Instance-Optimized String Fingerprints (Extended Abstracts)

Mihail Stoian*

Johannes Thiirauf*

Andreas Zimmerer

University of Technology Nuremberg University of Technology Nuremberg University of Technology Nuremberg

Nuremberg, Germany
mihail stoian@utn.de

Alexander van Renen

Nuremberg, Germany
johannes.thuerauf@utn.de

Nuremberg, Germany
andreas.zimmerer@utn.de

Andreas Kipf

University of Technology Nuremberg University of Technology Nuremberg

Nuremberg, Germany
alexander.van.renen@utn.de

ABSTRACT

Recent research found that cloud data warehouses are text-heavy.
However, their capabilities for efficiently processing string columns
remain limited, relying primarily on techniques like dictionary
encoding and prefix-based partition pruning.

In recent work, we introduced string fingerprints—a lightweight
secondary index structure designed to approximate LIKE predicates,
albeit with false positives. This approach is particularly compelling
for columnar query engines, where fingerprints can help reduce
both compute and I/O overhead. We show that string fingerprints
can be optimized for specific workloads using mixed-integer opti-
mization, and that they can generalize to unseen table predicates.
On an IMDb column evaluated in DuckDB v1.3, this yields table-
scan speedups of up to 1.36X.

VLDB Workshop Reference Format:

Mihail Stoian, Johannes Thiirauf, Andreas Zimmerer, Alexander van Renen,
and Andreas Kipf. Instance-Optimized String Fingerprints (Extended
Abstracts). VLDB 2025 Workshop: Applied Al for Database Systems and
Applications (AIDB 2025).

VLDB Workshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/utndatasystems/string-fingerprints.

1 INTRODUCTION

The last three years have shown us that natural language, and
implicitly unstructured text, can be the language we use to talk
to machines [22, 26]. When it comes to the data itself, we can
see a similar trend. Indeed, recent research shows that cloud data
warehouses are rather text-heavy [28-30]. Yet, how advanced are
our techniques to deal with such kind of data? Our work scratches
the surface by proposing a lightweight secondary index that boosts
queries, i.e., LIKE (and simple REGEX) predicates, on columns of this
data type.

“The author contributed equally to this work.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

Nuremberg, Germany
andreas.kipf@utn.de

—O— 4-bit 8-bit 16-bit

—
=~
X

- o= =
— [\ w
X X X

Table scan speedup
5
X

0.9x

20 40 60 80
False positive rate [%)

Figure 1: Using string fingerprints to speedup table scans
with LIKE predicates on IMDDb’s title column in DuckDB v1.3.
Various instance-optimized partitions incur different false
positive rates which correlate with the speedup achieved.

Motivation. Transforming a data column to a sparser representa-
tion, which can still be queried—with possible allowance of false
positives—enables many performance improvements; think of bloom
filters [5] and range filters [11, 13, 33], just to name a few from our
research field. However, with the exception of a few examples,
e.g., compression [7], indexing [21, 27, 33, 34], cardinality estima-
tion [19], it seems that strings are still waiting for more attention,
despite their prevalence as data type. Indeed, even recent progress
on (updatable) bitmap indices focus on numeric data only [31].

String Fingerprints. As a by-product of recent work on robust
query processing [25], we introduced string fingerprints as a mech-
anism that can mimic a LIKE predicate, albeit with false positives.
The key idea is to compactly represent the set of constituting letters
of a string S in a fixed number of bins that can be represented as
a binary mask of fixed bitwidth (#bins £ bitwidth). For a given
pattern P, the generic form of a LIKE predicate, S.contains(P),
evaluates to false if the fingerprint of P is not a subset of that of S.

Applications. This rather concise representation has a twofold
role: (a) By attaching a fingerprint-column to the table, we can
skip non-qualifying rows, and (b) if we maintain a dictionary with
the fingerprint-values seen in the partition, we can use them to
skip non-qualifying partitions. For instance, production systems
offer the latter for prefix/suffix-based predicates only [35]. In what
follows, we focus on the former.

https://github.com/utndatasystems/string-fingerprints
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

‘nutella’
a e
n
u t

1 0 1 0

Figure 2: String fingerprints are bitmasks indexing letter bins

Contribution. Inspired by the recent interest of production sys-
tems towards instance-optimized database components [12, 23],
we show that string fingerprints can be instance-optimized with
respect to the workload and the data itself by using state-of-the-art
mixed-integer optimization. In particular, on IMDb’s title col-
umn of the JOB benchmark [20], one can speed up table scans by
up to 1.36X when using 16-bit fingerprints, as shown in Figure 1.
Moreover, we empirically show that the so instance-optimized fin-
gerprints even generalize to unseen table predicates.

Related Work. Work on indexing text using n-grams dates back
to the seminal work of Ogawa and Matsuda [21], and has been
further developed—especially in the context of indexing for regular
expressions [8, 16, 18, 27, 34]—where the key idea is to select a
near-optimal subset of n-grams to index (under constraints such
as space). With string fingerprints, we argue that, particularly for
individual letters (1-grams), there is no need to retain only a subset.
Instead, we can index all grams to minimize the false positive rate.

Overview. We first introduce the preliminaries of string finger-
prints and then present our main technical contribution, an ap-
proach to instance-optimize them using mixed-integer optimiza-
tion (Sec. 2.1). We evaluate the approach on both seen and unseen
predicates in Sec. 3. We conclude with future work in Sec. 4.

2 INSTANCE-OPTIMIZED FINGERPRINTS

Preliminaries. To better understand the intuition behind the MIP
formulation in Sec. 2.1, let us next outline how fingerprints work.

The main intuition is that a pattern P has a chance to be contained
in a string value S, i.e., S.contains(P), if the letters of P are a
subset of that of S. To see this, consider the pattern ’%utn%’ and
the strings 'nutella’ and ’tone’. When computing their letter
sets, we observe that the first could qualify for the pattern, while
the latter cannot, since the letter set of ’utn’ is not a subset of
{’t’,’0’,’n’, ’e’}. On the other hand, even though the first string
value qualifies, it is indeed a false positive. In particular, note that
this representation cannot generate false negatives.

Example. Instead of indexing all letters, we first partition them.
Consider the example in Figure 2 for the string 'nutella’. The
letter space is partitioned in 4 bins (#bins £ bitwidth). The letters
’a’,’1’, and ’u’ fall into the first bin (read from left), while the
others in the third bin. Hence, its fingerprint reads 1010. Similarly,
we can compute the fingerprints of *utn’ and ’tone’, which are
1010 and 0110, respectively—observe that the letter o’ falls into
the second bin. In particular, note that the fingerprint of *utn’ is

Table 1: Notation of the parameters used in the mixed-integer
optimization model (1)

Parameter Description

A Set of characters to be partitioned into the bins
n Number of bins (= bitwidth)
w Words, i.e., set of the column’s string values
Q Set of given query patterns

Function that returns for a query the set of words
f0) in W that contain the bstri

query as substring

Si Denoting the ith character of string s
len(s) Denoting the length of string s
[1] For [€ N, it represents the set {1,...,[}

indeed a subset of that of ’nutella’, i.e., 1010 C 1010, while the
same does not hold for ’ tone’, ie., 8110 € 1010. Consequently, the
partitioning produced a false positive for ’nutella’ and correctly
classified ’tone’ as a true negative.

2.1 Optimal Partitioning

Mixed-integer linear optimization [9, 10, 32] is a fundamental tool
in operations research, which has been successfully applied in
different domains including supply chain management [9] and ma-
chine learning [4]. Over the last decades enormous computational
progress has been made by developing new solution methods and
enhancing existing ones leading to efficient optimization solvers
such as Gurobi [15], CPLEX [17], and SCIP [6]. Combining the
algorithmic advancements with modern computational resources
makes it possible to solve optimization problems that were out of
scope decades ago.

We now present the developed mixed-integer linear optimization
model solving which yields an optimal partitioning. Here, optimal
means that for the given query patterns Q and a column’s string-
values—henceforth, words ‘W —the computed partitioning maxi-
mizes the number of correctly classified data, which is equivalent
to minimizing the false positive rate. In particular, if the optimiza-
tion model is solved to global optimality, the used mathematical
methods guarantee that the resulting partitioning has the lowest
possible false positive rate for the given queries and data.

Notation. We introduce the necessary notation in Table 1. In
addition, we use the following optimization variables. For each
bin i € [n] and character a € A, the binary variable x,; € {0,1}
evaluates to 1 if character a is in bin i. Otherwise, x4 ; = 0 holds.
Thus, the x variables determine the optimized partitioning of the
characters into the bins. For each string s € Q U ‘W and bin j, the
binary variable d; € {0, 1} indicates if there is a letter of string s
that is in bin j, i.e., d}‘. = 1 holds, and if this is not the case, dj. =0is
satisfied. Consequently, d;, J € [n], represent the string fingerprint
of string s. For each query ¢ € Q and word w € W \ f(q), the
variable n*9 € {0, 1} evaluates to one if the optimized partitioning
correctly determines that query g is not contained in word w, i.e.,
the optimized partitioning does not produce a false positive for
the considered query q and word w. However, if the optimized
partitioning produces a false positive for this query and word, then
n™4 = 0 holds.

Model. The aim of the optimization model is to maximize the
number of correctly classified query-word combinations, i.e., to
maximize Y.ge @ LweW\f(q) 17 We note that this is equivalent
to minimizing the number of falsely classified query-string com-
binations. Using the introduced variables and notation, the opti-
mization model to compute an optimal partitioning w.r.t. the given
query-word combinations is given by

max Z Z n*4 (1a)

* 4EQ weWh s (g)

n

s.t. Zxa,j =1, ac®A, (1b)
j=1

Xs,j <dj, i€[len(s)], je[n], seQUW, (1c)

d5 < Z Xsj» J€[nl, s€eQUW, (1d)

i€[len(s)]
dl <d, jelnl, ge@ wef(g, (le)

n

1< -dMdl weW\f(gge@ (f)
j=1

x e {0,1}71xn g e 1o, 1} IWIHIQDxn

n € {0, 1} WIxIQ-Zgealf(a)] (1g)

Model Description. In Constraints (1b), we ensure that each char-

acter of A is exactly assigned to one bin. By Constraints (1c)
and (1d), for each string s € Q U ‘W we determine the string finger-
print d* w.r.t. the chosen partitioning given by x. More precisely,
dj equals one if and only if string s contains at least one letter that
is in bin j. Otherwise, it is zero. Constraints (1e) ensure that we
do not have any false negatives by enforcing that every string that
contains the query has a string fingerprint that includes the one
of the query. We now consider a query ¢ € Q and word w € ‘W
that does not contain query g, i.e, w € W\ f(q). If djq < d]‘.“’ for
all j € [n] holds, then we have wrongly classified the word w to
contain q. Further, if d;.l < dj‘.“’ is satisfied for all j € [n], the right-

hand side of Constraint (1f) evaluates to zero due to d]q, d;" e {0,1}.
Consequently, in this case Constraint (1f) implies #*9 = 0 and we
cannot increase the objective function by wrongly classified strings.
However, if d;.] < djW does not hold, i.e., we correctly determine
that word w does not contain g, then the right-hand side of Con-
straint (1f) is at least one. Consequently, we can set ™9 = 1 and
increase the objective function by correctly identifying that word w
does not contain q. The objective function (1a) then maximize the
number of correctly classified strings that do not contain the corre-
sponding query, which is equivalent to minimizing the number of
false positives. Consequently, solving the presented optimization
model to global optimality leads to an optimized partitioning that
minimizes the false positive rate w.r.t. the given queries and data.
We note that Model (1) is a mixed-integer nonlinear optimiza-
tion problem in the presented form due to the products of binary
variables in Constraints (1f). However, using standard techniques of
mixed-integer optimization, these products of binary variables can
be equivalently reformulated with the help of additional variables
and linear constraints, e.g., see [14]. This leads to a mixed-integer
linear optimization model, which we used in our computational

study. We further neglect Constraints (1e) in our computations be-
cause they are mathematically redundant, i.e., they can be removed
without changing the set of optimal solutions. This directly follows
from the fact that for d? = 1 there exists a character in bin j that is
included in query g due to Constraints (1c) and (1d). However, this
character is also included in word w due to ¢ € Q and w € f(q).
Consequently, Constraints (1c) implies dj?" = 1 and then the corre-
sponding Constraint (1e) is satisfied. The latter is directly valid for
the case d;.] = 0. This formal discussion proves that the computed
partitioning and corresponding string fingerprints cannot produce
false negatives.

Solving Model (1) to global optimality using state-of-the-art
solvers computes a partitioning that is optimal w.r.t. the considered
queries and data, i.e., it has the lowest possible false positive rate.
However, for a large number of queries, words, and bins, the number
of variables and constraints is enormous, which makes it challeng-
ing to solve these models to global optimality in a reasonable time.
To ensure that the computational time stays within practical lim-
its, a time limit can be imposed on the optimization process. As
shown in the evaluation, this leads to computing a high-quality
partitioning, that may not be optimal, but efficiently minimizes the
false positive rate within the time limit. Moreover, the following
computational results show that the optimized partitioning also
performs well for unseen queries and data.

3 EVALUATION

Setup. We run the queries single-threaded on a single node Intel®
Xeon® Gold 5318Y CPU (24 cores, 48 hyper-threads). The machine
is equipped with 128GB DDR4 main memory and runs Ubuntu
24.04. We use DuckDB v1.3.0 as query engine. The MIP solutions
are computed with Gurobi 12.0.1 ([15]), with a time limit of 300 s
and a thread limit of 48. In the following, we denote as optimiza-
tion time the total time required for reading the data, building the
optimization model, and solving it.

Benchmark. We consider the real-world IMDb dataset from the
JOB benchmark [20] and take as reference its title column with
2.53 M movie names; since we currently optimize for printable
bytes only (100 distinct ones, i.e., |A| = 100), the table is reduced
to 2.37 M tuples. We compose a 300-query workload consisting
of the 10 highest-, mid-, and lowest-frequency k-grams for each
k € {1,...,10} extracted from the column. These are randomly
split into 20 seen and 280 unseen queries.

Due to DuckDB v1.3.0’s limited support for complex predicate
pushdown, we simulate the pushdown of our bitmask check by
(a) measuring the time to perform the bitmasked table scan, (b)
building an auxiliary column that indicates the result, and (c) and
measuring the time of the new query. The reported time is (a) + (c).

3.1 Table Scan Speedup

One of the main applications of string fingerprints is accelerating
table scans. Namely, in the context of a columnar query engine, one
can attach the fingerprint column and, at query time, evaluate the
corresponding predicate first:

where [...] title_fp & pattern_mask = pattern_mask
and title like '%{pattern}%' [...].

Queries @ Data: O seen e 15 block sample

O seen e 1°° block % seen e table

A unseen o 15¢ block & wunseen e table

© 100%

5 80% Approach

g === naive

5 60% . T

= instance-optimized
2 40%

g o9

E 20%

0%

N

1.0x

0.9%

0.8x

= e b

Normalized query latency

Optimization time [s]

(a) 4-bit

0 50 100 150 200 250 0 25 50
Optimization time [s]

(b) 8-bit

75 100 125 150 0 10 20 30 40 50 60
Optimization time [s]

(c) 16-bit

Figure 3: Effect of string fingerprints on table scans over IMDb’s title column for various fingerprint bitwidths € {4, 8,16} and
(query, data) pairs. The 300-query workload consists of the 10 highest-, mid-, and lowest-frequency column’s k-grams for each
k € {1,...,10}. Queries are split into 20 seen and 280 unseen patterns. Instance-optimized partitions are trained on a 50-tuple
sample from the first data block using the seen queries. We also plot a subset of the intermediate solutions obtained by the
solver during the optimization process. The naive, workload-agnostic baseline assigns characters in a round-robin manner.

In this case, the LIKE predicate may need to be evaluated on sig-
nificantly fewer tuples. This effect is visualized in Figure 3, where,
we show the false positive rates (FPRs) for various fingerprints
bitwidths € {4, 8,16} (upper subplots) and the query latencies for
seen and unseen queries on the full table (lower subplots).

15t Observation. Despite being trained on a random 50-tuple sam-
ple of the first data block (=216 tuples) of the table, we observe that
the FPRs of the instance-optimized fingerprints remain competitive
even on the full table. This is also reflected in the latency numbers,
where in the 16-bit setting, the speedup reaches 1.36x. The same
holds for the unseen queries, for which the attained speedup reads
1.26x. The optimization time spent for this setting amortizes for
the unseen queries already in the 4th run of the workload.

274 Observation. Given the fact that the pattern lengths are bounded
above by 10, the instance-optimized setting is not worth it with in-
creasing bitwidth. This is due to the fact that with a larger bitwidth
(and a rather bounded alphabet), the bin densities are much lower,
thus allowing for sparser fingerprints, both for patterns and column
string values.

374 Observation. For the 4-bit and 8-bit setting, the underlying op-
timization problems to compute the partitions in Figure 3 cannot be
solved to global optimality within 300 s. However, we obtain a MIP
optimality gap of around 5.6% and 1.9%, respectively. Consequently,
the quality of the current best partition is rather close to the one
of an optimal solution (w.r.t. the given query-data). In particular,
optimizing for at most 60 s is sufficient to produce solutions that
are competitive with the fastest in terms of query performance; for
the 8-bit case, the gap reads 1.82%.

4 CONCLUSION & FUTURE WORK

String fingerprints are a promising research direction towards ef-
ficiently querying string columns. The key idea is to partition
the letter space such that the false positive rate on a given work-
load is minimized. More importantly, unlike recent caching mecha-
nisms [12, 23], string fingerprints (a) can be both used to instance-
optimize the database and (b) generalize to unseen queries. Regard-
less of the extent of predicate pushdown in the system, instance-
optimized string fingerprints act as table scan accelerators by re-
ducing the number of actual string predicate evaluations.

Fingerprints > N-grams. To achieve even better FPRs, one could
consider using larger grams instead of letters (1-grams) only. The
presented MIP formulation (Sec. 2.1) can be applied to this setting
with adaptations, however, the corresponding optimization prob-
lems become more challenging since the alphabet (A; Tab. 1), and
hence the number of optimization variables, naturally increase. Us-
ing larger grams fits the line of research on n-gram indexing for
regular expressions [8, 16, 18, 21, 27, 34], which instead optimizes
which subset of n-grams to index.

In future work, we also plan to investigate how string finger-

prints can be used for (a) string zonemaps—particularly for large
bitwidths, (b) LIKE cardinality estimation [1-3, 19, 24], and (c) clus-
tering, even across multiple string columns.
Acknowledgments. The authors gratefully acknowledge the scien-
tific support and HPC resources provided by the Erlangen National
High Performance Computing Center (NHR@FAU) of the Friedrich-
Alexander-Universitdt Erlangen-Niirnberg (FAU). The hardware is
funded by the German Research Foundation (DFG).

The authors acknowledge the use of DeepL and OpenAI’s Chat-
GPT for partly editing and polishing the text and figures for spelling,
grammar, and stylistic improvements. Additionally, ChatGPT was
utilized for support in basic coding tasks.

REFERENCES

(1]

(2]

3

=

[10]

[11]

[12

[13]

[14]

[15

[16

Mehmet Aytimur and Ali Cakmak. 2018. Estimating the selectivity of LIKE
queries using pattern-based histograms. Turkish J. Electr. Eng. Comput. Sci. 26, 6
(2018), 3320-3335. https://doi.org/10.3906/ELK-1806-96

Mehmet Aytimur and Ali Cakmak. 2021. Using positional sequence patterns
to estimate the selectivity of SQL LIKE queries. Expert Syst. Appl. 165 (2021),
113762. https://doi.org/10.1016/J. ESWA.2020.113762

Mehmet Aytimur, Silvan Reiner, Leonard Woérteler, Theodoros Chondrogiannis,
and Michael Grossniklaus. 2024. LPLM: A Neural Language Model for Cardinality
Estimation of LIKE-Queries. Proc. ACM Manag. Data 2, 1 (2024), 54:1-54:25.
https://doi.org/10.1145/3639309

Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, and Ying Daisy Zhuo. 2019.
Robust classification. INFORMS Journal on Optimization 1, 1 (2019), 2-34. https:
//doi.org/10.1287/ij00.2018.0001

Burton H Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (1970), 422-426.

Suresh Bolusani, Mathieu Besancon, Ksenia Bestuzheva, Antonia Chmiela, Jodo
Dionisio, Tim Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed
Ghannam, Ambros Gleixner, Christoph Graczyk, Katrin Halbig, Ivo Hedtke,
Alexander Hoen, Christopher Hojny, Rolf van der Hulst, Dominik Kamp,
Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns, Gioni Mexi, Erik Miih-
mer, Marc E. Pfetsch, Franziska Schldsser, Felipe Serrano, Yuji Shinano, Mark
Turner, Stefan Vigerske, Dieter Weninger, and Liding Xu. 2024. The SCIP Opti-
mization Suite 9.0. arXiv:2402.17702 [math.OC] https://arxiv.org/abs/2402.17702
Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proceedings of the VLDB Endowment 13, 12 (2020), 2649-2661.
Junghoo Cho and Sridhar Rajagopalan. 2002. A fast regular expression indexing
engine. In Proceedings 18th International Conference on Data Engineering. IEEE,
419-430.

Fran cois Clautiaux and Ivana Ljubi¢. 2025. Last fifty years of integer linear pro-
gramming: A focus on recent practical advances. European Journal of Operational
Research 324, 3 (2025), 707-731. https://doi.org/10.1016/j.ejor.2024.11.018
Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. 2014. Integer
Programming. Graduate Texts in Mathematics, Vol. 271. Springer, Cham. xii+456
pages. https://doi.org/10.1007/978-3-319-11008-0

Niv Dayan, Ioana O. Bercea, Pedro Reviriego, and Rasmus Pagh. 2023. InfiniFilter:
Expanding Filters to Infinity and Beyond. Proc. ACM Manag. Data 1, 2 (2023),
140:1-140:27. https://doi.org/10.1145/3589285

Jialin Ding, Matt Abrams, Sanghita Bandyopadhyay, Luciano Di Palma, Yanzhu
Ji, Davide Pagano, Gopal Paliwal, Panos Parchas, Pascal Pfeil, Orestis Polychro-
niou, Gaurav Saxena, Aamer Shah, Amina Voloder, Sherry Xiao, Davis Zhang,
and Tim Kraska. 2024. Automated Multidimensional Data Layouts in Amazon
Redshift. In Companion of the 2024 International Conference on Management of
Data, SIGMOD/PODS 2024, Santiago AA, Chile, June 9-15, 2024, Pablo Barcelo,
Nayat Sanchez-Pi, Alexandra Meliou, and S. Sudarshan (Eds.). ACM, 55-67.
https://doi.org/10.1145/3626246.3653379

Navid Eslami and Niv Dayan. 2024. Memento Filter: A Fast, Dynamic, and
Robust Range Filter. Proc. ACM Manag. Data 2, 6 (2024), 244:1-244:27. https:
//doi.org/10.1145/3698820

Fred Glover and Eugene Woolsey. 1974. Converting the 0-1 Polynomial Pro-
gramming Problem to a 0-1 Linear Program. Operations Research 22, 1 (1974),
180-182.

Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

Bijit Hore, Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. 2004. Indexing text
data under space constraints. In Proceedings of the thirteenth ACM international
conference on Information and knowledge management. 198-207.

(17

(18]

(19]

[20]

[
-

[22

[23

[24

[27]

(28]

[29]

@
=

[31

[32

(33]

(34]

IBM ILOG CPLEX Optimizer. [n.d.]. IBM ILOG CPLEX Optimizer. https:
//www.ibm.com/products/ilog- cplex-optimization-studio/cplex- optimizer
Younghoon Kim, Hyoungmin Park, Kyuseok Shim, and Kyoung-Gu Woo. 2013.
Efficient processing of substring match queries with inverted variable-length
gram indexes. Information Sciences 244 (2013), 119-141.

Suyong Kwon, Kyuseok Shim, and Woohwan Jung. 2025. Cardinality Estimation
of LIKE Predicate Queries using Deep Learning. Proceedings of the ACM on
Management of Data 3, 1 (2025), 1-26.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204-215. https://doi.org/10.14778/2850583.2850594
Yasushi Ogawa and Toru Matsuda. 1998. Optimizing query evaluation in n-gram

indexing. In Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval. 367-368,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wamwrlght, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in neural information processing systems 35 (2022), 27730-27744.

Tobias Schmidt, Andreas Kipf, Dominik Horn, Gaurav Saxena, and Tim Kraska.
2024. Predicate Caching: Query-Driven Secondary Indexing for Cloud Data
Warehouses. In Companion of the 2024 International Conference on Management
of Data, SIGMOD/PODS 2024, Santiago AA, Chile, June 9-15, 2024, Pablo Barceld,
Nayat Sanchez-Pi, Alexandra Meliou, and S. Sudarshan (Eds.). ACM, 347-359.
https://doi.org/10.1145/3626246.3653395

Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and Gautam Das.
2020. Astrid: Accurate Selectivity Estimation for String Predicates using Deep
Learning. Proc. VLDB Endow. 14, 4 (2020), 471-484. https://doi.org/10.14778/
3436905.3436907

Mihail Stoian, Andreas Zimmerer, Skander Krid, Amadou Latyr Ngom, Jialin
Ding, Tim Kraska, and Andreas Kipf. 2025. Parachute: Single-Pass Bi-Directional
Information Passing. arXiv:2506.13670 [cs.DB] https://arxiv.org/abs/2506.13670
Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and Efficient Foundation Language Models. arXiv
preprint arXiv:2302.13971 (2023).

Dominic Tsang and Sanjay Chawla. 2011. A robust index for regular expression
queries. In Proceedings of the 20th ACM international conference on Information
and knowledge management. 2365-2368.

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Vaidya, Wenjian Dong,
Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf, and Tim
Kraska. 2024. Why TPC is not enough: An analysis of the Amazon Redshift fleet.
Proceedings of the VLDB Endowment 17, 11 (2024), 3694-3706.

Alexander van Renen and Viktor Leis. 2023. Cloud Analytics Benchmark. In
VLDB.

Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Miihlbauer, Thomas Neumann, and Manuel Then. 2018. Get Real:
How Benchmarks Fail to Represent the Real World. In DBTest.

Junchang Wang and Manos Athanassoulis. 2024. CUBIT: Concurrent Updatable
Bitmap Indexing. Proceedings of the VLDB Endowment 18, 2 (2024), 399-412.
Laurence A. Wolsey. 2020. Integer Programming. John Wiley & Sons, Inc. https:
//doi.org/10.1002/9781119606475

Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range
Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 International
Conference on Management of Data. 323-336.

Ling Zhang, Shaleen Deep, Jignesh M. Patel, and Karthikeyan Sankaralingam.
2025. An Evaluation of N-Gram Selection Strategies for Regular Expression
Indexing in Contemporary Text Analysis Tasks. arXiv:2504.12251 [cs.DB]
https://arxiv.org/abs/2504.12251

Andreas Zimmerer, Damien Dam, Jan Kossmann, Juliane Waack, Ismail Oukid,
and Andreas Kipf. 2025. Pruning in Snowflake: Working Smarter, Not Harder.
In Companion of the 2025 International Conference on Management of Data, SIG-
MOD/PODS 2025, Berlin, Germany, June 22-27, 2025, Volker Markl, Joseph M.
Hellerstein, and Azza Abouzied (Eds.). ACM, 757-770. https://doi.org/10.1145/
3722212.3724447

https://doi.org/10.3906/ELK-1806-96
https://doi.org/10.1016/J.ESWA.2020.113762
https://doi.org/10.1145/3639309
https://doi.org/10.1287/ijoo.2018.0001
https://doi.org/10.1287/ijoo.2018.0001
https://arxiv.org/abs/2402.17702
https://arxiv.org/abs/2402.17702
https://doi.org/10.1016/j.ejor.2024.11.018
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1145/3589285
https://doi.org/10.1145/3626246.3653379
https://doi.org/10.1145/3698820
https://doi.org/10.1145/3698820
https://www.gurobi.com
https://www.gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/3626246.3653395
https://doi.org/10.14778/3436905.3436907
https://doi.org/10.14778/3436905.3436907
https://arxiv.org/abs/2506.13670
https://arxiv.org/abs/2506.13670
https://doi.org/10.1002/9781119606475
https://doi.org/10.1002/9781119606475
https://arxiv.org/abs/2504.12251
https://arxiv.org/abs/2504.12251
https://doi.org/10.1145/3722212.3724447
https://doi.org/10.1145/3722212.3724447

	Abstract
	1 Introduction
	2 Instance-Optimized Fingerprints
	2.1 Optimal Partitioning

	3 Evaluation
	3.1 Table Scan Speedup

	4 Conclusion & Future Work
	References

