that the LCM’s past estimation errors can guide the query
generation process via reinforcement learning techniques.

In the future, we also plan to enhance the LCM with cost aspects
around engine provisioning, storage, data movement, and engine
load, making the routing decision more informed. Furthermore, we
aim to adjust the modeling approach to estimate node-level cost
and include this in an optimizer for the distributed execution of
SQL queries.
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6 APPENDIX
6.1 Set-based model
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Figure 4: Set-based approach for query representation.
The SB.OP baseline is adjusted from Kipf et al. [16]. In particular, the
same featurization process is employed as for the GNN architecture.
However, each node belonging to the same type is treated as a set of
objects, without their exact relationship being modeled. Analogous
to the GNN, five sets are used for modeling, each corresponding
to one of the considered node types. The resulting approach is
depicted in Figure 4.

6.2 Results for TPC-DS and Donor

TPC-DS Donor
Qmed 9mean  9p95 | 9med Y9mean  gp95
Ours 1.48 2.48 593 | 1.59 1.98 3.94

GNN.UP | 155 237 593 | 1.84 212  4.09
SB.OP 145 216 525 | 170 200 3.84

Table 8: Zero-shot: prediction accuracy of zero-shot models.

TPC-DS Donor
Qmed 9mean  9p95 | 9med Ymean  qp95
Ours 1.32 2.28 5.15 | 1.28 1.46 2.42

GNN.UP | 134 201 481 | 135 153 257
SB.OP 131 186 391 | 130 149 245

Table 9: Few-shot: prediction accuracy of few-shot models.

TPC-DS Donor
Doy dmean  Dpos | Do dimean  dpon”
Ours 142 225 357 | 137 159 282
GNN.UP | 147 200 385 | 135 155  2.61
SBOP | 1.3¢ 177 292 | 138 158  2.66

Table 10: New engine: prediction accuracy of the new predic-
tor.

6.2.1 Results on LCM’s accuracy. In the zero-shot setting (see Ta-
ble 8), the effect of plan optimization is similar to that observed for
other datasets. The GNN using optimized plans achieves 4.6% lower
Qmed for TPC-DS and 13.6% for Donor. Few-shot results (see Table 9)
on TPC-DS and Donor also show patterns similar to those discussed
in Sections 4.2 and 4.3. Specifically, both the LCMs’ accuracy and

the routings converge. For the zero-shot setup, qmean is reduced by
8.1% for TPC-DS and by 26.3% for Donor. Finally, Table 10 reports
the accuracy of the newly included predictor head. The observed
metrics closely match those for the original predictor heads.

240

£ 210 === Optimal

£180 I Random

v 150 Static

-§ 120 Il Zero-shot

é 90 I Few-shot
60

TPC-DS

Donor

Figure 5: Query-level routing using our proposed LCM

6.2.2  Effect on Query Execution Times and Routing. Figure 5 shows
the routing achieved with the proposed LCM. Using zero-shot pre-
dictors, the total runtime is reduced by 13.9 minutes (-10.8%) for
TPC-DS and by 41.2 minutes (—23.6%) for Donor over random rout-
ing. In the few-shot setting, results show further improvements
with 20.5 minutes (—15.9%) lower total runtime for TPC-DS and 42.6
minutes (—24.4%) for Donor. The fine-tuned predictors lead to a
routing on-par with static routing.
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