Bootstrapping Learned Cost Models with Synthetic SQL Queries
(Extended Abstract)

Michael Nidd, Christoph Miksovic, Thomas Gschwind,
Francesco Fusco, Andrea Giovannini, Ioana Giurgiu
{mni,cmi, thg,ffu,agv,igi}@zurich.ibm.com
IBM Research Europe

ABSTRACT

Having access to realistic workloads for a given database instance
is extremely important to enable stress and vulnerability testing,
as well as to optimize for cost and performance. Recent advances
in learned cost models have shown that when enough diverse SQL
queries are available, one can effectively and efficiently predict the
cost of running a given query against a specific database engine.
In this paper, we describe our experience in exploiting modern
synthetic data generation techniques, inspired by the generative Al
and LLM community, to create high-quality datasets enabling the
effective training of such learned cost models. Initial results show
that we can improve a learned cost model’s predictive accuracy by
training it with 45% fewer queries than when using competitive
generation approaches.

VLDB Workshop Reference Format:

Michael Nidd, Christoph Miksovic, Thomas Gschwind,

Francesco Fusco, Andrea Giovannini, Ioana Giurgiu. Bootstrapping
Learned Cost Models with Synthetic SQL Queries

(Extended Abstract). VLDB 2025 Workshop: AIDB.

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/menidd/QueryGeneration2025.

1 INTRODUCTION

Composable data management systems [24] decouple queries from
the underlying engines, enabling scenarios in which accurately
predicting the best engine to run a query can bring significant per-
formance benefits and cost savings. Learned cost models (LCM) [2,
3, 12, 16, 22, 23, 34] have been recently proposed as a natural so-
lution to this complex optimization problem. When trained on
realistic workloads, LCMs are able to accurately match queries with
the database engine providing the best performance, resulting in
substantial cost optimizations [27].

The availability of such high-quality datasets represents the main
obstacle for the effective training and deployment of LCMs. Queries
provided by commonly available benchmarks [1], such as TPC-H,
TPC-DS or IMDB, can be used to compile training datasets to train
LCM:s. Still, the queries used in those benchmarks are not repre-
sentative of every workload and, in addition, are limited in size

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

and diversity. In fact, it is well known that database benchmarks
do not accurately reflect real-world queries, and are generally too
simple [4, 25, 30]. To alleviate this issue, some approaches [19, 33]
employ mechanical synthetic query generators, which typically
result in a high volume of queries similar to those in the seed
benchmark. Others [32] use historical queries to predict future per-
formance. Such an approach assumes that queries repeat frequently,
which is not always the case. Thus, to ensure enough diversity, a
system would need to be bootstrapped, i.e., record a substantial
volume of queries over a long period of time to train the LCM suc-
cessfully. During the bootstrapping phase, the system would need
to run with suboptimal performance, leading to user dissatisfaction,
or at higher costs due to over-provisioning.

In this paper, we propose practical methods to alleviate the boot-
strapping problem using modern synthetic data generation tech-
niques based on Large Language Models (LLMs). Recent advances
of LLMs and, in particular, of code models enabled the creation of
Text2SQL systems offering a natural language interface to query
database systems [13, 26]. Using natural language is attractive as
it allows non-expert users to easily extract insights from the data
stored in a SQL database.

In our scenario, we use the capabilities of LLMs to generate
datasets of queries that correspond to a given database schema. Our
goal is to generate a set of queries that is not only diverse, but also
large and representative enough to train an LCM effectively for a
given schema. By measuring the execution time of each query over
several database engines, we create representative training sets for
such an LCM.

To evaluate our approach, we perform a detailed analysis of the
diversity of the generated data and, additionally, we measure the
predictive power of the LCM proposed in [27] when trained using
data created with our methodology and compare it against the same
model trained with mechanically generated queries. The results
highlight that our approach enables the training of models that are
more accurate and yield an improved query routing, while using
45% fewer samples.

2 BACKGROUND

Recent advances in LLMs have shown that synthetic data genera-
tion (SDG) plays a fundamental role in improving LLMs for a broad
set of tasks, including coding. The majority of recent LLMs are
trained with synthetic data (e.g., LLama3 [7]) and major Al vendors
are providing SDG toolkits to create synthetic data to fine-tune
models for vertical domains (e.g., IBM Watsonx.ai[9] and Meta
LLamal[28]).

Synthetic data generation has been fueling the recent advance-
ments of text-to-SQL systems [5, 20, 21, 35]. In contrast with SQL


https://github.com/menidd/QueryGeneration2025
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

generation used for testing [11, 15], where the objective is to test
databases for vulnerabilities and execution bugs using the fewest
SQL queries, we are interested in creating high-quality datasets
that are sufficiently large and diverse to be used for tuning, bench-
marking and, eventually, to train learned cost models.

We leverage synthetic data generation to build a dataset of real-
istic and diverse SQL queries targeting a specific database instance
and schema, eliminating the need for manual annotation. Unlike
synthetic data generation used for fine-tuning LLMs, which requires
generating data across diverse databases to prevent overfitting, our
approach focuses on generating data specific to a particular data-
base schema.

3 SCALABLE SYNTHETIC DATA GENERATION

To generate the data for a given database schema, we build on our
experience in delivering Synthetic Data Generation (SDG) pipelines
for NL-to-SQL tasks in a commercial system and the corresponding
open-source version called DiGiT[8]. DiGiT allows us to generate a
set of diverse and high-quality SQL queries to train ML-based cost
models predicting what would be the cost of running an incoming
query over a specific execution engine.

Our SDG pipeline comprises three complementary data genera-
tion components: LLM-based, template-based, and SQL-component-
based generators, providing a diverse range of generated queries.
The quality of the generated data is controlled using validators,
which are responsible to score and filter generated SQL queries
according to multiple criteria including SQL syntax correctness,
similarity to existing queries (e.g., to quantify the diversity of the
generated data), semantic consistency between natural language
and SQL queries. Validators are instrumental in enabling a self-
instruct approach [31]. In a self-instruct setup, data is generated in
an iterative way using an external LLM to enlarge the dataset with
synthetically generated, but validated data. Self-instructing enables
the creation of more diverse training datasets, breaking away from
the structure of the initial seed examples.

To use the framework, a user must provide a database schema,
along with optional metadata, seed examples that showcase typical
utterances and queries to be generated, as well as optional prompt
rules. For template and component-based data generation, access
to a database allows for including sampled tables and columns as
well as concrete values from the database (e.g., filter conditions
of the SQL query). Furthermore, the framework calculates several
metrics for the generated samples, including SQL complexity, SQL
functions, and coverage of tables and columns. These are meant to
assess the quality and diversity of the generated data.

The SDG framework offers multiple approaches to generate
diverse data samples. One common method, applicable to our sce-
nario, involves processing metadata from external data sources,
such as schema descriptions in Database Description Language
(DDL), data catalogs, or other relevant sources. The framework
leverages this schema information, which can be enriched with
annotations, data value categories, and ranges, to produce natural
language utterances and corresponding SQL code. Additionally,
it can generate synthetic data by combining schema information
with query log data, which provides valuable insights into user
behavior by capturing executed queries across various applications.

In this scenario, natural language utterances are generated for the
given queries, resulting in a triplet comprising schema, query, and
utterance. In some cases, such triples may be readily available or
created by domain experts, referred to as ground truth or seed ex-
amples. This data can be used as few-shot examples, alongside the
database schema, to generate data samples that mimic the style of
the provided exemplars.

Several parameters can be adjusted to control the SQL code
generation process: (1) utilize different database sub-schemas to
focus on particular tables and columns, (2) generate and prioritize
few-shot examples based on identified coverage gaps, (3) improve
LLM prompts by refining textual generation rules and adaptively
adjusting constraints based on validation feedback, and (4) variation
of LLM generation parameters such as temperature or top-p to
increase creativity or penalizing repeated tokens to improve output
quality by reducing redundancy.

To assess the quality of synthetically generated SQL queries,
several statistical measures are applied after they have passed vali-
dation checks for query syntactic correctness and semantic equiva-
lence. The analysis involves checking for key SQL clauses, logical
operators, and aggregate functions, and providing a distribution
of these features across the generated queries. Additionally, the
evaluation tracks the frequency of references to each table and
column in the underlying database schema, offering insights into
schema coverage.

4 STEERING SDG TOWARDS DIVERSITY

Our synthetic query data generator is based on the pipeline in
Figure 1. The pipeline consists of the following steps:

Preprocessing. This step extracts the raw schema from the data-
base, including table and view information and column metadata
such as column types, primary keys, or foreign keys. However, not
all metadata is declared, and some metadata, such as enumerations
(e.g., day names) or version numbers (e.g., “3.0.1”) cannot be de-
rived from the schema directly. In the future, we will explore using
LLMs to identify this metadata as well as its benefits in the data
generation.

Create Subschema. Next, the query generator creates targeted
subschemas (connectable subsets of tables from the full database
schema). From our work on DiGiT (§3), we found that SQL gener-
ation performs best when prompts include a targeted subschema.
This context improves the precision of the generated queries and
helps steer generation toward semantically meaningful joins and fil-
ters. Accordingly, this step constructs a large number of subschema
groups connected by foreign keys, either explicitly declared in the
schema or inferred during preprocessing.

DataBuilder. The DataBuilder loops through the created sub-
schemas and creates a prompt for each instance. The prompt style
is “few-shot”, providing the schema in the form of a CREATE state-
ment for each table, and then listing a few example queries before
requesting that a fresh query be generated. This corresponds to
the LLM-method based on schema metadata and seed examples
described in Section 3.

The example queries are built mechanically (i.e. algorithmically)
from the subschemas. They use simple configurable pseudo-random



Data builder

Executability Synthetic

Prompt

Schema

S Create SEED
subschema examples

Sample generators

Template-based
Component-based Semantic

examples

Validators

Redundancy

Coverage

Database
|

gap

Figure 1: SDG pipeline with input and output (SQL queries) artifacts.

selection to create valid queries that include SQL constructs such
as group by operations or filters. This is flexible enough to guide
selections toward areas with poor coverage, but does not generate
the variety of query construction that we obtain in combination
with the LLM. If coverage reports already exist from previous it-
erations, this will direct the generation to fill any coverage gaps
that exist by including only a targeted subset of columns in each
table definition, and by tuning the example queries towards specific
operations. Finally, we specify LLM parameters [18] to generate
multiple different responses for each request.

The returned queries are then filtered and deduplicated by valida-
tors based on correct syntax and relevance. While syntax filtering
is simple, relevance has a great deal of freedom. For example, if
preprocessing identified that a column contains only two possi-
ble values, then this will be reflected both in the examples in the
prompt, and also used in the relevance filtering. Similarly, arith-
metic operations on columns representing labels such as version
numbers are filtered out.

Coverage. To augment the standard metrics provided by the SDG
framework, we use Apache Calcite [10] to parse SQL statements
and combine the resulting syntax tree with the known schema. This
allows us to identify how often tables and columns are referenced,
the frequency of operations, the structure and conditions of joins,
and the use of sub-selects. By counting these occurrences, this
coverage step ensures that data is generated up front with broad
coverage and high internal consistency. If gaps are identified, we re-
configure the pipeline and bias the generation of additional queries.
This approach contrasts with a previous study on quantifying data
coverage [14], where we used a vector of metrics to assess the qual-
ity and distribution of human-generated data. Since generating new
data was costly and impractical, we instead identified subsets with
high internal consistency, trained separate models for each, and
had to discard the rest of the data.

5 RESULTS

Using the TPC-H schema [6], the current pipeline implementation
generates 187 possible groupings of tables (without repetition). We
refer to each of these groupings as subschemas, and pass them into a
granite-3.3-8b-instruct model [29], as described in Section 4.
Multiple generations are produced for each prompt to increase
variability. Moving forward, we will also be performing quantitative
performance comparisons between generative models.

The base prompt follows the template outlined in Figure 2. In
our experiments, we have also tested intentional bias towards group
by and order by operators by adding a prompt constraint, such as
“Whenever possible, please use a group by clause. Use operators for
more complex groups.” before listing the seed examples. In experi-
ments that included seed examples, we also weighted the example
generation to include the desired clause with 90% probability (see
§A.1Fig5).

We used the mechanically-generated examples as the baseline
to assess how much the generative model improves on the char-
acteristics of the queries and eventually on query execution time
predictions. To this end, we applied two distinct settings: 1) one
not including examples in the prompt (0-shot), and 2) including
3 few-shot examples (3-shot) as well as the mentioned prompt
constraints.

Coverage of Structural Complexity Categories. To analyze
the structural complexity of the generated queries, we group them
into complexity buckets based on SQL keyword occurrences. These
include joins, standard clauses, logical operators, and functions.
Each of these buckets represents a different facet of query complex-
ity. Here we compare six “prompt settings”, defined by combinations

These tables have been created:

<List of CREATE statements>

Write an interesting and complicated SQL query
that uses all of these tables:

<List of table names>

These are some examples:

<Enumerated list of SELECT statements>

Figure 2: Generation prompt outline

Prompt Constraint and N-Shot Dependent Complexity Metrics (mean, std, min, max)

175 & Oshot_no_prompt_constraints. & 3shot_orderby_prompt_constraint
: & 3shot_no_prompt_constraints &  Oshot_groupby_prompt_constraint

15.0 & Oshot_orderby_prompt_constraint & 3shot_groupby_prompt_constraint

12.5

; m |
A HH o | i

Joins per query Clause count Operator count Function count

Value

Figure 3: Query structure by generation method.



With Examples [N N
No Examples | N
Mechanical | S

0% 20% 40% 60% 80% 100%
N <ls ®1s-1m ® 1m-5m ®>5m

Figure 4: Runtime characteristics of generated queries.

of few-shot examples (0-shot vs. 3-shot) and prompt constraints (no
vs. order by vs. group by bias). Figure 3 visualizes the distribution
for each complexity bucket across prompt settings, showing mean,
standard deviation, minimum, and maximum values. This allows
us to assess how the different prompting strategies influence query
complexity across multiple dimensions. One clear trend is that the
number of joins per query tends to decrease when 3-shot exam-
ples are used. This likely reflects an inductive bias toward simpler
patterns introduced by the examples themselves. Clause and op-
erator counts remain relatively stable across settings. However, a
slight reduction can be observed when prompt constraints like order
by or group by are combined with 3-shot examples. While these
changes are subtle but consistent, they may suggest that prompt
constraints encourage more concise SQL formulations. Function us-
age, in contrast, is strongly affected by both the presence of prompt
constraints and the number of seed examples. Across all prompt
settings, 3-shot prompts lead to a strong increase in the number of
functions used, suggesting that exposure to examples encourages
richer functional expressions. In addition, prompts that request
group by already induce more function usage even in the 0-shot
setting. This is likely due to the inherent association between group-
ing and aggregation. These are promising results, demonstrating
variety in the resulting SQL statements that will become even more
useful when we progress to queries with more complex structures
like sub-selects, for which variety is harder to achieve using the
mechanical algorithm.

Query Execution Time & Cardinality. Figure 4 demonstrates
the range of actual execution times for the generated queries. In this
experiment, the TPC-H database was restricted to a maximum 40K
rows per table, and queries were run with a timeout of 10 minutes.
The results are grouped into four buckets, < 1second, 1second —
1minute, 1 — 5Sminutes, and > 5minutes. Prompts requesting bias
towards group by and order by are run both without and with seed
examples (0-shot, 3-shot). The prompts with seed examples have
a more even distribution across all buckets. This uniformity of run
time can be expected to provide the most representative group of
test queries for measuring overall performance (see §A.2 Fig.6).

Bootstrapping Learned Cost Models. Our ultimate goal in us-
ing LLMs to generate synthetic queries is to actually improve the
accuracy of LCMs for the downstream task of optimizing query
routing towards the most beneficial engine in a lakehouse. To that
end, in [27] we proposed a multi-predictor head GNN-based LCM
that predicts query execution times for a variety of engines sup-
ported in the typical lakehouse. We refer the reader to [27] for
details on the LCM’s architecture and training setup.

We evaluate the LCM on Spark-SQL and PrestoDB engines, each
provisioned with 1 and 4 worker nodes, respectively, by training
it on 4000 mechanically generated queries based on the TPC-H

‘ Qmedian  9Qmean  qp95
ErrgNN+Mech 1.20 1.41 2.38
ErrgNn+sDG 1.18 134 237

Table 1: LCM accuracy in predicting query execution times.

benchmark and testing it on 1000 queries. The technique employed
to generate the queries has been proposed in [12]. The model’s
accuracy, ErrgNN+Mech» shown in Table 1, was measured by using
the Q-error metric, averaged over all considered engine types and
provisionings. The metric qpegiqan for a set of queries Q and a set
of engines & is computed as:

1 predq trueg
Qmedian = ——= median | { max , 1qeQ
medan =8| iel.Z\éH ({ ( trueq’ pred,

A median Q-error of 1.20 means that, on average 50% of the
estimates deviate by no more than 20% from the true, measured
execution time. In the case of a perfect predictor, Q-error = 1.

Given that the mechanical data generator used to train the LCM
includes random joins, predicates, and aggregations without con-
cerns for diversity across functions and operators, our intuition
is that training the LCM on SQL queries generated by this SDG
pipeline will improve the LCM’s accuracy. Indeed, we observe that
even when trained on only 2200 queries (45% fewer queries than
the baseline), Errgnn+spc decreases slightly for qpeqian and qpos
and more significantly for qmueqn (i-e., a 0.07 drop). More detailed
results for each of the considered engines and their respective pro-
visionings are included in §A.3 Table 2. Furthermore, we evaluate
the actual query routing across the considered engines based on the
predictions of the LCM trained when trained with the 2200 queries
generated with SDG. In comparison to the case where 4000 me-
chanically generated queries are used for training, the LCM+SDG
provide a reduction from 165 min to 150 min for the 1000 test
queries (10% improvement).

These initial results show the benefit of using an SDG to train
an LCM, and improvements in execution time prediction can be ob-
served even with significantly fewer generated queries. We believe
that with more steering of the SDG to generate even more diverse
queries, an LCM’s Q-error can be further reduced.

6 CONCLUSIONS AND OUTLOOK

We have demonstrated an innovative LLM-based approach for gen-
erating a diverse and balanced collection of SQL queries that are
suitable for training an LCM, whose ultimate goal is to aid in the
optimal routing of workloads across various engine flavors and
provisionings. Even with 45% fewer training samples, the LCM
is able to reduce its prediction error when compared to the case
where mechanically generated queries are used for the training
step, which results in an improved actual query routing.

These initial results encourage us to further improve the SDG
pipeline by optimizing the prompts and the LLM through a re-
inforcement learning loop informed by the LCM’s learned repre-
sentations, in addition to the validator metrics that reflect query
diversity and operator/function coverage. We are also experiment-
ing with other generator models and exploring the use of DSPy [17]
to programatically improve the prompt.



REFERENCES

(1]
(2]

[3

[4

flaa

=
=

[10]

(11

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

[n.d.]. Transaction Processing and Performance Council. https://tpc.org/ ([n.d.]).
Peter Akioyamen, Zixuan Yi, and Ryan Marcus. 2024. The Unreasonable Effec-
tiveness of LLMs for Query Optimization. arXiv. https://doi.org/10.48550/arXiv.
2411.02862

Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj
Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query
Optimization for Any SQL Database. Proceedings of the VLDB Endowment 16, 12.
https://doi.org/10.14778/3611540.3611544

Lawrence Benson, Carsten Binnig, Jan-Micha Bodensohn, Federico Lorenzi, Jigao
Luo, Danica Porobic, Tilmann Rabl, Anupam Sanghi, Russell Sears, Pinar Téziin
Toziin, and Tobias Ziegler. 2024. Surprise Benchmarking: The Why, What, and
How. In DBTest’24: Proceedings of the Tenth International Workshop on Testing
Database Systems. 1-8.

Robin Chan, Katsiaryna Myrilenka, Thomas Gschwind, Christoph Miksovic-
Czasch, Paolo Scotton, Enrico Toniato, and Abdel Labbi. 2024. Adapting LLMs
for Structured Natural Language API Integration. In Proc. of the 2024 Conference
on Empirical Methods in Natural Language Processing: Industry Track. 991-1000.
Transaction Processing Performance Council. [n. d.]. TPC-H Benchmark. See
https://www.tpc.org/tpch/ (accessed 6 May 2025).

Aaron Grattafiori etal. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.Al] https://arxiv.org/abs/2407.21783

fms-dgt [n. d.]. Scalable Synthetic Data Generation (SDG). https://github.com/
foundation-model-stack/fms-dgt (accessed 9 June 2025).

Documentation for IBM watsonx as a Service. [n.d.]. Generating synthetic
unstructured data (beta). https://dataplatform.cloud.ibm.com/docs/content/wsj/
synthetic/sdg-unstructured-overview.html?context=wx&audience=wdp/ (ac-
cessed 9 June 2025).

Apache Software Foundation. [n.d.]. Apache Calcite. See https://calcite.apache.
org/ (accessed 2 May 2025).

Bogdan Ghit, Nicolas Poggi, Josh Rosen, Reynold Xin, and Peter Boncz. 2020.
SparkFuzz: searching correctness regressions in modern query engines. In Pro-
ceedings of the Workshop on Testing Database Systems (Portland, Oregon) (DBTest
’20). Association for Computing Machinery, New York, NY, USA, Article 1, 6 pages.
https://doi.org/10.1145/3395032.3395327

Benjamin Hilprecht and Carsten Binnig. 2022. Zero-shot cost models for out-
of-the-box learned cost prediction. Proceedings of the VLDB Endowment 15, 11.
https://doi.org/10.14778/3551793.3551799

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran
Huang, and Xiao Huang. 2025. Next-Generation Database Interfaces: A Survey
of LLM-based Text-to-SQL. arXiv:2406.08426 [cs.CL] https://arxiv.org/abs/2406.
08426

Paulina Toro Isaza, Yu Deng, Michael Nidd, Amar Prakash Azad, and Laura
Shwartz. 2022. Improving Model Performance Using Metric-Guided Data Selec-
tion Framework. In 2022 IEEE International Conference on Big Data (Big Data).
IEEE, 4750-4757.

Zu-Ming Jiang, Jia-Ju Bai, and Zhendong Su. 2023. DynSQL: Stateful Fuzzing for
Database Management Systems with Complex and Valid SQL Query Generation.
In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 4949-4965. https://www.usenix.org/conference/usenixsecurity23/
presentation/jiang-zu-ming

Amin Kamali, Verena Kantere, Calisto Zuzarte, and Vincent Corvinelli. [n.d.].
Rogq: Robust Query Optimization Based on a Risk-aware Learned Cost Model.
Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav
Santhanam, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam,
Heather Miller, et al. 2024. Dspy: Compiling declarative language model calls
into state-of-the-art pipelines. In The Twelfth International Conference on Learning
Representations.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody
Yu, Joey Gonzalez, Hao Zhang, and Ion Stoica. 2023. vLLM: Easy, Fast, and cheap
LLM Serving with PagedAttention. See https://vllm.ai/ (accessed 2 May 2025).
Alberto Lerner Lerner, Matthias Jasny, Theo Jepsen, Carsten Binnig Binnig,
and Philippe Cudré-Mauroux. 2022. DBMS Annihilator: A High-Performance
Database Workload Generator in Action. In Proc. VLDB Endow. 15, 12. 3682—-
3685.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runchi Jiang, Yuxin Zhang,
Ju Fan, Guoliang Li, Nan Tang, and Yuyu Luo. 2024. A Survey of NL2SQL
with Large Language Models: Where are we, and where are we going?. In
https://doi.org/10.48550/arXiv.2408.05109.

Karime Maamri, Fadhil Abu baker, Daniel Jaroslawicz, and Amine Mhedhbi.
2024. The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned
Language Models. In NeurIPS 2024 Third Table Representation Learning Workshop.
Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical.
In Proceedings of the 2021 International Conference on Management of Data. ACM,
Virtual Event China. https://doi.org/10.1145/3448016.3452838

(23]

[24]

[25]

[27

[28

[29]

[30

[32

[33

(34]

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: a learned
query optimizer. Proceedings of the VLDB Endowment 12, 11. https://doi.org/10.
14778/3342263.3342644

Pedro Pedreira Pedreira, Orri Erling, Konstantinos Karanasos, Scott Schneider,
Wes McKinney, Satya R Valluri, Mohamed Zait, and Jacques Nadeau. 2023. The
Composable Data Management System Manifesto. In PVLDB, 16(10). 2679-2685.
Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen. 2017. Analysis of TPC-DS:
the !rst standard benchmark for SQL-based big data systems. In Proceedings of
the 2017 Symposium on Cloud Computing. 573-585.

Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, and Zhi Yang. 2024.
A Survey on Employing Large Language Models for Text-to-SQL Tasks.
arXiv:2407.15186 [cs.CL] https://arxiv.org/abs/2407.15186

Andras Strausz, Niels Pardon, and Ioana Giurgiu. 2025. A Learned Cost Model-
based Cross-engine Optimizer for SQL Workloads. arXiv:2506.02802 [cs.DB]
https://arxiv.org/abs/2506.02802

synthetic-data-kit [n. d.]. Synthetic Data Kit. https://github.com/meta-llama/
synthetic-data-kit (accessed 9 June 2025).

IBM Granite Team. [n.d.]. Granite-3.3-8B-Instruct. (accessed 9 June 2025)
https://huggingface.co/ibm-granite/granite-3.3-8b-instruct.

Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest’18: Proceedings of
the Workshop on Testing Database Systems. 1-6.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2023. Self-Instruct: Aligning Language
Models with Self-Generated Instructions. arXiv:2212.10560 [cs.CL] https://arxiv.
org/abs/2212.10560

Ziniu Wu, Ryan Marcus, Zhengchun Liu, Parimarjan Negi, Vikram Nathan, Pascal
Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and
Tim Kraska. 2024. Stage: Query execution time prediction in amazon redshift. In
Companion of the 2024 International Conference on Management of Data. 280-294.
Geoffrey X Yu, Ziniu Wu, Ferdi Kossmann, Tianyu Li, Markos Markakis, Amadou
Ngom, Samuel Madden, and Tim Kraska. 2024. Blueprinting the Cloud: Unifying
and Automatically Optimizing Cloud Data Infrastructures with BRAD-Extended
Version. arXiv preprint arXiv:2407.15363 (2024).

Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proceedings
of the VLDB Endowment 16, 6. https://doi.org/10.14778/3583140.3583160
Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu. 2024. Large Language Model
Enhanced Text-to-SQL Generation: A Survey. In https://arxiv.org/pdf/2410.06011.


https://doi.org/10.48550/arXiv.2411.02862
https://doi.org/10.48550/arXiv.2411.02862
https://doi.org/10.14778/3611540.3611544
https://www.tpc.org/tpch/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://github.com/foundation-model-stack/fms-dgt
https://github.com/foundation-model-stack/fms-dgt
https://dataplatform.cloud.ibm.com/docs/content/wsj/synthetic/sdg-unstructured-overview.html?context=wx&audience=wdp/
https://dataplatform.cloud.ibm.com/docs/content/wsj/synthetic/sdg-unstructured-overview.html?context=wx&audience=wdp/
https://calcite.apache.org/
https://calcite.apache.org/
https://doi.org/10.1145/3395032.3395327
https://doi.org/10.14778/3551793.3551799
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://www.usenix.org/conference/usenixsecurity23/presentation/jiang-zu-ming
https://www.usenix.org/conference/usenixsecurity23/presentation/jiang-zu-ming
https://vllm. ai/
https://doi.org/10.1145/3448016.3452838
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2506.02802
https://arxiv.org/abs/2506.02802
https://github.com/meta-llama/synthetic-data-kit
https://github.com/meta-llama/synthetic-data-kit
https://huggingface.co/ibm-granite/granite-3.3-8b-instruct
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2212.10560
https://doi.org/10.14778/3583140.3583160

A APPENDIX

A.1 Coverage of Structural Complexity
Categories

Figure 5 shows the distribution of order by, group by, and having
statements in the generated queries. The mechanical queries are
used here for comparison. Specific subsets thereof are also used
for biased few-shot samples in the case of the 3-shot LLM prompts.
The figure shows that (1) our approach can be as easily biased as
the mechanical approach and (2) even though it was not considered
initially, also generates having statements.

Influence of Prompt Context

No Bias
Order Bias

Group Bias

No Bias

g
3
1

1
1
L]
I |
1 |
L]
L[ |
. |
L

Order Bias

Group Bias

No Bias
Order Bias

LLM 3-shot

Group Bias

)
&

10%

N
5
&

30% 40% 50% 60% 70%

©
g
&

90%

-
5
8
&

WORDERBY mGROUPBY mHAVING

Figure 5: Query Distribution by Generation and Bias

A.2 Query Execution Time & Cardinality

Figure 6 shows the execution times of the queries generated, as well
as their cardinalities. Note that for queries generating no result,
only those with a minimum runtime of 10s have been left in the
generated data sets.

Runtime Distribution

with xamples
o xemptes
vechanicsl

0% 20% 40% 60% 80% 100%

H<1ls ® 1s-Im ® Im-5m ®E>5m
Cardinality Distribution

with Exampls

0% 20% 40% 60% 80% 100%

HO0 m1-999 m 999-40K m >40K m Timeout

Figure 6: Runtime Characteristics of Generated Queries

A.3 Prediction of Query Execution Times

Table 2 shows the accuracy of the predicted execution times for
each of the engines considered and their respective provisionings.

Prestow1 PrestowW4 quarle quarkW4

9mean 9mean mean mean
El‘rGNN+MeCh 1.40 1.42 1.46 1.38
ErrgnN+SDG 1.35 1.37 1.32 1.31

Table 2: LCM accuracy in predicting query execution times,
extended for PrestoDB and Spark-SQL engines, with 1 and 4
workers, respectively.



	Abstract
	1 Introduction
	2 Background
	3 Scalable Synthetic Data Generation
	4 Steering SDG Towards Diversity
	5 Results
	6 Conclusions and Outlook
	References
	A Appendix
	A.1 Coverage of Structural Complexity Categories
	A.2 Query Execution Time & Cardinality
	A.3 Prediction of Query Execution Times


