MageSQL: Enhancing In-context Learning for Text-to-SQL
Applications with Large Language Models

Chen Shen
Megagon Labs
Mountain View, United States
chen_s@megagon.ai

Sajjadur Rahman*
Adobe

San Jose, United States

sajjadurr@adobe.com

ABSTRACT

The text-to-SQL problem aims to translate natural language ques-
tions into SQL statements to ease the interaction between database
systems and end users. Recently, Large Language Models (LLMs)
have exhibited impressive capabilities in a variety of tasks, includ-
ing text-to-SQL. While prior works have explored various strategies
for prompting LLMs to generate SQL statements, they still fall short
of fully harnessing the power of LLM due to the lack of (1) high-
quality contextual information when constructing the prompts and
(2) robust feedback mechanisms to correct translation errors. To
address these challenges, we propose MageSQL, a text-to-SQL ap-
proach based on in-context learning over LLMs. MageSQL explores
a suite of techniques that leverage the syntax and semantics of SQL
queries to identify relevant few-shot demonstrations as context
for prompting LLMs. In particular, we introduce a graph-based
demonstration selection method — the first of its kind in the text-to-
SQL problem — that leverages graph contrastive learning adapted
with SQL-specific data augmentation strategies. Furthermore, an
error correction module is proposed to detect and fix potential in-
accuracies in the generated SQL query. We conduct comprehensive
evaluations on several benchmarking datasets. The results show
that our proposed methods outperform state-of-the-art methods by
an obvious margin.

VLDB Workshop Reference Format:

Chen Shen, Jin Wang, Sajjadur Rahman*, and Eser Kandogan. MageSQL:
Enhancing In-context Learning for Text-to-SQL Applications with Large
Language Models. VLDB 2024 Workshop: Applied Al for Database Systems
and Applications (AIDB 2025).

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/megagonlabs/magesql-full.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

“Work done while at Megagon Labs.

Jin Wang
Megagon Labs
Mountain View, United States
jin@megagon.ai

Eser Kandogan
Megagon Labs
Mountain View, United States
eser@megagon.ai

1 INTRODUCTION

Given a relational database, the text-to-SQL problem automatically
translates the natural language question into an SQL statement
that queries the database system to find the results. This problem
is increasingly critical for improving the accessibility and usability
of relational database systems for a broad range of users, especially
non-technical users [11, 13, 16] who are not familiar with database
concepts and SQL.

There is a long stream of research on the topic of text-to-SQL
from both database and NLP communities. Earlier studies [16,
36] employed rule-based methods that first converted the natu-
ral language question into an intermediate representation and then
mapped them into SQL abstract syntax trees with heuristic rules.
Later, techniques emerged that utilized deep learning techniques to
develop solutions [12, 22, 32, 38], which can support cross-domain
adaption as well as handle complex queries. The basic idea is to
formulate text-to-SQL as a machine translation problem and then
utilize different variants of models with encoder-decoder architec-
ture to solve it. Follow-up work such as [7, 11, 20] further proposed
sketching-based solutions to regularize the syntax of generated
SQL queries via pre-defined templates.

Most recently, advances in the era of Large Language Models
(LLMs) have brought new opportunities to the problem of text-
to-SQL. Pre-trained LLMs such as GPT-4 [30], LLaMA [42] and
Codex [6] have shown superior abilities in understanding human
instructions as well as generating structured output. Such LLMs are
generative models that take a sequence of tokens as input and gen-
erate a sequence of tokens as output. Various studies have shown
that input to the models, i.e., prompts, is critical in achieving de-
sired results. As such, prompt engineering has become an important
methodology in utilizing LLMs [26]. Consequently, departing from
previous algorithmic approaches, the LLM-based solutions focused
on engineering effective prompt strategies to improve the overall
performance [13, 29, 31].

However, some research challenges remain unresolved regarding
fully utilizing the impressive capabilities of LLMs. Firstly, previous
results show that while LLM-based solutions are good at under-
standing natural language questions, there are still various issues in
generating SQL statements. This is mainly due to the lack of effec-
tive examples in the prompt that guide the LLM for SQL generation.

https://github.com/megagonlabs/magesql-full
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Secondly, while previous LLM-based solutions focused on develop-
ing advanced reasoning techniques, e.g. chain-of-thought [46], to
facilitate the generation process, they treated the output of LLMs
as the final results to be executed in the database systems. How-
ever, since it is well known that the output of LLMs might have
uncertainties such as hallucinations, such a practice in previous
studies might fail to address the potential issues in the output. Let’s
illustrate these through a few examples in Figure 1:

ExAMPLE 1. As shown in Figure 1, the top example illustrates a
case with two-shot learning, where the ground truth requires the
usage of conjunctions, yet the demonstration examples did not include
any. Consequently, without proper guidance, an LLM may struggle
to detect the need for a conjunction, leading to potential mistakes.
The bottom example shows a case where the prediction from LLM
is in fact very close to the ground truth. However, there is a slight
mismatch between the LLM output and ground truth, which could be
easily fixed by rule-based format adjustment. These examples clearly
illustrate the need for proper guidance of LLM generation through
better demonstration examples and post-processing to resolve final
issues, even when the LLM successfully understands the query intent.

Question Show the document id with paragraph text 'Brazil' and 'Ireland'.

---R
Ve

Answer the following question: What is the name of the
conductor who has worked the greatest number of years?
SELECT Name FROM conductor ORDER BY Year_of_Work

. DESCLIMIT1

Demonstrations
Answer the following question: What is the maximum
capacity and the average of all stadiums ?

select max(capacity), average from stadium

. |{SELECT Document_ID FROM Paragraphs WHERE Paragraph_Text
Predicted SQL : IN (Brazil, 'lreland’)

Ve

SELECT document_id FROM Paragraphs WHERE paragraph_text =
Gold SQL 'Brazil' INTERSECT SELECT document_id FROM Paragraphs WHERE
paragraph_text = 'lreland’

.

Question What are the descriptions for all the math courses?

SELECT course_description FROM Courses WHERE course_name
LIKE "%math%"

SELECT course_description FROM Courses WHERE course_name

= 'math’

(

1

1

1

(
Predicted SQL |
H

(

Gold SQL H
1

\

S’ Smmmms’ N

Figure 1: Motivation Examples

In this paper, we propose MageSQL, a new framework for Text-
to-SQL based on in-context learning over LLMs. First, our key ob-
servation is that high-quality demonstration examples in few-shot
learning is important to improving effectiveness. Toward this goal,
it is critical that the examples are similar to the questions and poten-
tial answers to provide meaningful guidance to SQL generation. We
explore strategies motivated by previous work and recognize that
it is crucial to consider both structural and semantic information in
the selection to ensure that better examples with a similar structure
to the ground-truth SQL are included. To this end, we first develop
a structure-based solution that uses the similarity between Abstract

Syntax Trees of SQL statements as the metric for demonstration
selection. Next, we develop a graph embedding-based solution that
can capture both structural similarity and semantics of SQL state-
ments. This could be realized by constructing a graph for each SQL,
which consists of both the syntactic parsing results of SQL and the
schema of tables associated with it. Then the similarity between
SQL statements could be evaluated via that between their graph
embeddings. To reach this goal, we propose a graph contrastive
learning [14, 41, 49, 55] based framework to learn the graph encoder
for node embedding in a fully unsupervised manner. Therefore, the
framework is generalizable to any domain and easier to adopt as no
human supervision via annotation is required. Then the embedding
of an SQL, i.e., the whole graph, could be obtained by aggregating
the embedding of all its nodes.

In addition, as part of post-processing, we develop a new error
correction module to fix the potential errors in the output. Specifi-
cally, we employ two categories of error-correction strategies: rule-
based and prompt-based. The rule-based strategy aims to correct
minor syntax and string format errors and, thus, is very lightweight.
On the other hand, the prompt-based strategy would do another
round of prompts by asking an LLM to rewrite the generated SQL
using a set of predefined guidelines so as to correct the errors. The
goal of this approach is to resolve more complicated errors that
cannot be easily handled by hand-crafted rules. This is inspired by
recent work [37, 47] of multi-agent system, where complex tasks
are finished through a collaboration of multiple agents, making
our efforts in each step suitable for deployment in such systems as
independent agents [39].

The contribution of this paper is summarized as follows:

e We propose a new framework to enhance in-context learn-
ing for the Text-to-SQL task based on LLMs.

e We investigate the strategies of demonstration selection
under the few-shot setting and employ structure similarity
to find high-quality examples.

e We introduce the first-of-its-kind graph embedding-based

solution for demonstration selection in text-to-SQL, which

resulted in up to 5.4% performance gain over previous se-
lection methods.

We developed a novel error correction module to fix the

potential errors in the generated SQL to improve the overall

performance.

We conducted extensive experiments on two popular text-

to-SQL benchmarks by up to 13.2% in Execution Accuracy

compared to previous LLM-based solutions. The results
showed that our proposed method outperformed state-of-
the-art methods.

The rest of the paper is organized as follows: Section 2 provides
essential background about LLM and the text-to-SQL problem. Sec-
tion 3 presents our proposed framework. Section 4 introduces the
evaluation results. Section 5 surveys the related works. Section 6
concludes the whole paper.

2 PRELIMINARY
2.1 Large Language Model Terminologies

Recent years have witnessed a rapid advance in the application of
large-scale, pre-trained language models in almost all NLP tasks.

The milestone work of pre-trained Language Model (PLM) is BERT [9]
that aimed at learning contextual word embeddings by pre-training
a bi-directional transformer-based architecture, comprising a stack
of self-attention layers that calculates distributed representations
based on the similarity against all tokens and produces contextual
embeddings for each input token. There are two steps in the devel-
opment of PLMs: pre-training and fine-tuning. In the pre-training
step, the language model is trained on a large unlabeled corpus
such as Wikipedia to gain deep language understanding via the pre-
training tasks. The pre-trained model could be further fine-tuned
for specific target downstream tasks with labeled training data.

Large Language Models (LLMs) have emerged as a new paradigm
of research works in a variety of research fields. Many pre-trained
LLMs have been released to provide public APIs or checkpoints,
such as GPT [30], LLaMA [42], Palm [8] and CodeX [6]. Compared
with PLMs, LLMs are pre-trained following similar methodologies
but have a much larger number of parameters. For example, the
number of parameters of pre-trained BERT and GPT-3 is 340 mil-
lion and 178 billion, respectively. Due to their huge size, a common
way to utilize LLM without incurring significant overhead is to
provide text instructions to guide generation, known as prompt
engineering [26]. LLMs have demonstrated remarkable in-context
learning abilities [4], guiding predictions based on a relatively few
pieces as additional input. Generally speaking, there are two dif-
ferent settings of in-context learning: (1) few-shot learning, when
demonstration examples are included in the prompt as input; (2)
zero-shot learning, when no demonstration is presented.

2.2 The Text to SQL Problem

Instruction | ### Complete sqlite SQL query only and with no explanation.

Some example pairs of question and corresponding SQL query
are provided based on similar problems:

Answer the following question: What is the nationality of " Kevin
Spacey " ?

SELECT nationality FROM director WHERE name =
"director_name0";

Answer the following question: What is the number of movies
produced in 2013 ?

SELECT COUNT (DISTINCT title) FROM movie WHERE release_year

Context 1= 2013;
Given the following database schema:
CREATE TABLE "singer" ("Singer_ID" int,"Name" text,"Birth_Year"
real,"Net_Worth_Millions" real,"Citizenship" text,PRIMARY KEY
("Singer_ID"))
CREATE TABLE "song" ("Song_ID" int,"Title" text,"Singer_ID" int,"Sales"
real,"Highest_Position" real,PRIMARY KEY ("Song_ID"),FOREIGN KEY
("Singer_ID") REFERENCES " singer ("Singer_ID"))

. | ### Answer the following question: What is the count of singers?
Question

I SELECT

_ ———

J

Figure 2: An Example of the Prompt Template

Given a natural language question Q and a database D, the text-
to-SQL problem aims to find an SQL query Y that corresponds to the
question. The LLM-based solutions for text-to-SQL [10, 13, 29, 31]
formulate it as a generation problem that employs a prompt P for the
LLM M. It estimates the probability distribution over the potential
SQL queries Y and generates the SQL statement token-by-token.

This generation process could be formulated as Equation 1:
Y]
Pr(YIP,D,Q) = | | Pra(¥ilP,D,Q, Y[0.i = 1]) (1)
i=1
where Y[0...i — 1] is the sequence generated by the model so far
before step i.

An example of a prompt template over LLM for the Text-to-SQL
problem is shown in Figure 2, where the SQL generated by GPT-4
is: SELECT count(*) FROM singer. The prompt for text-to-SQL
typically includes three key components:

o Instruction, giving the general task descriptions.

o Context, providing the necessary context for task and
demonstration examples. This is the most important com-
ponent of a prompt.

e Question, describing the expected answer from (e.g. natu-
ral language question)

In this example, the prompt’s context includes two parts: (1)
Demonstration, which provides some examples for few-shot learn-
ing, and (2) Schema, which displays the schema information of the
targeted database to offer hints for generating the SQL. As such, an
essential goal is to provide high-quality context with an appropriate
strategy to construct the prompt.

3 METHODOLOGY
3.1 Overview

Lookup Meta-data

Schema

Demonstration
Selection

Prompt
Construction

_Demanstra!ions

o] Instructions

B P = 1 Demonstrations

1 E ~ Prompt

i | ‘] Schema
User " :

Question

Generated SQL

Instructions

Correction
Prompt

Error

Schema) Correction

sQL

Rule-based Error Correction

SQL Execution

Corrected SQL

Execution
Results

Figure 3: Overall Framework.

The overall framework of MageSQL is shown in Figure 3. Given
a question in natural language, we use the question to fetch (1)
database schema and (2) demonstration examples to construct the
prompt. The database schema suggests the necessary background
specifics for SQL statements, such as the names and types of tables
and attributes. Following the previous work [13], we use the corre-
sponding Data Definition Language (DDL) to describe the schema.
The demonstration examples provide useful contextual information
to the LLM to facilitate the generation of SQL. Following the discus-
sions in previous works, we explored several options and proposed
two new structure-based methods in Section 3.2 and Section 3.3,
respectively. After obtaining the initial output SQL from LLM, we
further perform error correction in the post-processing step to find
and fix potential errors in Section 3.4.

3.2 Demonstration Selection Strategies: Basics

In the process of prompt engineering over LLM, one essential way
is through in-context learning [4] where LLM could use the contex-
tual examples and condition its generation by recognizing patterns
in the input. This allows LLMs to perform new tasks during infer-
ence without any task-specific fine-tuning. Previous studies [25, 28]
have shown that it is essential to select helpful examples to support
the in-context learning with few-shot examples over LLM in differ-
ent kinds of applications. Similarly, it is also essential for prompt
construction in the Text-to-SQL problem.

To this end, we focused on developing effective techniques to
select demonstrations in the prompt construction process for the
Text-to-SQL problem. According to previous studies [13, 29], it is
essential to select examples that are similar to the given question
instance. Following this route, we address this problem by first
defining a similarity metric to evaluate the relevance between a
given instance and candidate examples and then selecting the top-
ranked ones. The candidates of demonstration examples could be
pairs of a natural language question and the corresponding SQL
that do not appear in the set of questions (e.g. dev and test sets in a
benchmarking dataset). We will start from 3 basic approaches to
select k demonstration examples motivated by the high level idea
in previous studies [13, 29]:

Random. In this approach, k examples are selected via random
sampling from the available candidates. It is considered the baseline
method in several previous studies.

Hardness In this approach, we use query difficulty as a measure.
Examples are randomly selected from the group of instances that
has the same level of hardness with question instance. The Spider
dataset [50] provides a tag of difficulty level (easy, medium, hard,
extra) for each instance, and thus we can directly use it for selection.
For other datasets without such information in the metadata, we
can use some rule-based heuristics to decide the hardness following
the practice of previous works [50, 53].

Question Similarity This approach uses the string similarity be-
tween questions as the measure. Here, we choose Jaccard Similarity
as the metric and select results with top-k highest scores as the
results. Unlike the other two methods, the results of this method
are deterministic since it does not involve random selection.

Although existing works have explored various strategies for
selecting demonstrations to be included as few-shot examples, they
have certain deficiencies in the domain of SQL (will be illustrated
in our empirical observations in Section 4.3). Since an LLM gener-
ates the SQL based on the input prompt, it is essential to provide
some examples with SQL that is similar to the expected output.
We developed a new demonstration selection strategy based on
structure similarity of SQL statements to address this issue. To de-
scribe the structure of an SQL, we consider its Abstract Syntax
Tree (AST), which consists of the relational operators. AST is a
general data structure that is independent of the specific database
systems. It is also a relatively lightweight data structure and could
be generated without an underlying database system. Specifically,
we generate the trees through the third-party parsing tool sqlglot !.
In this tree-based solution, we focus on the structure information

!https://github.com/tobymao/sqlglot

and ignore the exact names of tables, attributes, and predicates.
Only the type information of tree nodes is kept as the node label.
Examples of node label include SELECT, WHERE, TABLE, aggre-
gation operations (e.g. MIN, MAX, GROUP BY), conjunctions (e.g.
INTERSECTION, EXCEPT, UNION), HAVING, and ORDER BY etc.
After transforming the SQL into the above tree structure, we
then evaluate the structure similarity. Here, we choose tree edit
distance [2] as the similarity metric. Basically, given two labeled
trees, tree edit distance is the minimum number of edit operations
that is needed to transform one tree into another. There are three
kinds of edit operations:
e Insertion: insert a node between an existing node and a
subsequence of consecutive children of this node;
o Deletion: delete a node and connect its children to its parent,
maintaining the order;
e Substitution: rename the label of a node.
We will select examples with the top-k smallest tree edit distance
from the question instance as the demonstration.

=

SELECT T1.department_id, T1.name, h I g
count(*)

FROM management AS HAVING SELECT GROUP BY
T2 JOIN department AS T1 ON
T1.department_id = T2.department_id i

GROUP BY T1.department_id
JOIN

N

HAVING count(*y > 1

[TABLE: [TABLE:
department management
SELECT stuid | ca))|
FROM stiident 3
EXCEPT J—
SELECT T1.stuid ~ S~
SELECT SELECT
FROM student AS T1 JOIN has_pet AS T2
ON T1.stuid = T2.stuid J i}
JOIN pets AS T3 ON T3.petid = T2.petid on Y i)
student |
WHERE T3.pettype = 'cat'
/ ' \
[TaBLE: | [TABLE: | [TABLE: |
student has_pet pets.
v

WHERE

Figure 4: Examples of Tree Edit Distance between ASTs of
SQL. Names of tables are kept just for reference but are not
considered as node labels in measurement

EXAMPLE 2. An example of using tree edit distance to evaluate
the structure similarity between SQL clauses is shown in Figure 4.
We transformed the two SQL clauses into the AST and used different
colors to denote different node labels. To transform the AST of the first
SQL into that of the second one, we need the following operations: 3
deletions on the HAVING, GROUP BY, and TABLE: department nodes, 1
substitution to replace the SELECT with EXCEPT, 6 insertions to insert

the left subtree of the EXCEPT node. As such, the tree edit distance is
10 in total. In this example, these two instances are not similar and
should not be considered as a demonstration example for each other.

Although tree edit distance could accurately reflect the structure
similarity between SQL clauses, its computational cost is O(n3),
where n is the number of nodes in the tree. Since the candidate set
of examples could be very large, computing the tree edit distance
between the given instance and all potential candidate examples is
very expensive. To address this problem, we adopt the idea of pq-
gram from a previous study [1] to compute an estimation instead
of the exact value of the tree edit distance. It is a signature that can
help estimate the tree edit distance between two trees with less
cost. To this end, we must obtain a set of pq-grams for each tree.
Suppose the set of pg-grams for two trees is Lj and Ly, respectively;
the pg-gram distance between the two trees can be calculated as
|[L1 U Ly| — 2 % |L1 N Ly|. The pg-gram distance could be calculated
in O(nlogn) time and serves as a lower bound of tree edit distance.
And we will use the pq-gram distance between two ASTs instead of
actual tree edit distance to select the demonstration examples. Due
to the space limitation, here we omit the details of computation
and proof of correctness, which could be found in [1].

One remaining issue to be resolved is that when constructing the
prompt for a question, we only have the natural language question
but not the actual SQL. Our solution is to first conduct a prompt
with zero-shot learning to generate an initial SQL and use it as the
query to find structurally similar examples. The extra overhead
would be trivial since the prompt for zero-shot learning is much
shorter than that with demonstration examples.

3.3 Graph based Demonstration Selection

While the above tree-based solution could capture the structural
information of SQL statements, it still did not consider some impor-
tant information, such as predicate values and column names in the
involved tables. In addition, the structural similarity is evaluated
by tree edit distance, which is based on syntactic similarity and
thus might lose some latent structural information. In this section,
we propose a graph-based demonstration selection approach to
address such issues and further improve performance. Compared
with the tree structure, the graph can carry not only richer struc-
tural information but also additional semantics. The basic idea is
to construct a directed acyclic graph (DAG) to represent each SQL
statement. In this way, the similarity between two SQL statements
could be evaluated by that between their corresponding DAGs.

To reach this goal, the first step is to construct the graph (DAG)
from a SQL statement. We extend the Abstract Syntax Tree (AST)
representation described above by incorporating additional infor-
mation. The graph consists of five types of node labels: (dummy)
Root, SQL Keyword, Table, Column, and Value. Each unique SQL
keyword is represented as an individual node (e.g., multiple JOIN
nodes for a query). In contrast, identical table or column names
are merged into a single node to maintain subgraph connectivity.
Beyond the basic AST structure illustrated in Figure 4, we also
include table and column names, as well as predicate values in the
SQL query. After defining the nodes, we then add edges to capture
relationships between them based on the following rules: (1) be-
tween each operator and the associated table or column name, (2)

between each column and the table it belongs to, and (3) between
a predicate value and its corresponding literal operator. Addition-
ally, SQL keywords like HAVING and GROUP BY are connected to
their parent SELECT nodes. An example of representing SQL with
the DAG is shown in Figure 5. Here, we first obtain the tree struc-
ture, which consists of essential operators in the SQL query. Next,
we further parse the predicates and identify the columns (yellow
nodes), literals (e.g. EQ), and values (green nodes). Finally, we add
edges between such newly created nodes and the existing nodes
corresponding to operators and obtain the graph.

@ SELECT stuid FROM student
EXCEPT

SELECT T1.stuid FROM student AS T1 JOIN
EXCEPT has_pet AS T2 ON T1.stuid = T2.stuid JOIN

/ \ pets AS T3 ON T3.petid = T2.petid

SELECT SELECT

WHERE T3.pettype = ‘cat’

JOIN JOIN WHERE

e J J
} S e

\ has_pet: has_pet: pets: pets:
O SQL Root ! stuid petid petid pettype Literal

SQL Keyword |
V() Table v
' Column E fieeTost

cat
Value

stuid

Figure 5: An Example of a SQL Statement and its Graph Rep-
resentation.

Given such graph structures, we could evaluate the similarity
based on cosine similarity between graph embeddings. To this
end, we need to train a node encoder for the SQL graph. How-
ever, there is no labeled training instance, and the training process
needs to be conducted in a fully unsupervised manner. To satisfy
such needs, we employ the technique of graph contrastive learn-
ing [41, 49] as the solution. Graph contrastive learning is a variant
of self-supervised learning that enables the training of graph en-
coders, such as Graph Neural Networks (GNNs), without human
annotations. This is realized by constructing multiple graph views
via stochastic augmentation of the input graph and then learning
representations by contrasting positive samples against negative
ones [55]. As illustrated in previous studies, two important fac-
tors of graph contrastive learning are contrastive instances and
contrastive objective. While we can continue to employ the loss
function from the previous studies as the objective, we need to
consider the semantics of SQL when defining the graph augmenta-
tion operations for creating contrastive instances. According to our
definition of the SQL graph, if we directly apply operations from
previous studies [41, 49], we might end up with a result that is cor-
responding to a totally different SQL statement or even an invalid
one. For example, if the node corresponding to a JOIN operation is
replaced with a SELECT one, although the topological structure of

a SQL might still be close to the original instance, the structure of
the corresponding SQL query will change greatly.

To keep the basic semantics of SQL statements when creating
the contrastive instances, we define the following operations to
perform augmentation of the input graph.

Feature Masking This operator randomly masks the node feature
with a <MASK> token in LLM; while nodes with essential keywords
(ROOT, SELECT, JOIN, WHERE, GROUP, ORDER) will not be masked.

Keyword Replacement This operator selects the SQL keywords
that can be replaced while still keeping a valid SQL. These SQL
keywords include logical and comparison operators (e.g., EQ, AND),
arithmetic operators (e.g., ADD, DIV), and aggregations (e.g., COUNT,
SUM, MIN). Each selected keyword node will be randomly replaced
with a valid keyword node of the same type. For example, GT (>)
could be replaced by LT (<), GTE (=) and LTE (<).

Value Replacement This operator selects nodes with type "VALUE",
then replace it with new random values having the same data type
(BOOLEAN, INT, FLOAT, STRING). Especially, for values that refer
to partial match in SQL (e.g., "%USA"), only the partial string will
be replaced (e.g., "%USA" to "%Canada").

Database Replacement This operator replaces the whole tables
and columns that belong to one database with tables and columns
in another database. It prefers to select new columns that have the
same column type (e.g., numerical) as the original one to ensure
that the augmented graph is a valid SQL.

Predicate Modification This operator chooses the predicate (e.g.,
WHERE, HAVING clause) of a SQL statement and then either randomly
drops either the entire predicate or simplifies the condition in the
predicate (e.g. "WHERE A=1 AND B=2"to "WHERE B=2").

Join Simplification For SELECT nodes with more than one JOIN
node as neighbors, this operator randomly drops one JOIN node and
corresponding clause. If there are nodes (e.g., TABLE or COLUMN)
in such clause that are also connected to other nodes associated
with essential SQL keywords, they will be kept.

Database Replacement

Feature Masking
seLect seLect

/N = /TN

TABLE1}«— coL1 (<masksh«— coL1 masks)

Keyword Replacement

/\ } P

Value Replacement Join Simplification

AN e
! ! I | P

cat 5000 dog 6000

Figure 6: Examples for Graph Augmentation Operators. The
blue font highlights the operations

EXAMPLE 3. We provide examples of the above-defined graph
operations in Figure 6. For the SQL graph in Figure 5, the Fea-
ture Masking operator might randomly mask column node
student:stuid and EQ keyword to <MASK> tokens. Keyword
Replacement operator might replace the EQ under second JOIN with
NEQ. Value Replacement operator might replace value node cat
with bird. Database Replacement operator might replace table
nodes student, has_pet, pets with singer, singer_in_concert,
concert, respectively, and replace column nodes student:stuid,
has_pet:stuid, has_pet:petid, pets:petid and pets:pettype
with singer:Singer_ID, singer_in_concert:Singer_ID,
singer_in_concert:concert_ID, concert:concert_ID and
concert:Theme, respectively. Predicate Modification operator might
drop WHERE node and its successors (pets will not be dropped because
other parts also use it in the graph). The JOIN Simplification operator
might drop the second JOIN node and its successors.

With the help of such operators, we are then able to obtain the
contrastive instances. Given an original instance, we will randomly
apply an operation defined above over it to obtain a positive in-
stance; Meanwhile, the negative instances could be obtained by
randomly sampling from the rest of the instances.

ExXAMPLE 4. We provide an example of the above approaches of
generating positive and negative instances for graph contrastive learn-
ing. Given the DAG for SQL shown in Fig 5, one positive instance could
be obtained by applying the Predicate Modification operator to drop
the where clause. Consequently, the corresponding SQL statement is
"SELECT stuid FROM student EXCEPT SELECT T1.stuid FROM
student AS T1 JOIN has_pet AS T2 ON T1.stuid = T2.stuid
JOIN pets AS T3 ON T3.petid = T2.petid", which shares a sim-
ilar structure with the original one. Meanwhile, a negative instance
could be randomly selected from the rest of the dataset, an example
could be the DAG corresponding to the SQL "SELECT Theme FROM
farm_competition ORDER BY YEAR ASC".

Next, we employ the instances created with above approaches to
train a graph encoder. In this part, the graph encoder can be imple-
mented using various Graph Neural Network (GNN) architectures.
In our implementation, we utilize a 2-layer Graph Attention Net-
work (GAT) [44] as the encoder. We denote a graph as G = (V, E, L),
where V = {v;}7. and E C V X V denotes the set of nodes and
edges, respectively. And L denotes the labeling function that assigns
a label to each node. Each node v is initialized with concatenated
features combining one-hot encoding of its node label 1,. and text
embedding e, as illustrated in Equation 2.

b = CONCAT(I,, ;) @

Here, we obtained the text embedding by encoding the texts associ-
ated with a node, e.g., SQL keyword, column name, value, etc, with
the pre-trained SentenceBert [34] model. With this node represen-
tation, we compute the propagation of representation at GNN layer
k as Equation 3:

n*Y - AGG ({COMBINE(hgk),hISk)) lue N(v)})) 3)
where hz(,k) is the node representation at layer k; AGG) (-) is the

aggregation function that aggregates the information from neighbor
nodes during the message-passing process; COMBINE () () is the

function to merge node features with features aggregated from
neighbors in the GNN layer; and N (v) denotes the set of neighbors
of node v in the graph.

After obtaining each node embedding in the above method, we
use graph readout function [41] to generate the graph embedding
h by aggregating that of all nodes as shown in Equation 4:

hg = READOUT ({hg"> loe (V}))

where the READOUT layer combines mean, sum, and max aggre-
gations over node embeddings in our implementation.

Then, the final graph embedding is obtained by adding a two-
layer MLP projection head on top of the aggregated node embed-
dings as illustrated in Equation 5:

zG = MLP(hg) ©)

The contrastive loss maximizes the similarity between an anchor
graph and its positive samples while minimizing similarity with
negative samples. We used normalized temperature-scaled cross-
entropy loss NT-Xent widely utilized in previous studies [40, 43].
The details are shown in Equation 6:

Jj=1

Npositive Sim(zi’zj) Mnegative sim(zi,z;)
2y exp (T Uy P\
(6)

where z;, z}f and z,_ is the embedding of the anchor graph, the

Npositive sim(z,—,z;’.)
e g (S5

‘Ei = —log

positive graph for the anchor and negative graph for the anchor,
respectively; npositive and Npegative 15 the number of positive graphs
and negative graphs per anchor, respectively; sim(-) is the cosine
similarity between between two embeddings; 7 is the temperature
parameter for scaling the similarity scores.

3.4 Error Correction

Although LLMs are powerful in generating SQL statements based
on input questions, some output statements might still be invalid
due to a large training corpus beyond SQL and data that is not
strictly compliant with SQL syntax. Potential errors also exist due
to a lack of understanding of the contextual information or the
question in the prompt. To address such issues, we propose an
error correction module that automatically fixes such errors in the
post-processing step. We proposed two kinds of error correction
methods: rule-based and prompt-based.

First of all, we develop a set of rules to fix some simple errors
based on the efforts of analyzing typical mistakes, an incomplete
list of examples is as follows
String Format. Sometimes, the structure of generated SQL aligns
with the ground truth, but there are mismatches between the values
in the predicates, resulting in different execution results with the
golden SQL. If such a mismatch is caused by string format issues
such as spelling and cases, we can fix it via rules that align the
values in the generated SQL with those in the database.

Mismatch in Schema. The LLM might involve non-existent or
incorrect names of tables and attributes in the output due to hal-
lucination. We will look up the metadata to ensure all the table
and attribute names exist. If we find non-existing ones, we replace

them with the most similar ones from the metadata to ensure the
generated SQL is valid.

Invalid Aggregation. We will fix the invalid aggregations, such
as MIN and MAX, over non-numerical attributes or COUNT on
multiple attributes. For the former case, we will directly remove
it from the generated SQL; For the latter case, we will replace the
attribute with the first attribute or *.

Join Condition. If the join condition happens between keys that
are not joinable, we will replace it with foreign keys that are joinable
between the two tables. If that does not exist, we will remove the
join condition.

In the above process, we look into the database to fix the errors re-
lated to string format and minor syntax issues such as upper/lower
cases but do not consider the semantics of contents. Therefore, we
do not use database contents to facilitate the semantic understand-
ing of the question or SQL generation. Some previous works [10, 13]
also employ self-consistency techniques [45] for post-processing,
which needs to execute the generated SQL in database before mak-
ing the final output. Unlike such practices, we did not utilize the
execution results of SQL in our approach.

r ===
e e G I e e T e T Gl S A i
the given SQLite SQL QUERY for any issues. If there are any problems, fix them. If there are no
issues, return the SQLite SQL QUERY as is.

Instruction 1 #### Use the following instructions for fixing the SQL QUERY:

1) Use the db_name values that are explicitly mentioned in the question.

2) Pay attention to the columns that are used for the JOIN by using the Foreign keys.
3) Pay attention to the columns that are used for the GROUP BY statement.

4) Pay attention to the columns that are used for the SELECT statement.

#4## Given the following database schema:

CREATE TABLE "continents" ("Contld" INTEGER PRIMARY KEY, "Continent" TEXT)

CREATE TABLE "countries” ("Countryld" INTEGER PRIMARY KEY, "CountryName" TEXT, "Continent"
INTEGER, FOREIGN KEY (Continent) REFERENCES continents(Contld))

CREATE TABLE "ca_makers” ("Id" INTEGER PRIMARY KEY, "Maker" TEXT, "FullName" TEXT, "Country"
TEXT, FOREIGN KEY (Country) REFERENCES countries(Countryld))

Schema CREATE TABLE "model_ist" ("Modelld" INTEGER PRIMARY KEY, "Maker" INTEGER, "Model" TEXT
UNIQUE, FOREIGN KEY (Maker) REFERENCES car_makers (Id))

CREATE TABLE "car_names" ("Makeld" INTEGER PRIMARY KEY, "Model" TEXT, "Make" TEXT, FOREIGN
KEY (Model) REFERENCES model_list (Model)

CREATE TABLE "cars_data" ("Id" INTEGER PRIMARY KEY, "MPG" TEXT, "Cylinders" INTEGER, "Edispl"
REAL, "Horsepower" TEXT, "Weight" INTEGER, "Accelerate” REAL, "Year" INTEGER, FOREIGN KEY (Id)
REFERENCES car_names (Makeld))

Question: Which model of the car has the minimum horsepower?

SQlite SQL QUERY

SELECT model_list.Model FROM model_list JOIN car_names ON model_list.Modelld =
car_names.Makeld JOIN cars_data ON car_names.Makeld = cars_data.d ORDER BY

Question cars_data.Horsepower ASC LIMIT 1;
SQLite FIXED SQL QUERY
SELECT

Figure 7: The Template for Prompt-based Error Correction

We also develop a prompt-based method to correct errors in the
generated SQL with one more iteration with LLMs in a zero-shot
learning manner. An example is shown in Figure 7. The structure of
this prompt is similar to that shown in Figure 2, i.e., it will include
the instruction and schema information. In addition, the generated
SQL is also included as part of the question, and the request is to
ask LLM to correct the potential errors. In this process, we provide
some guidelines in the format of explicit rules as hints for the LLM
to make proper corrections, such as “Pay attention to whether
every join condition is necessary” and “Use DESC and DISTINCT
when needed”. The choice of guidelines could be realized by rule-
based heuristics. For example, if the required contents could be
selected from an original table without a join, we will apply the
guideline related to join conditions. In the above example shown
in Figure 7, we assume the second rule related to the join condition

could help the LLM to recognize the unnecessary join condition in
the generated SQL and fix it via another prompt.

It is easy to see that the rule-based method is simple but has
limited coverage. At the same time, prompt-based methods are
expensive as they require another generation, but they could fix
some complicated errors with well-designed instructions. To make
good use of both, we develop a choice strategy to decide whether to
use each of them in the following way: First, we apply all rule-based
methods for correction. If they can find some errors and fix them,
we will not continue applying prompt-based methods. In addition,
since the prompt-based method aims to fix complicated errors, we
only apply it when the case seems to be challenging. For example,
in the Spider dataset [50], we apply the prompt-based method
only for instances belonging to hard and extra categories. When
such information is missing, we can look into the demonstration
examples in the original prompt, e.g., if there are examples with join
conditions between more than 2 tables or conjunction operations,
we will apply the prompt-based method.

4 EVALUATION
4.1 Experiment Setup

Table 1: The statistics of datasets

Dataset ‘ # Queries # Databases # Tables
Spider (train) 8,659 146 795
Spider (dev) 1,034 20 81
Spider (test) 2,147 40 180
BIRD (train) 9,428 69 524
BIRD (dev) 1,533 11 81

4.1.1 Datasets. We mainly conducted experiments on the bench-
marking dataset Spider [50], which is widely used in previous stud-
ies about Text-to-SQL. We reported results on dev and test sets,
which are released on the official website 2. The instances in the
training set of Spider are used as the candidate of demonstration
examples for few-shot learning and report the results on both the
dev and test sets. In addition, we also evaluated on the BIRD [24]
dataset, which is recently proposed to evaluate the efficiency of the
generated SQLs. Since our work focused on improving the effec-
tiveness rather than efficiency of Text-to-SQL tasks, we only report
results regarding accuracy but not the Valid Efficiency Score, which
evaluates whether the generated SQL queries are optimized. The
detailed statistics of these datasets are shown in Table 1.

4.1.2 Evaluation Metrics. Following the practice of previous stud-
ies [53], we use two metrics to evaluate the accuracy of the proposed
solutions: Exact Set Match (EM) and Execution Match (EX) accuracy.
Exact Set Match accuracy, which is also known as logical form accu-
racy, measures the matched SQL keywords between the predicted
SQL query and the corresponding ground truth. Execution Match
accuracy requires executing the generated SQL in a real database
system and comparing the execution result with that of the gold
standard SQL. It provides a more precise estimate of the model’s

Zhttps://yale-lily.github.io/spider

performance since multiple valid SQL statements may exist for a
single question. Furthermore, we also report the cost on Spider
datasets by examining the total number of tokens in the prompts.

4.1.3 Baseline Methods. We primarily choose the following exist-
ing solutions as baseline methods to compare with:

DAIL-SQL [13] is the latest prompt-based method that explores a
wise combination of prompt template and demonstration selection
methods to improve the overall performance of LLMs.

DIN-SQL [31] utilizes a chain-of-thought strategy to divide the
text-to-SQL problem into 3 stages and conduct prompts for each of
them, respectively.

Augment [29] proposes a schema-related knowledge augmentation
method to improve the prompt construction process to obtain high-
quality SQL based on LLM.

CatSQL [11] is a template-filling based method that achieves the
best performance in that category of works.

Graphix-T5 [22] constructs a graph to model the interaction be-
tween the question and database schema and then incorporates
such information in the fine-tuning process of the decoder. It is
the up-to-date one in the category of machine-translation-based
methods.

Besides, we also include the results of earlier representative
works, such as PICARD [38], RASAT [32], RYANSQL [7], LGESQL [5],
SmBoP [35] and RESDSQL [22] in the comparison. We directly cite
the numbers from the original papers and the leader board for all
methods.

4.1.4 Environment. We implemented all proposed methods in Python.
All experiments are run on a server with configurations similar
to those of a g5.12xlarge AWS EC2 machine, which has one AMD
EPYC 7R32 48-core processor and 192GB RAM. We reported the
results of prompt over OpenAlI APIs for both GPT-4 (gpt-4-0613)
and GPT-3.5 (gpt-3.5-turbo-0125) for the SQL generation. Due to
the budget constraint, we only use GPT-3.5 for the experiments
with large-scale prompts, e.g., the study about different numbers
of demonstrations in Figure 9. Otherwise, the results for all LLM-
based solutions will be based on GPT-4 if there is no additional
explanation.

4.2 Comparative Performance Measurement

The main results on the Spider dataset are shown in Table 2. We
have the following observations: First of all, LLM-based solutions
achieved better performance in EX. This is due to the power of
LLM in understanding the input question and generating SQL ac-
cordingly. At the same time, the results of EM are not as good
as PLM-based methods. The reason is that LLM-based solutions
generate the SQL according to the semantics of the question based
on the inherited knowledge gained in the pre-training process,
while PLM-based methods learn the syntax of SQL queries from
the training set, which has a syntax structure more similar to those
in the dev and test sets. Nevertheless, as shown in recent stud-
ies [11, 13, 20, 22, 29, 31], EX is a more critical metric in evaluating
the main results as it is more closely related to the performance
in real scenarios. Therefore, it is safe to claim the superiority of
LLM-based methods only based on the EX results.

Table 2: Main Results on the Spider Dataset. “-” means the
corresponding result is not available in the original paper or
any public leader board.

Method Dev Test
EM (%) EX (%) | EM (%) EX (%)

RYANSQL 66.4 582 - -
LGESQL 75.1 34.8 72.0 -
SmBoP 74.7 77.9 71.1 69.5
PICARD 75.5 79.3 - 75.1
RASAT 74.7 80.5 70.6 75.5
Graphix—TS 77.1 81.0 74.0 77.6
RESDSQL 80.5 84.1 72.0 79.9
CatSQL 80.6 83.7 73.9 78.0
Augment (GPT-4) - 84.1 - -
DIN-SQL (GPT-4) 60.1 74.2 60.0 85.3
DAIL-SQL (GPT-4) 71.9 82.4 - 86.2
MageSQL (GPT-3.5) 58.5 81.6 55.7 80.5
MageSQL (GPT-4) 69.7 87.4 67.2 86.8

In addition, MageSQL performs better than other LLM-based
solutions 3. The reason is that MageSQL proposed effective demon-
stration selection techniques that could customize the demonstra-
tion examples for each question. In this way, it would provide useful
signals for different questions to the LLM. At the same time, our
error correction techniques could help fix various errors in the
LLM output. In this way, errors due to lack of sufficient context
information could be avoided.

Table 3: Performance Breakdown based on Difficulty on Spi-
der (EX %)

Split Method ‘Easy Normal Hard Extra Overall

MageSQL (GPT-3.5) | 93.1 86.8 70.7 62.0 81.6
MageSQL (GPT-4) | 96.4 90.8 82.2 70.5 87.4

Dev CatSQL (GPT-4) | 95.6 883 747 627 837
DIN-SQL (GPT-4) | 91.1 79.8 649 434 742
et MageSQL(GPT-35) [919 835 717 695 805

MageSQL (GPT-4) | 92.3 89.6 82.1 78.7 86.8

We show the results of performance breakdown based on the
query difficulty in Table 3. Since very few previous studies reported
such results, we only include the comparison with CatSQL [11]
and DIN-SQL [31] on the dev set. We can see that compared with
previous studies, MageSQL has more improvement in the harder
cases. Compared with the template filling-based method CatSQL,
MageSQL could take advantage of the power of LLM in under-
standing the question and code generation to improve the overall
performance. The performance of MageSQL is much better than

3DAIL-SQL with self-consistency could reach the results of 86.6. However, it requires
running the prompt multiple times and executing the generated SQL in the data-
base before the final output. We report the result without self-consistency for a fair
comparison.

another LLM-based method DIN-SQL in hard and extra-hard cate-
gories. The reason might be the useful insights provided by properly
selected demonstrations.

1e7
Method

o
a

mmm MageSQL w/o correction
1.50 s MageSQL w/ correction
: mmm DAIL-SQL
mmm DIN-SQL
1.25
@
§1.00
sl
FH*
0.75
0.50
0.25
000 NN — -‘ I
Spider-Dev Spider-Test

Figure 8: Cost of Different LLM-based Methods with 5-shot
learning on the Spider Dataset.

Finally, we report the cost of MageSQL and other recent LLM-
based methods, DIN-SQL and DAIL-SQL, in Figure 8. Based on the
official OpenAl pricing mechanism 4, we use the total number of
tokens in all prompts as the evaluation metric. We can see that
DIN-SQL involves the most overhead in cost since it adopts the
chain-of-though method and requires 3 prompts for each instance.
Our method requires an extra prompt to generate the SQL to find
examples with similar graph embeddings, though such prompts are
relatively short since there is no demonstration. Thus, the cost (even
without error correction) is slightly higher than that of DAIL-SQL.
Meanwhile, error correction did not introduce much additional cost
to our method. The reason could be due to the strategy scheduling
efforts shown in Section 3.4 that only send the challenging cases to
the prompt-based error correction.

4.3 Impact of MageSQL Design Choices

Table 4: Results on Different Demonstration Selection Strate-
gies (EX %).

Method Spider-Dev Spider-Test
Zero-shot Learning 77.6 71.9
Random 81.8 81.9
Hardness 83.5 83.1
Question Similarity 84.0 84.4
Struct-Tree 84.9 86.6
Struct-Graph 87.4 86.8

Next, we conducted more experiments to analyze the effects of
our proposed techniques. We will use Execution Accuracy (EX) as
the evaluation metric because it is more appropriate for LLM-based
solutions.

“https://openai.com/api/pricing/

844 Demonstration Selector
—e— Random
82 Hardness 5
. —&— Question Similarity /
Q
) 80 —&— Struct-Tree ./’
o) —e— Struct-Graph T .
o - PRS-
378 04 /
S & e
& e 2 S G
5 ‘/"\ /
= 76 p3 L4
o
%
w 74
72
70
1 2 5 10
Number of Demonstrations
(a) Spider-Dev
84
82
g s
>80 /§§X
® * '74
I ——¢
=1 *
;d 78 e————— ¢
< \ /0
2 -
5 76 Demonstration Selector *
;-5 —e— Random
w74 Hardness
—&— Question Similarity
721 —e— Struct-Tree
—— Struct-Graph

1 2 5 10
Number of Demonstrations

(b) Spider-Test

Figure 9: Effect of numbers of demonstrations for Spider
datasets based on GPT-3.5. The result of zero-shot learning
on the dev and test set is 75.4 and 76.0, respectively.

We first look at the effect of different demonstration selection
strategies in Table 4. The methods Random, Hardness, Question
Similarity and Struct-Tree were previously introduced in Section 3.2;
while Struct-Graph is the graph embedding-based method in Sec-
tion 3.3. Since different strategies might need different numbers of
demonstration examples to achieve the best performance in few-
shot learning, and such numbers don’t differ much (no more than
10-shot), we report the best performance of all methods that might
not have the same number of demonstrations. Generally speaking,
we observe that Random performs worst, and in fact, it is close
to a zero-shot learning setting. This clearly illustrates that bad
demonstrations might harm the results in some cases. Among all
the methods, Struct-Graph achieves the best result since it could
provide useful examples for some difficult instances to help LLM
generate the corresponding SQL. Although Hardness can reach
similar objectives, its selection criteria are too heuristic and might
not be able to find proper examples.

We then investigate the effect of a number of demonstrations.
As shown in Figure 9, the results of most methods tend to be better
with more examples. The exceptions are in the Random and Harness
cases. The reason could be that they both include the process of
randomly selecting examples from a set of candidates and thus
might not always select high-quality ones. We also tried to include

more than 10 examples as demonstrations. However, the results
do not improve. Therefore, we stop with the maximum number of
examples as 10.

We also show the effect of error correction methods with ex-
ecution accuracy (EX) as the metric. The results are as follows:
on Spider-dev, the result of execution accuracy without and with
error correction is 84.5 and 87.4, respectively. On the Spider-test,
execution accuracy without and with error correction is 84.7 and
86.8, respectively. With the help of error correction, we achieve
up to 2.9% performance gain on all datasets. It illustrates that the
error correction mechanism could help address some errors from
the SQL generated from the initial prompt. The reason could be
that the pre-defined instructions could provide more useful insights
for the second prompt to generate the correct query. Besides, the
rule-based approach could also help fix some instances where the
semantics are correct but fail in execution just because of minor
issues, e.g., different letter cases in predicate values, extra symbols
like quota, etc.

4.4 Results on the BIRD Dataset

7

Instruction 1 ### Complete sqlite SQL query only and with no explanation.

Some example pairs of question and corresponding SQL query
are provided based on similar problems:

#i#t# Answer the following question: List down the game platform IDs of games
with a region ID of 1.

SELECT T.game_platform_id FROM region_sales AS T WHERE T.region_id = 1
#it# Answer the following question: List down all of the film IDs with highest
rental duration.

SELECT film_id FROM film WHERE rental_duration = (SELECT
L MAX(rental_duration) FROM film)

Demonstrations!

Given the following database schema:

CREATE TABLE account (account_id INTEGER default 0 not null primary key,
district_id INTEGER default 0 not null, frequency TEXT not null, date DATE not
null, foreign key (district_id) references district (district_id))

Context

Schema

CREATE TABLE card(card_id INTEGER default 0 not null primary key, disp_id
INTEGER not null, type TEXT not null, issued DATE not null, foreign key
(disp_id) references disp (disp_id))

Evidence | ### Given the following evidence:
| 'POPLATEK MESICNE' stands for monthly issuance

Answer the following question:
List the account IDs with monthly issuance of statements.
SELECT

Question

Figure 10: The Prompt Template for BIRD Dataset.

Next we conduct some additional experiments on the BIRD [23]
datasets to provide more insights about our proposed work. Com-
pared with Spider, there are more tables in each database of the
BIRD dataset and the model needs to accurately identify the rel-
evant tables to answer a question. Meanwhile, the BIRD dataset
provided additional “evidence” information, which are paragraphs
of descriptions about databases and tables to assist disambiguation
in the questions with such external knowledge. Therefore, it is
essential to include them in the prompt template to help with ques-
tion understanding, as previous studies on the BIRD dataset have
done. To this end, we slightly modify the previous prompt template
to satisfy the need of BIRD as shown in Figure 10. Specifically, we
add a section of "Evidence" (yellow box) at the end of Context in
the prompt to accommodate such information.

Here we use the representative previous studies compared in
the recent work SuperSQL [19] as baseline methods. The results of
baseline methods are copied from [19]. For a method with multiple

Table 5: Results on the BIRD-dev dataset with performance
breakdown based on difficulty levels (EX %). All methods are
based on GPT-4

Method ‘ Simple Moderate Challenging Overall
RESDSQL 53.5 33.3 16.7 43.9
C3 58.9 38.5 31.9 50.2
DAIL-SQL 63.0 45.6 43.1 55.9
CodeS 65.8 48.8 424 58.5
SuperSQL 66.9 46.5 43.8 58.5
MageSQL | 68.54 48.06 51.03 60.69

variants, we reported the one with the best results. For example,
RESDSQL [20] is corresponding to RESDSQL-3B; DAIL-SQL [13]
is the version with Self-Consistency (SC); and CodeS [21] is corre-
sponding to SFT CodeS-15B. The results shown in Table 5 illustrated
that MageSQL achieved the best overall performance among all
methods. Specifically, it outperformed the state-of-the-art method
SuperSQL [19] by 2.19% in execution accuracy. Compared with
the Spider dataset, BIRD is more challenging due to its huge data-
base volumes and much larger number of numbers in a database.
MageSQL could alleviate such issues with the help of high-quality
demonstration examples and the ability to fix minor errors in the
model output. We observe that the advantage of MageSQL over
other baseline methods is more obvious in the difficulty level of
“Challenging” which is consistent with that on the Spider dataset.

I —

0.04

0.03

——

Inference Time Per Query (seconds)

Demonstration Selector
—e- Random
Hardness
—e— Question Similarity
- —e— Struct-Tree

—_—
o —e— Struct-Graph

12 5 10 15 20
Number of Demonstrations

Figure 11: Average Time of Demo Selection on BIRD-dev.

We also report the average execution time per instance of dif-
ferent demonstration selection strategies in Figure 11. We can see
that our proposed selection strategies are light weighted, where
the worse method only requires less than 0.06s for one instance on
average. This overhead is trivial in the overall pipeline. Besides, the
Struct-Graph method also requires a training process with around 1
hour. However, it is an offline process and only needs to be executed
one time before the selection process.

4.5 Error Analysis

We further conducted an in-depth error analysis to provide useful
insights about our techniques. To begin with, we compiled statistics

on the instances in which our proposed solution failed in the Spider
dataset even after error correction. Based on the practice of previous
studies [10, 11, 31], we made the category of errors as following:

e Syntax: There are syntax errors, and the generated SQL
cannot be executed.

e Structure: The generated SQL failed to identify or make
obvious errors in the structure of a query, such as those
with multi-way join and conjunction.

e Schema: The error are related to the schema information
of database.

e Name and Semantics: The error is related to the semantics
of table/attribute names or values in predicates.

o Aggregation: The error is related to aggregations.

Table 6: Error Analysis on Spider Dataset (%). The number is
the percentage in all incorrect instances but not all instances
in the dataset.

Error Category Dev Test
Syntax 9.6 10.1
Structure 58.9 208
Schema 455 253
Name and Semantics 28.2 43.8
Aggregation 39.7 18.1

The results of statistics are shown in Table 6. We recognize
that one incorrect instance could involve multiple types of errors.
Therefore, the overall number could exceed 100% in each dataset.
We can see that most errors in the Dev set come from the Structure
and Schema categories, which correspond to the instances in the
hard and extra categories. At the same time, the challenges in the
Test set mainly come from Name and Semantics, where many cases
require the LLM to understand not only the question but also the
semantics of table and attribute names. In such cases, errors in the
“Name and Semantics” category always happened together with
those in the “Schema” one.

Next, we conduct a case study about our prompt-based error
correction method in Figure 12. The detailed schema and query in
correction prompts are omitted due to space limitations. Figure 12(a)
illustrates a scenario where the prompt-based method can success-
fully identify and fix the error. We can see that the initial output
of LLM has errors in identifying the need to use conjunctions. We
apply a prompt with the template shown in Figure 7 and utilize the
guidelines “Please think when to use a conjunction; sometimes you
may need to use a conjunction to get correct results". Then, such
errors could be fixed with another round of prompts. At the same
time, the prompt-based strategy may also fail in some instances, as
illustrated in Figure 12(b). In this example, the generated SQL incor-
rectly interprets the semantics of “highest rank”. Despite adhering
to the guidelines that emphasize appropriate aggregation operators
in the SELECT statement, the final output is still an erroneous SQL
statement. This error might stem from the LLM’s limitations in
handling the semantic nuances of the query. We are thrilled to
continue exploring how to fix such issues via prompt or advanced
rules in future work.

1
: o " i \ v 1
Question Show the document id with paragraph text 'Brazil' and 'Ireland'. 1
1
###t# For the given question, use the provided tables, columns, foreign keys, and
primary keys to fix the given SQLite SQL QUERY for any issues. If there are any
problems, fix them. If there are no issues, return the SQLite SQL QUERY as is.
Use the following instructions for fixing the SQL QUERY:
1) Don't make error that write queries with multiple join operations as one with
nested subqueries with IN keyword, please use join to get correct results in such
Correction 2=
Prompt 2) Please think when to use conjunction, sometimes you may need to use

conjunction to get correct results.
Schema

#i##i#t Question: Show the document id with paragraph text 'Brazil' and ‘Ireland.
SQLite SQL QUERY

##it# SQLite FIXED SQL QUERY
SELECT

SELECT Document_ID FROM Paragraphs WHERE Paragraph_Text IN

Predicted SQL -
(‘Brazil) 'lIreland")

)
]
i
]

’

SELECT Document_ID FROM Paragraphs WHERE Paragraph_Text =

Corrected SQL | 'grazil' INTERSECT SELECT _ID FROM Paragraphs WHERE
Paragraph_Text = 'Ireland'Document
SELECT document_id FROM Paragraphs WHERE paragraph_text =
Gold SQL ‘Brazil' INTERSECT SELECT document_id FROM Paragraphs WHERE

paragraph_text = 'lreland’

)

(a) Successful example of the prompt-based correction method

Find the highest rank of losers in all matches.

---‘
oot

Question

###t# For the given question, use the provided tables, columns, foreign keys, and
primary keys to fix the given SQLite SQL QUERY for any issues. If there are any.
problems, fix them. If there are no issues, return the SQLite SQL QUERY as is.

Use the following instructions for fixing the SQL QUERY:

1) Pay attention to the columns that are used for the SELECT statement.

2) Pay attention to the columns that are used for the GROUP BY statement.

c N 3) Pay attention to the aggregation operators that are used for the SELECT
orrection statement.

Prompt

Schema

##t## Question: Find the highest rank of losers in all matches.
##t## SQLite SQL QUERY

##t## SQLite FIXED SQL QUERY
SELECT

SELECT MAX(loser_rank) FROM matches

——

Predicted SQL

SELECT MAX(rankings.ranking) FROM matches JOIN rankings ON

loser_id= player_id

Corrected SQL

Gold SQL SELECT min(loser_rank) FROM matches

(b) Failure example of the prompt-based correction

Figure 12: Examples of Error Correction with Prompt.

5 RELATED WORK

The Text-to-SQL problem has been well-explored for many years.
Earlier studies [16, 36] first parsed the natural language question
into intermediate results and then developed different kinds of rules
to map it into the abstract syntax tree of SQL so as to generate the
final query. The limitation of such methods is that they always per-
form poorly when adapted to new domains. To address such issues,
another category of studies employed deep learning techniques,
converting the Text-to-SQL problem into a machine translation
task and train deep learning models to generate SQL statements.
Based on the different ways of decoding, the solutions can be cat-
egorized into sequence [15, 38], tree [32, 35] and graph [3, 5, 22]
based ones. With the advances of PLM, recent studies developed
the solutions by pre-training a language model for structured data
to support various tasks including text-to-SQL, such as TAPEX [27]
and GraPPa [51]. Meanwhile, another category of studies first devel-
oped a sketch template of SQL and then use decoder based models
to fill the empty slots in the template [7, 11, 12]. This approach
could avoid generating invalid SQL queries while fully utilizing the
powerful decoders.

Recent efforts mainly aimed at leveraging the power of LLMs to
understand the natural language question and generate the SQL ac-
cordingly. Due to their profound capabilities, LLM-based solutions
have significantly outperformed previous methods and achieved
state-of-the-art performance. C3 [10] proposed a precise prompt
instruction for the zero-shot setting. Rajkumar et al. [33] made an in-
vestigation of prompt strategies over different kinds of LLMs. Nan et
al. [29] explored different prompt templates for both zero-shot and
few-shot settings. DIN-SQL [31] employed the chain-of-thought
reasoning strategy and divided the text-to-SQL problem into 3
stages to solve issues from different aspects in each stage respec-
tively. DAIL-SQL [13] conducted an empirical study on the different
combinations of prompt instructions and demonstration selection
strategies, which overlaps with our work but focuses on different

aspects of the problem. SuperSQL [19] explored the combination
of different components in prompt templates and summarized op-
timal solutions for different tasks. CodeS [21] aims at fine tuning
smaller language models instead of constructing prompts, which
has a different objective.

Another line of studies lie in the aspect of benchmarking the
text-to-SQL tasks. There are two categories of datasets: general
purposed and domain specific ones. The general purposed works
aimed at building cross-domain datasets that have a broad coverage.
Examples include WikiSQL [54], Spider [50], KaggleDBQA [18]
and BIRD [24]; While the domain specific works focused on de-
veloping datasets for a specific application domain, such as Yelp
and IMDB [48], FINSQL [52] and BookSQL [17]. In this work, we
focused on developing general solution for the text-to-SQL problem
and thus conducted evaluation over the general purposed bench-
marking datasets.

6 CONCLUSION

In this paper, we conducted a systematic study of the Text-to-SQL
problem. We proposed MageSQL, a novel framework that aimed
at improving the prompt engineering process over LLM so as to
help generate high-quality SQL statements as the solution. To this
end, we proposed technical contributions from two aspects: (1) de-
velop two effective demonstration selection strategies based on the
structure and semantics of SQL queries to improve the in-context
learning process; (2) propose an error correction module that could
find and correct the potential errors in the output of LLMs. Ex-
perimental results on public benchmarking datasets showed that
our proposed methods could obviously improve the overall perfor-
mance compared with previous solutions.

REFERENCES

[1] Nikolaus Augsten, Michael H. Béhlen, and Johann Gamper. 2010. The pg-gram
distance between ordered labeled trees. ACM Trans. Database Syst. 35, 1 (2010),
4:1-4:36.

&2,

[10]

[11]

[12

[13]

(18]

[19]

[20]

[21

[22

[23]

[24]

[25]

[26]

[27]

Philip Bille. 2005. A survey on tree edit distance and related problems. Theor.
Comput. Sci. 337, 1-3 (2005), 217-239.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing Schema
Structure with Graph Neural Networks for Text-to-SQL Parsing. In ACL. 4560~
4565.

Tom B. Brown and et al. 2020. Language Models are Few-Shot Learners. In
NeurIPS.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. 2021.
LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-
Local Relations. In ACL/IJCNLP. 2541-2555.

Mark Chen and et al. 2021. Evaluating Large Language Models Trained on Code.
CoRR abs/2107.03374 (2021).

DongHyun Choi, Myeongcheol Shin, EungGyun Kim, and Dong Ryeol Shin.
2021. RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex
Text-to-SQL in Cross-Domain Databases. Comput. Linguistics 47, 2 (2021), 309—
332.

Aakanksha Chowdhery and et al. 2023. PaLM: Scaling Language Modeling with
Pathways. J. Mach. Learn. Res. 24 (2023), 240:1-240:113.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT. 4171-4186.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, Lu Chen, Jinshu
Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT. CoRR
abs/2307.07306 (2023).

Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and Jianling Sun. 2023. CatSQL:
Towards Real World Natural Language to SQL Applications. Proc. VLDB Endow.
16, 6 (2023), 1534-1547.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Woodward, John H.
Drake, and Qiaofu Zhang. 2021. Natural SQL: Making SQL Easier to Infer from
Natural Language Specifications. In Findings of EMNLP. 2030-2042.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. Proc. VLDB Endow. 17, 5 (2024), 1132-1145.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. GraphMAE: Self-Supervised Masked Graph Autoencoders.
In ACM SIGKDD. 594-604.

Yiqun Hu and et al. 2023. Importance of Synthesizing High-quality Data for
Text-to-SQL Parsing. In ACL. 1327-1343.

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: Where are we today? Proc. VLDB Endow. 13, 10 (2020), 1737—
1750.

Rahul Kumar, Amar Raja Dibbu, Shrutendra Harsola, Vignesh Subrahmaniam,
and Ashutosh Modi. 2024. BookSQL: A Large Scale Text-to-SQL Dataset for
Accounting Domain. In NAACL. 497-516.

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. KaggleD-
BQA: Realistic Evaluation of Text-to-SQL Parsers. In ACL/IJCNLP. 2261-2273.
Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The
Dawn of Natural Language to SQL: Are We Fully Ready? Proc. VLDB Endow. 17,
11 (2024), 3318-3331.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. RESDSQL: Decoupling
Schema Linking and Skeleton Parsing for Text-to-SQL. In AAAL 13067-13075.
Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie
Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. CodeS: Towards Building
Open-source Language Models for Text-to-SQL. Proc. ACM Manag. Data 2, 3
(2024), 127.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo,
Fei Huang, Wenyu Du, Luo Si, and Yongbin Li. 2023. Graphix-T5: Mixing Pre-
trained Transformers with Graph-Aware Layers for Text-to-SQL Parsing. In
AAAI 13076-13084.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
Advances in Neural Information Processing Systems 36 (2024).

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li,
Kevin Chen-Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A Blg Bench for Large-Scale
Database Grounded Text-to-SQLs. In NeurIPS.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2022. What Makes Good In-Context Examples for GPT-3?. In
The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning
Architectures, DeeLIO@ACL. 100-114.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9
(2023), 195:1-195:35.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and
Jian-Guang Lou. 2022. TAPEX: Table Pre-training via Learning a Neural SQL

[33

(34]
(35]

[36

@
=

[38

[39

[40

[41

[42]

[44

[45

[46]
[47]

(48

[49

(50]

[51]

(52

Executor. In ICLR.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
2022. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. In ACL. 8086-8098.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang,
Arman Cohan, and Dragomir Radev. 2023. Enhancing Text-to-SQL Capabilities
of Large Language Models: A Study on Prompt Design Strategies. In Findings of
EMNLP. 14935-14956.

OpenAl 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023).
Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed
In-Context Learning of Text-to-SQL with Self-Correction. In NeurIPS.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Yu Cheng, Chenghu Zhou,
Xinbing Wang, Quanshi Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
Relational Structures into Pretrained Seq2Seq Model for Text-to-SQL. In EMNLP.
3215-3229.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. 2022. Evaluating
the Text-to-SQL Capabilities of Large Language Models. CoRR abs/2204.00498
(2022).

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP-IJCNLP. 3980-3990.

Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-autoregressive Bottom-up
Semantic Parsing. In NAACL-HLT. 311-324.

Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R. Mittal, and Fatma Ozcan. 2016. ATHENA: An Ontology-Driven
System for Natural Language Querying over Relational Data Stores. Proc. VLDB
Endow. 9, 12 (2016), 1209-1220.

Timo Schick and et al. 2023. Toolformer: Language Models Can Teach Themselves
to Use Tools. In NeurIPS 2023.

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In EMNLP. 9895-9901.

Chen Shen, Jin Wang, Sajjadur Rahman, and Eser Kandogan. 2024. Demonstration
of a Multi-agent Framework for Text to SQL Applications with Large Language
Models. In CIKM. ACM, 5280-5283.

Kihyuk Sohn. 2016. Improved Deep Metric Learning with Multi-class N-pair Loss
Objective. In Advances in Neural Information Processing Systems. 1849-1857.
Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. InfoGraph:
Unsupervised and Semi-supervised Graph-Level Representation Learning via
Mutual Information Maximization. In ICLR.

Hugo Touvron and et al. 2023. LLaMA: Open and Efficient Foundation Language
Models. CoRR abs/2302.13971 (2023).

Aéron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. CoRR abs/1807.03748 (2018).

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain
of Thought Reasoning in Language Models. In ICLR.

Jason Wei and et al. 2022. Chain-of-Thought Prompting Elicits Reasoning in
Large Language Models. In NeurIPS.

Qingyun Wu and et al. 2023. AutoGen: Enabling Next-Gen LLM Applications
via Multi-Agent Conversation Framework. CoRR abs/2308.08155 (2023).

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
query synthesis from natural language. Proc. ACM Program. Lang. 1, OOPSLA
(2017), 63:1-63:26.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph Contrastive Learning with Augmentations. In NeurIPS.
Tao Yu and et al. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex
and Cross-Domain Semantic Parsing and Text-to-SQL Task. In EMNLP. 3911-
3921.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi
Yang, Dragomir R. Radev, Richard Socher, and Caiming Xiong. 2021. GraPPa:
Grammar-Augmented Pre-Training for Table Semantic Parsing. In ICLR.

Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang
Lou, and Jinshu Lin. 2024. FinSQL: Model-Agnostic LLMs-based Text-to-SQL
Framework for Financial Analysis. In Companion of SIGMOD/PODS. ACM, 93—
105.

Ruigi Zhong, Tao Yu, and Dan Klein. 2020. Semantic Evaluation for Text-to-SQL
with Distilled Test Suites. In EMNLP. 396-411.

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. 2021. An Empirical Study of
Graph Contrastive Learning. In NeurIPS Datasets and Benchmarks.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Large Language Model Terminologies
	2.2 The Text to SQL Problem

	3 Methodology
	3.1 Overview
	3.2 Demonstration Selection Strategies: Basics
	3.3 Graph based Demonstration Selection
	3.4 Error Correction

	4 Evaluation
	4.1 Experiment Setup
	4.2 Comparative Performance Measurement
	4.3 Impact of MageSQL Design Choices
	4.4 Results on the BIRD Dataset
	4.5 Error Analysis

	5 Related Work
	6 Conclusion
	References

