
Grounding LLMs for Database Exploration: Intent Scoping and
Paraphrasing for Robust NL2SQL

Catalina Dragusin∗
ETH Zurich

Zurich, Switzerland
catalina.dragusin10@gmail.com

Katsiaryna Mirylenka∗
Zalando Switzerland AG
Zurich, Switzerland

katya.mirylenka@zalando.ch

Christoph Miksovic Czasch
IBM Research

Zurich, Switzerland
cmi@zurich.ibm.com

Michael Glass
IBM Research

Yorktown NY, Unites States
mrglass@us.ibm.com

Nahuel Defosse
IBM Research
Nairobi, Kenya

nahuel.defosse@ibm.com

Paolo Scotton
IBM Research

Zurich, Switzerland
psc@zurich.ibm.com

Thomas Gschwind
IBM Research

Zurich, Switzerland
thg@zurich.ibm.com

ABSTRACT
Large language models (LLMs) hold immense promise for democra-
tizing data access through natural language interaction with com-
plex databases. This paper addresses the challenge of accurately
translating user intent into executable SQL queries (NL2SQL) by
introducing a novel framework that enhances LLM-driven data-
base exploration. Our approach centers on two key techniques:
user intent scoping, which assesses a query’s answerability against
the database schema, and high-quality paraphrasing. User intent
scoping classifies queries as fully answerable, partially answerable,
or out-of-scope, providing crucial user guidance and preventing
misinterpretations. High-quality paraphrasing augments training
data with diverse, semantically equivalent query formulations. By
selectively preserving critical entities while varying linguistic struc-
ture, this technique improves the robustness and generalizability
of LLM-based NL2SQL systems. We evaluate our framework on
two public cross-domain datasets (Spider and Bird) and a propri-
etary business intelligence dataset. Results demonstrate significant
improvements in query accuracy and user guidance compared to
baseline methods. Notably, paraphrasing enhances performance in
fine-tuning and retrieval-augmented prompting scenarios. Scope
detection effectively identifies and manages out-of-scope and par-
tially answerable queries, facilitating more effective data explo-
ration. This work paves the way for more reliable and user-friendly
LLM-powered systems for navigating and querying tabular data
with low annotation and medium engineering efforts.

VLDBWorkshop Reference Format:
Catalina Dragusin∗, Katsiaryna Mirylenka∗, Christoph Miksovic Czasch,
Michael Glass, Nahuel Defosse, Paolo Scotton, and Thomas Gschwind.
Grounding LLMs for Database Exploration: Intent Scoping and
Paraphrasing for Robust NL2SQL. VLDB 2025 Workshop: Applied AI for
Database Systems and Applications (AIDB 2025).

*Work performed while Catalina D. was a Master’s student and Katsiaryna M. was a
staff research scientist at IBM Research, Zurich, Switzerland.

1 INTRODUCTION
The democratization of data access is crucial for informed decision-
making across diverse domains [15, 27]. Large language models
(LLMs) possess immense potential to facilitate natural language ex-
ploration of domain-specific tabular data within institutional data
warehouses [11, 26, 51], contributing to the reliable conversational
data analytics [1]. This empowers both technical and non-technical
users to seamlessly interact with data, fostering data-driven in-
sights. However, developing a reliable LLM-based system requires
solving key challenges, such as effectively aligning user natural
language intent with the specific domain of the underlying database
schema [24]. This work aims to leverage the inherent capabilities
of out-of-the-box LLMs, primarily in a few-shot setup, to assess the
extent to which practitioners can rely solely on LLMs for building
robust natural language applications.

Natural Language to SQL (NL2SQL) is a critical task that trans-
lates natural language questions into executable SQL queries [22].
Traditional domain alignment in NL2SQL often involves schema
annotation, such as creating seed lexicons [42] or utilizing domain-
specific dictionaries/ontologies [33]. These methods can be cum-
bersome and limit flexibility, particularly when user intent deviates
from predefined vocabularies or schema annotations.

The advent of LLMs has revolutionized NL2SQL, offering com-
pelling solutions due to their exceptional natural language under-
standing [11]. LLM-based NL2SQL approaches primarily involve
fine-tuning [37] or in-context learning [7, 30]. Retrieval-Augmented

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Generation (RAG) [21] further enhances performance by incorpo-
rating information from external knowledge bases, such as the data-
base itself [48] or question-SQL pairs [8]. RAG improves grounding
and reduces hallucinations, but its effectiveness is based on accurate
semantic retrieval. Retrieval Augmented Prompting, a specific type
of RAG, uses similar question-SQL pairs as few-shot examples [4].

Fine-tuning and Retrieval Augmented Prompting rely on domain-
specific NL2SQL samples, often expert-crafted or synthetic. Aug-
mentation, notably LLM-driven paraphrasing, boosts data diversity.
Fine-tuning and Retrieval Augmented Prompting rely on domain-
specific NL2SQL samples, often expert-crafted or synthetic. Aug-
mentation, notably LLM-driven paraphrasing, boosts data diversity.
However, while LLMs excel at general paraphrasing [45], a generic
paraphrase can be detrimental for NL2SQL, as it may alter criti-
cal entities (e.g., IDs, numerical values) essential for a correct SQL
query. Our work introduces a controlled paraphrasing technique
specifically for data augmentation. It reliably preserves essential
entities while generating diverse linguistic variations of the user’s
intent, creating a more robust training set for downstream NL2SQL
models.

To enhance domain adaptation in NL2SQL systems, we incor-
porate LLM-based scope detection. This process, also known as
user intent scoping [50], determines the coverage of a user’s query
by the database schema, assessing whether the database contains
the necessary information to answer it. This classification, which
divides queries into fully answerable, partially answerable, and out-
of-scope categories, precedes SQL generation. By identifying and
filtering out-of-scope queries, we mitigate error propagation and
ensure schema adherence. Furthermore, for partially answerable
queries, our approach enables proactive elicitation of user clarifica-
tion, facilitating iterative refinement and improving the precision
of data retrieval. This mechanism promotes a more robust and
user-centric interactive data exploration paradigm.

Main Contributions. We propose a novel bilateral approach
to enhance LLM-based SQL generation and domain adaptation
consisting of:

(1) User Intent Scoping We introduce a novel method to
classify user queries as in-scope, partially in-scope, or out-
of-scope. This guides users and improves SQL generation
accuracy by flagging unanswerable queries and suggesting
answerable portions for partially in-scope questions.

(2) High-Quality Paraphrasing: We develop a paraphrasing
technique incorporating named entity recognition (NER)
and index classification to capture user intent across diverse
natural language variations.

We evaluate our methods on three datasets: two public cross-
domain benchmarks and a proprietary domain-specific dataset con-
taining Business Intelligence data. The proprietary dataset presents
additional challenges as it is not statistically covered by general
LLM knowledge. The results demonstrate the efficiency of the scope
detection method that improves the user experience by providing
clear guidance on query answerability. Additionally, paraphrasing
improves NL2SQL generation accuracy for both fine-tuned LLMs
and RAG-assisted approaches. The code for this work is provided
in supplementary material.

2 RELATEDWORK
The NL2SQL task aims to bridge the gap between non-technical
users and database systems by generating SQL queries from natural
language questions [11]. Traditional methods, including rule-based
approaches [23] and deep learning techniques [9, 40], struggle with
complex queries [17].

Recent advancements in LLMs have provided promising alter-
natives due to their robust language understanding, flexibility, and
conversational capabilities [6]. The potential for fine-tuning and
in-context learning has been widely explored [7, 25, 37], with fur-
ther improvements gained by adapting LLMs for specific structured
tasks [3] and employing techniques like Reinforcement Learning
from AI Feedback (RLAIF) to enhance generation quality [10].

The success of LLMs in NLP tasks, including NL2SQL, is largely
attributed to the transformer architecture [39] and its self-attention
mechanisms. These mechanisms enable efficient training on large
datasets and effective handling of long-range dependencies. Fine-
tuning these pre-trained models has demonstrated significant im-
provements in domain-specific applications such as NL2SQL [25].

Recognizing unanswerable questions is crucial for robust NL2SQL
systems. Zeng et al. [50] proposed a system that classifies questions
as translatable or not using a classifier. Similarly, Kochedykov et
al. [18] incorporated an Out-Of-Domain question detection compo-
nent. In this work, we propose a hybrid approach that combines in-
formation retrieval and LLM-based NER for robust scope detection,
effectively guiding users towards available database information.

Named Entity Recognition (NER) plays a critical role in identi-
fying and categorizing entities within text. Recent work, such as
GPT-NER [41], has adapted NER to a text generation task. Building
upon these ideas, we developed an LLM-based NER approach that
associates named entities with database columns.

Synthetic data generation is crucial for efficient LLM fine-tuning.
Techniques like Self-Instruct [43] utilize LLMs to generate training
examples. In the context of NL2SQL, data augmentation is exten-
sively employed [25, 34, 36, 37]. Sun et al. [37] generate synthetic
data by creating diverse SQL queries. Li et al. [25] introduce a bi-
directional data augmentation method involving Question-to-SQL
and SQL-to-Question generation. Paraphrasing is also used for data
augmentation in NL2SQL, aiming to introduce more variability in
the training data [34, 36]. In this work, we introduce a controlled,
high-quality user query paraphrasing that retains the entities of
the initial question. A complementary approach to handle data
scarcity is active learning, which focuses on intelligently select-
ing the most informative samples for annotation from a pool of
unlabeled data [44].

Beyond data augmentation, paraphrasing is also leveraged for
improved LLM evaluation by enhancing the diversity of reference
texts [38]. However, evaluating the quality of paraphrases poses a
challenge, necessitating a combination of human evaluation and au-
tomatic metrics [35], the approach that we also follow and enhance
in this work.

3 PRELIMINARIES
In this paper, we establish the following definitions:

Entity is a real-world object such as a person, address, or country,
that corresponds to a database column. Unlike the classical named

entities, each entity in this context refers to one column in the given
database. Therefore, in this setting, the task of NER aims to identify
the entities that can be associated with a column, instead of those
that can be assigned to a predefined class.

Definition 1. (Entity) Given a databaseD, consisting of n tables
𝑇1,𝑇2, ..., 𝑇𝑛 , where each table 𝑇𝑖 has the columns 𝐶𝑖1,𝐶𝑖2, ...,𝐶𝑖𝑚𝑖

where 𝑚𝑖 represents the number of columns in table 𝑇𝑖 . A term 𝑥

that is part of a string of text symbols 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑡 } can be
identified as an entity 𝜖 if it corresponds to a column𝐶𝑖 𝑗 inD, where
𝑖 ∈ {1, 2, ..., 𝑛} and 𝑗 ∈ {1, 2, ...,𝑚𝑖 }: 𝜖 : 𝑥 ∼ 𝐶𝑖 𝑗 .

Definition 2. (ColumnMatching Logic) Considering the database
D mentioned in Definition 1, we define three types of matching
logic for column content: exact, approximate, and semantic. These
types dictate the appropriate comparison strategy for values within a
column.1 The nature of these types is explained hereafter.

The indexing and search strategy for columns will depend on their
assigned matching logic. We consider three types:

Exact matching for column 𝐶 means that a query 𝑞 should be
matched exactly with a value 𝑣 in 𝐶: 𝐼𝑒 (𝑞,𝐶) = {𝑣 ∈ 𝐶 | 𝑣 = 𝑞}.

Approximatematching for column𝐶 assumes that fuzzy match-
ing is required, where a query 𝑞 matches a value 𝑣 if their edit
distance 𝑑 (𝑞, 𝑣) is below a threshold 𝑑𝑚𝑎𝑥 : 𝐼𝑎 (𝑞,𝐶, 𝑑𝑚𝑎𝑥) = {𝑣 ∈
𝐶 | 𝑑 (𝑞, 𝑣) ≤ 𝑑𝑚𝑎𝑥 }.

Semantic matching for column 𝐶 refers to matching a query 𝑞
with a value 𝑣 based on its meaning, using a semantic similarity
function 𝑠 (𝑞, 𝑣). A match occurs if their similarity 𝑠 (𝑞, 𝑣) is above a
threshold 𝑡 : 𝐼𝑠 (𝑞,𝐶, 𝑡) = {𝑣 ∈ 𝐶 | 𝑠 (𝑞, 𝑣) ≥ 𝑡}.

4 PROBLEM FORMULATION
The NL2SQL task seeks to accurately map user queries to executable
SQL. Cross-domain generalization remains a significant challenge
due to variations in schema and user intent. In this paper we address
two core subproblems for enhanced domain adaptation:

Scope Detection (Query Answerability): Given a user ques-
tion q and a database D, the task of scope detection aims to decide
whether the question q can be answered using the information
in the database D (i.e. in scope of the given database D), can be
partially addressed using the information in the database D (i.e.
partially in scope of the given database D) or not at all (i.e. out of
scope). Therefore, if Q is the set of all possible user questions 𝑞, the
goal of this task is to determine a function 𝑓 : Q → {0, 1, 2} that
would assign each user question 𝑞 ∈ Q a label in the set of labels
{0, 1, 2}, where 0 corresponds to not in scope, 1 to in scope and 2 to
partially in scope, given the information in database D.

High-quality paraphrasing: Given a user question 𝑞 and a
databaseD, the task of high-quality paraphrasing requires to output
a paraphrase P(𝑞) that maintains the idea or intent of the original
question 𝑞. Moreover, all identified named entities in question 𝑞

should be preserved in their exact, approximate, or semantically
equivalent forms depending on their type. Let the set of identified
entities in the question 𝑞 be 𝐸 = {𝜖1, 𝜖2, ..., 𝜖𝑛}. From Definition 1,

1While the term ’index’ in traditional SQL databases refers to a specific data structure
for performance, in this context, we use these terms to describe the matching logic
required for a given column’s content, which informs subsequent search and processing
strategies.

we know that each entity 𝜖𝑖 ∈ 𝐸 is associatedwith a column𝐶𝑖 in the
databaseD and, from Definition 2, we know that each column𝐶𝑖 is
associated with an index type 𝐼𝑖 which is either exact, approximate
or semantic (𝐼𝑖 ∈ {𝐼𝑒 , 𝐼𝑎, 𝐼𝑠 }). If the index 𝐼𝑖 is semantic (𝐼𝑖 = 𝐼𝑠), it
is desirable that the entity 𝜖𝑖 is paraphrased so that the variability
of the dataset increases. Otherwise, if the index 𝐼𝑖 is not semantic
(𝐼𝑖 ∈ {𝐼𝑒 , 𝐼𝑎}), the entity 𝜖𝑖 should be preserved in its original form.

5 PROPOSED APPROACHES
This section details our framework, which consists of two primary
capabilities—Scope Detection and Paraphrasing—built upon a foun-
dation of three shared, auxiliary components: Column Type Clas-
sification, Named Entity Recognition (NER), and Entity Search.
Figure 1 illustrates the integrated workflow, showing how foun-
dational components provide essential information for the main
user-facing capabilities.

Paraphrasing

Scope Detection

Paraphrased questions

Scope Label & Clarification

NER (LLM-based)

Column Type
Classifier

Entity Search

User Question

DB Schema

DB Content

IOB Annotated
Content (optional)

Identified entities

Column

match
 logic

Column
match logic

Identified
entities

Search

Hits

Figure 1: Natural Language Question processing pipeline for
better SQL generation and user experience

5.1 LLM-based Named Entity Recognition
Given that only a limited amount of NL2SQL datasets contain an-
notated named entities within utterances along with their start
and end positions (IOB), developing a NER method is instrumental
for the paraphrasing approach. As noted in Definition 1, this task
is slightly different from the classic NER as the entities have to
correspond to database columns. Simultaneously, it partially resem-
bles schema linking, as both tasks aim to map parts of a natural
language question to elements of a database schema [16, 20]. The
distinction lies in the fact that our task focuses exclusively on con-
dition values (i.e. the literals used in the "WHERE" clause), whereas
schema linking additionally aims to identify the column and ta-
ble names mentioned in the utterance. This task is also related
to the broader challenge of entity matching in databases, where
various techniques, including graph-based neural networks, have
been applied [19].

The decision to employ an LLM is motivated by the lack of
suitably annotated datasets required to train a traditional NER
tagger, and by the high variability of entity types (i.e., column
names), which change for each database.

Inspired by the work on LLM-based NER such as GPT-NER [41],
we propose a system that leverages a high-quality LLM in conjunc-
tion with domain knowledge from the database schema to extract

relevant entities without extensive additional training. This ap-
proach relies on the LLM’s inherent ability to understand language
and the provided schema information to reason about and identify
essential entities.

The approach takes as input an utterance and a database schema
and aims to identify potential named entities that correspond to
columns in the schema. It, then, returns a list of these identified
named entities in a specified JSON format which is provided in Ap-
pendix 9.4. We propose a NER component, leveraging the capabili-
ties of an LLM, specifically Mistral-7B [13] that uses the following
prompt:

Input
Given the schema below, carefully consider and extract the named entities from the
user question:
user question = {utterance}
schema = {db_schema}
Produce the answer in the following json format {json_format}.
There can be one or more named entities.
Each entity is an individual entry in the response:
- put the entity value in the "entity_value" field
- put the corresponding schema column name in the "column_name" field
- put the corresponding schema table name in the "table_name" field
Output:

Although the model receives a specific JSON format for the out-
put, it may not always adhere to it.We implemented post-processing
with regular expressions to parse the output. Each extracted triplet
(entity value, column name, table name) is then validated: (a) the
entity value must be a substring of the original utterance; (b) the
table name must exist in the schema; (c) the column name must
belong to the identified table. In cases of unrecoverable parsing
errors (e.g., malformed JSON), the sample is considered a failure for
that attempt. The proposed LLM-based NER workflow is illustrated
in Figure 2.

5.2 Column Matching Logic Classification
The second auxiliary approach – column matching logic classifi-
cation – aims to automatically assign the appropriate type (exact,
approximate or semantic) to each database column. To achieve this,
a form of data profiling [29] is conducted by computing different
statistics for each column, which is subsequently used as features
for training a machine learning classifier. These includes:

• Textual characteristics: average number of tokens and aver-
age value length to capture the textual complexity of the
data (e.g., if the text is more complex, it would likely need
a semantic comparison).

• Length distribution: variance of the column value length
(e.g., if the variance is higher, a more flexible type of com-
parison may be needed for the column entities such as
approximate or semantic).

• Data type: to identify inherent matching capabilities (e.g., a
date should not be matched semantically, numbers should
be matched exactly).

• Uniqueness: the number of unique values in a column and
the ratio between the number of unique values in the col-
umn and the number of unique values in the entire table
to understand the potential for exact matching (e.g., if all
the values in a column are different, then, exact matching
should be used such as in the case of ids).

In order to better capture the uniqueness of the text fields, TF-IDF
and perplexity were first used in a series of experiments. As these
measures did not lead to an improvement in classifier performance,
they were omitted from the list of features. Manual feature selection
was employed: all the selected features improved the performance
of the classifier, while the ones that did not change or degraded the
performance were discarded.

A Random Forest classifier [28] was trained on these features
for the classification task. An index type classification algorithm
was wrapped around the column type classifier, taking as input the
database id, the name of the column and table of interest, and re-
turning the predicted index type. The pseudo-code of the algorithm
(and further proposed algorithms within this work) together with
the hyperparameters for the classifier are available in Appendix.

5.3 Entity Search
The entity search component, an auxiliary subcomponent of the
scope detection module, takes as input an entity query (which can
be a word or multiple words) and a database and searches the query
across all columns in that database. This functionality can be useful
for determining whether the information required to answer a user
question can be found within the provided database.

The search service first retrieves the appropriate column type
(exact, approximate, or semantic) as determined by the column
classifier. It then employs a different search strategy based on the
type:
Exact: Performs exact matching by querying the database and
checking if any column values match the input (e.g., phone numbers
or product identifiers).
Approximate: Utilizes fuzzy search using Elasticsearch2 to accom-
modate minor variations in the query (e.g., "Cisco Inc." vs. "Cisco
Incorporated").
Semantic: Leverages a vector store to retrieve the most seman-
tically similar results, using BAAI general embedding (BGE) [47]
as the embedding model and the cosine similarity as a similarity
function, filtered by a threshold, to handle situations where the
searched term might be phrased differently.

5.4 Scope Detection
As described in Section 4, the scope can be classified into three
categories illustrated in Figure 3:
In Scope: The query entirely refers to information present in the
database (e.g., "Which is the item with the lowest price that I can
order?").
Partially in Scope: The query seeks information that is partially
available in the database (e.g., "Which is the email and birth date
of the customer with id 123?" if the birth date information is not
stored in the database).
Not in Scope: The query requests information not stored in the
database (e.g., "How will the weather be tomorrow?").

We propose two approaches for scope detection:
(1) Easy Scope Detection: identifies the columns mentioned in the ut-
terance by prompting an LLM (mixtral-8x7b-instruct-v01) and then
verifies their presence in the database schema. If all the identified

2https://elasticsearch-py.readthedocs.io/en/v8.13.1/

https://elasticsearch-py.readthedocs.io/en/v8.13.1/

User Question:
What are the

names of the stations that have
average bike availability above 10 and

are not located in San Jose
city?

"named_entities": [

 {

 "start": 69,

 "end": 70,

 "value": "10",

 "entity":"Status.bikes_available"

 },

 {

 “start": 95,

 "end": 102,

 "value": "San Jose",

 "entity": "Station.city"

 }

]

LLM
prompting

Parsing Validation

NER Service

Database Schema: bike_1
Station
id name lat long … city

Status
station_id bikes_available docs_available time

.

.

.

Trip
id duration start_date … bike_id

What are the
names of the stations that have

average bike availability above 10 and
are not located in San Jose

city?

Database Schema: bike_1

Station
id name lat long … city

Status
station_id bikes_available docs_available time

.

.

.

Trip
id duration start_date … bike_id

Output

Figure 2: The proposed LLM-Based NER approach

How will the weather
be tomorrow?

Which is the item with
the lowest price that I

can order?

Which is the email
and birthdate of the

customer with id 123?

orders
order_id date costumer_id

customers
customer_id name email

orders_items
order_id item_id

items
item_id name price

Database Schema:

Not in Scope
In Scope

Partially in Scope

Figure 3: Categories of scope relevance of the user question

columns are not found in the schema, then the question is consid-
ered out of scope while if all of them are present in the schema - in
scope, otherwise, the questions are labeled as partially in scope.
(2) Scope Detection with Search: This approach builds upon the "easy
scope detection" method. After the entities are identified, they are
searched in the database using the search service. The goal is to
handle cases where column names are not explicitly mentioned,
but the corresponding information is present. A question is labeled
‘out-of-scope‘ if no corresponding columns are identified in the
schema and no named entities are found in the database. It is la-
beled ‘in-scope‘ if all identified columns are present in the schema.

Otherwise, the question is considered ’partially-in-scope’. All the
relevant prompts and algorithms can be found in Appendix.

5.5 Paraphrasing
The goal of our paraphrasing component is not to pre-process a
query at inference time, but to perform offline data augmentation to
create a richer and more diverse training dataset. While LLMs are
proficient at general paraphrasing [45], naively applying them for
NL2SQL data augmentation is risky. First, specific parts of the query
are highly important for retrieving the right information and, there-
fore, must remain unchanged. For instance, in the queries: "Who
is the advisor of student with ID 10045?", "Which are the moun-
tains with a height in meters greater than 2500?". The ID "10045"
and the height "2500" should remain, as the corresponding SQL
query would have to include them in the WHERE statement (e.g.,
WHERE student.ID = "10045" or WHERE mountain.height_in_m
> "2500"). If the ID "10045" or the height "2500" is omitted or al-
tered by the LLM, the resulting SQL query will not return correct
results. Secondly, other parts of the user questions require varia-
tion in order to enhance the robustness of the NL2SQL pipeline
during training. These are notions that are semantically similar
to certain column entries in the database. For example, if a query
asks for products belonging to the "software" product category,
the product_category column could be indexed semantically and
"software" could be matched with similar entries within the prod-
uct category column (e.g., WHERE product.product_category =
"Web Applications").

To achieve paraphrasing with these considerations, we propose
to replace the identified entities in the user questions with place-
holders and, after the rest of the utterance is paraphrased, to plug
them back in, either additionally paraphrased, if the entity supports
some variation, or not.

The proposed paraphrasing approach includes the following
steps:

1. Identify Entities together with their corresponding columns
and tables, using the NER approach proposed in Section 5.1 (if
IOB is not available).
2. Classify Column Types to determines the type of entity col-
umn: exact, approximate or semantic as proposed in Section 5.2.
3.PlaceholderReplacement: the entities are replacedwith place-
holders.
4. Paraphrasing Entities: Semantic entities are paraphrased us-
ing the flan-t5-xl model [31], [5] with 𝑘1 attempts until a semantic
similarity score of at least 𝜏1 is achieved.
5. Paraphrasing Utterances using the mixtral-8x7b [14] model
with 𝑘2 attempts until the following quality conditions are met:
(a) a semantic similarity score of at least 𝜏2 but smaller than 𝜏3 is
reached (excluding paraphrases which are too similar) ; (b) the
number of placeholders in the paraphrase is equal to the number
of placeholders in the original question and the values of the
placeholders remain unchanged; (c) the length of the paraphrase
is smaller than double the length of the original question.
6. Placeholder Replacement using paraphrased entities or orig-
inal values.

The steps of the paraphrasing process together with an illustrative
example are presented in Figure 4 and Figure 5.

To ensure paraphrasing quality, cosine similarity scores were
computed for both entities and entire paraphrased utterances. The
thresholds 𝜏𝑖 , where 𝑖 ∈ {1, 2, 3}, are determined arbitrarily based
on the similarity score distribution of "good" and "bad" paraphrase
variations for both entities and utterances (Figure 6). The "good"
and "bad" labels were assigned to paraphrased entities and utter-
ances by a human evaluator. A paraphrased entity is considered
"good" if it is a synonym of the original one and "bad" otherwise
while a paraphrased utterance is considered "good" if the main idea
is preserved and the placeholders remain unchanged and "bad" if
this is not the case or if it is too similar to the original question.
The distributions were derived from an annotated held-out set of
the BI dataset by plotting the cosine similarity between the original
samples and their paraphrases. Given the histograms, entity gen-
erations were filtered with 𝜏1 = 0.7, and utterances with 𝜏2 = 0.75
and 𝜏3 = 0.95. The overlapping distributions of good and bad para-
phrases for utterances may indicate that the cosine similarity is not
the most suitable metric. A paraphrase which omits an important
detail could still be semantically similar to the original user ques-
tion. It is still useful to filter out the very low quality paraphrases
or the paraphrases which are too similar to the original utterance.
Other assessments of the quality of the paraphrase are performed
such as verifying if all the placeholders for entities are preserved
after the paraphrasing step or if the length of the paraphrase is no
more than double the length of the original user question.

6 EXPERIMENTAL EVALUATION
This section evaluates the proposed scope detection and paraphras-
ing approaches, as well as their auxiliary subcomponents.We follow
the approach hierarchy outlined in Figure 1 and assess their effec-
tiveness on the following datasets:
1. Spider [49] - a big, complex and cross-domain dataset for the
NL2SQL task, manually annotated by college students. The number
of databases in Spider is 200 and they span across 138 domains.
There dataset split is 7000/1034 question-SQL pairs for train and
dev correspondingly. In this work, only the samples from train set
are considered.
2. Bird [26] is a cross-domain dataset that is more challenging
for the task of NL2SQL due to its 95 databases which are big and
contain poorly formatted data, aiming to reflect real life data. Bird
consists of over 12,751 question-query pairs, covering more than
37 domains. The train set contains 9428 question-SQL pairs while
the dev set is made of 1534 samples.
3. Proprietary BI (Business Intelligence) dataset, covers a database
with 5 tables and 37 columns. The corpus consists of 5000 question-
query samples. The questions have the named entities annotated
together with the column and table they belong to, as well as their
start and end positions. The test set is made up of 113 human-
annotated question query pairs and 500 generated held-out samples.

6.1 Evaluation of LLM-based NER
The NER subcomponent was evaluated on manually annotated
entities for 70 randomly selected user questions of the Spider dataset.
The manual annotation was done by two NLP and DB experts with
quality control checks. Any disagreements were resolved through
discussion to establish a ground truth. The performance of the NER
component was measured by:
(A) Exact Accuracy - considers a prediction to be correct only if the
model identifies all entities perfectly, including the values, tables,
and columns.
(B) Overall Accuracy - considers a prediction partially correct if it
identifies at least one entity value or a corresponding table and
column name pair correctly. If all entities are correctly identified
for a user question, the sample receives a full score as in the case
of Exact Accuracy; otherwise, it receives a fraction of the score
proportional to how many values, column names, and table names
were correctly identified.

We focused on LLMs with permissive licenses to ensure our
methods are accessible to practitioners. Table 1 compares the per-
formance of the various LLMs that were used for the NER task.
Mistral-7b-instruct-v02 performs the best according to both exact
and overall accuracy, getting the highest number of correctly tagged
user questions. The LLM-based NER service achieved an average
exact accuracy of 53.2% and an overall accuracy of 67.3% across 20
repeated runs with a small standard deviation.

LLM-fine tuning for the NER task has potential to improve the
performance, but this would require generation of training data
that have the named entities annotated with the corresponding
database columns. Such datasets annotated by humans are expen-
sive and time consuming to produce. In addition many of the best
performing LLMs cannot be used for training data generation due
to the restrictive licensing for business needs.

Identify
named
entities

Replace
entities with

placeholders

Classify
column
indexes

Paraphrase
entities

Paraphrase
question with
placeholders

NER

Service

Index
Classifier
Service

Replace

placeholders

with
(paraphrased)

entities

Conditions:

• semantic_similarity(entity,

paraphrase > τ1)

Retry until

conditions

are met

(k1 attempts)

Retry until

Conditions

are met

(k2 attempts)

Conditions:

• semantic_similarity(question,

paraphrase > τ2)

• semantic_similarity(question,

paraphrase < τ3)

• len(paraphrase) < 2 *

len(question)

• placeholder_list(question) =

placeholder_list(paraphrase)

• and others

Figure 4: The steps of the paraphrasing process

Please identify the customers showing client name and industry name
where industry name is Computer Services.

Please identify the customers showing client name and industry name
where industry name is

$PLACEHOLDER_SEMANTIC_INDUSTRY.INDUSTRY_NAME$.

Generate a report identifying clients by their names and industries,
specifically those whose industry name matches
$PLACEHOLDER_SEMANTIC_INDUSTRY.INDUSTRY_NAME$.

Generate a report identifying clients by their names and industries,
specifically those whose industry name matches IT solutions.

Original utterance:

Utterance with placeholders:

Paraphrased utterance with
placeholders:

Paraphrased utterance with
paraphrased entities:

Figure 5: Example of the paraphrasing process

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

Entities
Good examples
Bad examples

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
0

1

2

3

4

5

6

7

Utterances
Good examples
Bad examples

Figure 6: Semantic Similarity Histogram for Paraphrased
Entities (left) and Paraphrased Utterances (right)

Table 1: Exact and Overall Accuracy of Different LLMs for
the NER Task

LLM llama-70b mixtral-8x7b falcon-180b mistral-7b
Exact A. 24.1 22.5 42.9 53.2
Overall A. 48.3 54.0 56.0 67.3

6.2 Column Classifier Evaluation
We created a labeled dataset for the column classifier from the
Spider dataset. After excluding databases without schema files, we
processed 157 databases containing 837 tables. For each column in

non-empty tables, we computed the statistical features described
in Section 5.2. From this pool, we randomly selected 350 columns
(304 textual and 46 date-based). A larger sample size was chosen
here to ensure sufficient diversity in column statistics for training
a robust classifier. Two authors manually labeled each column as
‘Exact‘, ‘Approximate‘, or ‘Semantic‘ based on its content and likely
usage in queries, with disagreements resolved by a third author. A
stratified train/val/test split (60%/20%/20%) was used to maintain
label distribution.

We compared the performance of various classifiers for this task,
namely RandomForest, KNeighbors (XGBoost), and DecisionTree
classifiers using micro-F1(accuracy) and macro-F1 scores (Table 2).
The Random Forest achieved the best performance according to
both scores, so it was used in the deployed system.

Table 2: Performance on Column Classification Task

Classifier DecisionTree XGBoost RandomForest
Micro F1 (Acc.) 64.2 74.2 80.0

Macro F1 56.7 69.6 75.4

6.3 Scope Detection Evaluation
We identified 4 categories of interest for user utterances: (A). Com-
pletely unrelated to data exploration, for example, ’How are you?’.
(B). Relevant for the domain database at hand: (B1) In the scope of
a given database; (B2) Partially in the scope; (B3) Not in the scope.
Evaluation Dataset. To create a comprehensive evaluation set,
we constructed a dataset of 400 samples, balanced across four cat-
egories, using the 9 most popular databases from the Spider and
Bird dev sets.

• Category A (Unrelated): 100 questions were randomly sampled
from the SQuAD dataset [32] and paired with a random database
to simulate completely irrelevant queries. These were labeled as
‘out-of-scope‘.

• Category B1 (In-Scope): 100 questions were randomly sampled
from the dev sets and paired with their correct database, labeled
as ‘in-scope‘.

• Category B2 (Partially In-Scope): 100 in-scope questions were
taken, but their corresponding database schemas were program-
matically altered by removing one or more columns essential
for answering the question. These were labeled as ‘partially-in-
scope‘.

• Category B3 (Out-of-Scope, Domain Mismatch): 100 ques-
tions from the dev sets were paired with a randomly chosen
database *other than* their correct one, simulating queries that
are topically relevant but mismatched to the specific database.
These were also labeled ‘out-of-scope‘.

This construction method provides a challenging benchmark that
tests a system’s ability to distinguish not just relevant from irrele-
vant queries, but also fully answerable from partially answerable.

Other works which present scope detection approaches [18, 50]
do not state the results of the scope detection component separately,
providing only the performance of their whole NL2SQL systems
with other evaluation datasets. Because of this, we use as a baseline
the results of the vanilla LLM (mixtral-8x7b-instruct-v01) prompt
(please see Appendix) in zero-shot fashion.

Table 3: Scope Detection (SD) Results

Spider Dev Bird Dev
Method Accuracy Macro F1 Accuracy Macro F1
LLM baseline 39.25 39.58 34.50 34.65
Easy SD 74.50 69.29 66.00 58.07
SD with Search 74.25 69.88 56.00 54.10

The results for Spider dev and Bird dev are provided in Table 3.
The most common problem for the pure LLM-based approach is
that the ‘not is scope‘ and the ‘partially in scope‘ classes are heavily
confused. Most probably this is because LLM is not fully aware of
the domain of the used databases. The easy scope detection method
performs the best while the scope detection with search approach
is performing similarly for Spider but worse for Bird. We expect
that it could be further improved by increasing index classification
and search quality. Confusion matrices for scope detection methods
are provided in Appendix.

6.4 Paraphrasing Evaluation
We used the following paraphrasing quality evaluation metrics:
Cosine Similarity Score (CSS). measures the semantic similar-
ity between the original utterance and its paraphrase both being
projected in the same embedding space.3 As paraphrases that are
too similar to the original are not informative, we penalize scores
above a threshold (0.98) by setting them to zero.

3BAAI general embedding (BGE) [47] was used as the embedding model to calculate
the cosine similarity. BGE is one of the best performing text embedding models [12].

Human evaluation score (HES).𝐻𝐸𝑆 = 0.5×𝑝𝑎𝑟𝑎𝑝ℎ𝑟𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒+
0.5 × 𝑛𝑎𝑚𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 , where

𝑝𝑎𝑟𝑎𝑝ℎ𝑟𝑎𝑠𝑒_𝑠𝑐𝑜𝑟𝑒 =


0 changed intent
0.5 partially good
1 same intent

and 𝑛𝑎𝑚𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠_𝑠𝑐𝑜𝑟𝑒 for each entity is defined as follows: (i)
if it belongs to a column which should have a semantic index:
𝑛𝑎𝑚𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 = ⊮(if paraphrased) (ii) if it belongs to a col-
umnwhich should not have a semantic index:𝑛𝑎𝑚𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑦_𝑠𝑐𝑜𝑟𝑒 =
⊮(if kept the same) . The final HES is the average of the paraphrase
score and the average of all entity scores.

We compared the performance of several LLMs for paraphrasing
with the results demonstrated in Table 4. The table includes the
number of paraphrases generated for a set of 20 utterances and the
time taken. Mixtral-8x7b-instruct-v0-1 without few-shots has the
best trade-offs between quality (number of good paraphrases) and
efficiency (inference time). This model was chosen for paraphrasing
service deployment.

Table 4: Successful Paraphrasing generation over 20 trials

Model # of Successes Time
mistral-7b 18/20 3m50.76s

mixtral-8x7b 16/20 3m40.74s
mixtral-8x7b-gptq 15/20 23m19.68s*

mistral-7b w/o few-shots 19/20 3m25.98s
mixtral-8x7b w/o few-shots 20/20 2m57.12s

*The higher runtime may be due to overhead from the specific quantization
library or suboptimal hardware configuration.

Table 5 presents results for cosine similarity score (using BGE
embeddings) and human evaluation score (HES) for all the three
datasets for the paraphrase generation task, showing that the pro-
posed approach of high-quality paraphrasing outperforms the base-
line approaches.

cosine similarity (BGE) Human Eval. Score (HES)
Dataset Our Mixtral Our Mixtral
Spider 88.1 85.9 92.5 82.5
Bird 89.8 85.9 96.3 81.3
BI 88.5 88.0 92.8 89.0

Table 5: Paraphrasing assessment with different evaluation
strategies

Fine Tuning results are provided in Table 6. We first use original
train set of the benchmark for fine-tuning to get the generation
accuracy results. Then, the training set is augmented with para-
phrasing, the same model is fine-tuned with the augmented set and
evaluated for comparison. For the BI dataset we used a Granite 20B
model, while for the others we used a Deepseek 6.7B model. Models

have been trained using 8x NVIDIA A100 80GB cards as acceler-
ators using the SFTTrainer from TRL and leveraging DeepSpeed
ZeRO-3.

RAG. In this experiment, we use Qdrant4 as a vector store and
all-MiniLM-L6-v25 as for semantic embeddings. Two collections
of embeddings are created and used for retrieving the three shots
to a user question: one which contains all train samples and the
other which contains all train samples plus their paraphrases. The
execution accuracy results for the three datasets are provided in
Table 6.

Table 6: Effect of paraphrasing added to SFT and RAG for
SQL execution accuracy

Dataset SFT SFT + paraph. RAG RAG + paraph.
SPIDER 81.1 79.7 54.6 54.4
BIRD 54.1 54.7 54.7 55.1
BI 83.2 84.4 84.7 85.3

Paraphrases are indeed helpful for better SQL generations, pro-
ducing accuracy increase in all the classes of SQL complexity for
Bird and BI datasets. At the same time, paraphrasing was not help-
ful for the Spider benchmark. Apparently, most of the samples in
Spider already have up to 6 human created paraphrases per SQL.
This is not the case for the other two datasets, that initially have
one unique utterance per SQL and do benefit from augmentation
with paraphrasing.

7 CONCLUSION
In this paper, we introduced a framework to improve the reliabil-
ity and domain adaptability of LLM-driven database exploration
systems. Our contributions are twofold: a user intent scoping mech-
anism to classify query answerability, and a high-quality paraphras-
ing technique for data augmentation.

Our scope detectionmethod effectively identifies in-scope, partially-
in-scope, and out-of-scope queries. By filtering unanswerable ques-
tions before the SQL generation stage, this component can prevent
the system from producing incorrect or nonsensical queries for
invalid user intents – a common source of LLM ‘hallucinations‘.
This aligns with the broader goal of improving system reliability. It
touches upon the challenge of understanding model uncertainty,
where recent work has explored consistency-based hypotheses to
quantify uncertainty in both general LLMs [46] and specific Text-
to-SQL applications [2]. Scope detection also provides a mechanism
for interactive systems to request user clarification, leading to a
more robust user experience.

Our controlled paraphrasing technique successfully augments
training data, improving the performance of both fine-tuned and
RAG-based NL2SQL models, especially on datasets that lack initial
linguistic diversity like BIRD and our proprietary BI set.

8 LIMITATIONS AND FUTUREWORK
Our work has several limitations that open avenues for future
research. First, the current components focus on mapping entities
4https://qdrant.tech/
5https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

and scoping intent, but do not generate complex SQL constructs like
multi-table joins or nested subqueries. Integrating our framework
into a full end-to-end system that handles such complexity is a key
next step. Second, the performance of our framework is dependent
on the accuracy of its underlying LLM-based components (e.g.,
NER). Errors in these foundational steps can propagate. Future work
could explore hybrid methods that combine LLM flexibility with
rule-based checks for greater accuracy. Finally, our experiments
used established open-source models. Evaluating the framework
with newer, state-of-the-art LLMs could yield further performance
improvements. We believe the principles of intent scoping and
controlled paraphrasing will remain vital for building the next
generation of trustworthy and user-friendly NL2SQL systems.

REFERENCES
[1] Sihem Amer-Yahia, Jasmina Bogojeska, Roberta Facchinetti, Valeria Franceschi,

Aristides Gionis, Katja Hose, Georgia Koutrika, Roger Kouyos,Matteo Lissandrini,
Silviu Maniu, Katsiaryna Mirylenka, Davide Mottin, Themis Palpanas, Mattia
Rigotti, and Yannis Velegrakis. 2025. Towards Reliable Conversational Data
Analytics. In 28th International Conference on Extending Database Technology,
EDBT 2025. OpenProceedings. org, 962–969.

[2] Debarun Bhattacharjya, Balaji Ganesan, Michael Glass, Junkyu Lee, Radu Mari-
nescu, Katsiaryna Mirylenka, and Xiao Shou. 2024. Consistency-based Black-box
Uncertainty Quantification for Text-to-SQL. In NeurIPS 2024 Workshop on Statis-
tical Foundations of LLMs and Foundation Models.

[3] Robin Chan, Katsiaryna Mirylenka, Thomas Gschwind, Christoph Miksovic,
Paolo Scotton, Enrico Toniato, and Abdel Labbi. 2024. Adapting LLMs for Struc-
tured Natural Language API Integration. In EMNLP. 991–1000.

[4] Xiang Chen, Lei Li, Ningyu Zhang, Xiaozhuan Liang, Shumin Deng, Chuanqi
Tan, Fei Huang, Luo Si, and Huajun Chen. 2022. Decoupling knowledge from
memorization: Retrieval-augmented prompt learning. NeurIPS 35 (2022), 23908–
23922.

[5] HyungWon Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay,William Fedus,
Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2024.
Scaling instruction-finetuned language models. Journal of Machine Learning
Research 25, 70 (2024), 1–53.

[6] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey for in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

[7] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2023. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. arXiv:2308.15363 [cs.DB] https://arxiv.org/abs/2308.
15363

[8] Chunxi Guo, Zhiliang Tian, Jintao Tang, Shasha Li, Zhihua Wen, Kaixuan
Wang, and Ting Wang. 2023. Retrieval-augmented GPT-3.5-based Text-to-
SQL Framework with Sample-aware Prompting and Dynamic Revision Chain.
arXiv:2307.05074 [cs.IR] https://arxiv.org/abs/2307.05074

[9] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. In ACL.

[10] Noah Hampp and Katya Mirylenka. 2024. Reward Modeling and RLAIF for
Improved Natural Language to SQL Generation. In MML, The Mathematics of
Machine Learning Workshop, ETH Zurich.

[11] Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran
Huang, and Xiao Huang. 2024. Next-Generation Database Interfaces: A Survey
of LLM-based Text-to-SQL. arXiv:2406.08426 [cs.CL] https://arxiv.org/abs/2406.
08426

[12] HuggingFace. 2024. Massive Text Embedding Benchmark (MTEB) Leaderboard.
https://huggingface.co/spaces/mteb/leaderboard. [Online; accessed 21-May-
2024].

[13] Albert Q. Jiang, Alexandre Sablayrolles, et al. 2023. Mistral 7B.
arXiv:2310.06825 [cs.CL]

[14] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, et al. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088 (2024).

[15] Yongyao Jiang and Chaowei Yang. 2024. Is ChatGPT a Good Geospatial Data An-
alyst? Exploring the Integration of Natural Language into Structured Query Lan-
guage within a Spatial Database. ISPRS International Journal of Geo-Information
13, 1 (2024), 26.

[16] George Katsogiannis-Meimarakis, Katsiaryna Mirylenka, Paolo Scotton,
Francesco Fusco, and Abdel Labbi. 2026. In-depth Analysis of LLM-based Schema

https://qdrant.tech/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2307.05074
https://arxiv.org/abs/2307.05074
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://huggingface.co/spaces/mteb/leaderboard
https://arxiv.org/abs/2310.06825

Linking. In 29th International Conference on Extending Database Technology
(EDBT).

[17] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: Where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737–1750.

[18] Denis Kochedykov, Fenglin Yin, and Sreevidya Khatravath. 2023. Conversing
with databases: Practical Natural Language Querying. In EMNLP. 372–379.

[19] Evgeny Krivosheev, Mattia Atzeni, Katsiaryna Mirylenka, Paolo Scotton,
Christoph Miksovic, and Anton Zorin. 2021. Business Entity Matching with
Siamese Graph Convolutional Networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 15882–15883.

[20] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and
Tat-Seng Chua. 2020. Re-examining the Role of Schema Linking in Text-to-SQL.
In EMNLP, Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.).

[21] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive
nlp tasks. NeirIPS 33 (2020), 9459–9474.

[22] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The
Dawn of Natural Language to SQL: Are We Fully Ready? arXiv preprint
arXiv:2406.01265 (2024).

[23] Fei Li and Hosagrahar V Jagadish. 2014. Constructing an interactive natural
language interface for relational databases. Proceedings of the VLDB Endowment
8, 1 (2014), 73–84.

[24] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. Resdsql: Decoupling
schema linking and skeleton parsing for text-to-sql. In AAAI, Vol. 37. 13067–
13075.

[25] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, and
Renjie Wei. 2024. CodeS: Towards Building Open-source Language Models for
Text-to-SQL. arXiv:2402.16347 [cs.CL]

[26] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, et al. 2024. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
NeurIPS 36 (2024).

[27] Yunyao Li et al. 2024. Natural language interfaces to databases. Springer.
[28] Andy Liaw, Matthew Wiener, et al. 2002. Classification and regression by ran-

domForest. R news 2, 3 (2002), 18–22.
[29] Felix Naumann. 2014. Data profiling revisited. ACM SIGMOD Record 42, 4 (2014),

40–49.
[30] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed In-

Context Learning of Text-to-SQL with Self-Correction. arXiv:2304.11015 [cs.CL]
https://arxiv.org/abs/2304.11015

[31] Colin Raffel, Noam Shazeer, Adam Roberts, et al. 2023. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
arXiv:1910.10683 [cs.LG]

[32] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don’t know:
Unanswerable questions for SQuAD. arXiv preprint arXiv:1806.03822 (2018).

[33] Diptikalyan Saha et al. 2016. ATHENA: an ontology-driven system for natural
language querying over relational data stores. VLDB (2016), 1209–1220.

[34] Irina Saparina and Mirella Lapata. 2024. Improving Generalization in Semantic
Parsing by Increasing Natural Language Variation.

[35] Lingfeng Shen, Lemao Liu, Haiyun Jiang, and Shuming Shi. 2022. On the evalua-
tion metrics for paraphrase generation. arXiv preprint arXiv:2202.08479 (2022).

[36] Fatemeh Shiri, Terry Yue Zhuo, Zhuang Li, Van Nguyen, Shirui Pan, Weiqing
Wang, Reza Haffari, and Yuan-Fang Li. 2023. Paraphrasing Techniques for
Maritime QA system.

[37] Ruoxi Sun and Sercan Ö. Arik et al. 2024. SQL-PaLM: Improved Large Language
Model Adaptation for Text-to-SQL (extended). arXiv:2306.00739 [cs.CL]

[38] Tianyi Tang, Hongyuan Lu, Yuchen Eleanor Jiang, Haoyang Huang, Dongdong
Zhang, Wayne Xin Zhao, and Furu Wei. 2023. Not all metrics are guilty: Im-
proving nlg evaluation with llm paraphrasing. arXiv preprint arXiv:2305.15067
(2023).

[39] Ashish Vaswani et al. 2017. Attention is all you need. NeurIPS 30 (2017).
[40] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew

Richardson. 2021. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. arXiv:1911.04942 [cs.CL]

[41] Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang,
Jiwei Li, and Guoyin Wang. 2023. Gpt-ner: Named entity recognition via large
language models. arXiv preprint arXiv:2304.10428 (2023).

[42] Yushi Wang, Jonathan Berant, and Percy Liang. 2015. Building a Semantic Parser
Overnight. In ACL, Chengqing Zong and Michael Strube (Eds.). 1332–1342.

[43] YizhongWang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel
Khashabi, and Hannaneh Hajishirzi. 2022. Self-instruct: Aligning language
models with self-generated instructions. arXiv preprint arXiv:2212.10560 (2022).

[44] Lukas Wertz, Katsiaryna Mirylenka, Jonas Kuhn, and Jasmina Bogojeska. 2022.
Investigating active learning sampling strategies for extreme multi label text
classification. In Proceedings of the Thirteenth Language Resources and Evaluation
Conference. 4597–4605.

[45] Sam Witteveen and Martin Andrews. 2019. Paraphrasing with Large Language
Models. In ACL.

[46] Quan Xiao, Debarun Bhattacharjya, Balaji Ganesan, Radu Marinescu, Katsiaryna
Mirylenka, Nhan H Pham, Michael Glass, and Junkyu Lee. 2025. The Consistency
Hypothesis in Uncertainty Quantification for Large Language Models. In The
Conference on Uncertainty in Artificial Intelligence (UAI).

[47] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. 2023.
C-Pack: Packaged Resources To Advance General Chinese Embedding.
arXiv:2309.07597 [cs.CL]

[48] Wenbo Xu, Liang Yan, Peiyi Han, Haifeng Zhu, Chuanyi Liu, Shaoming Duan,
Cuiyun Gao, and Yingwei Liang. 2024. TCSR-SQL: Towards Table Content-aware
Text-to-SQL with Self-retrieval. arXiv:2407.01183 [cs.DB] https://arxiv.org/abs/
2407.01183

[49] Tao Yu, Rui Zhang, et al. 2018. Spider: A large-scale human-labeled dataset for
complex and cross-domain semantic parsing and text-to-sql task. arXiv preprint
arXiv:1809.08887 (2018).

[50] Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher, Michael R Lyu,
Irwin King, and Steven CHHoi. 2020. Photon: A robust cross-domain text-to-SQL
system. arXiv preprint arXiv:2007.15280 (2020).

[51] Xuanhe Zhou, Zhaoyan Sun, and Guoliang Li. 2024. Db-gpt: Large language
model meets database. Data Science and Engineering 9, 1 (2024), 102–111.

9 APPENDIX
9.1 Column Type Detection
A Random Forest classifier [28] mentioned in the paper was tuned
using the hyperparameters listed in in Table 7. Hyperparameter
tuning was performed using grid search.

Hyperparameter Value
bootstrap True
max_depth 10
max_features ’sqrt’
min_samples_leaf 1
min_samples_split 2
n_estimators 50

Table 7: Random Forest Classifier hyperparameter values

The index classifier algorithm for the column follows the steps
shown in Algorithm 1.

Algorithm 1 Column Classification
1: Input: Column and table name in the format "ta-

ble_name.column_name", 𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛 of interest, and the
database id: 𝑑𝑏_𝑖𝑑

2: Output: the predicted index type 𝑖 of 𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛

3: procedure classify_column(𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛,𝑑𝑏_𝑖𝑑)
4: 𝑐𝑜𝑙𝑢𝑚𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 ← get_column_values(𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛,𝑑𝑏_𝑖𝑑)

⊲ Get column values by querying the database
5: if len(𝑐𝑜𝑙𝑢𝑚𝑛_𝑣𝑎𝑙𝑢𝑒𝑠) = 0 or 𝑐𝑜𝑙𝑢𝑚𝑛_𝑣𝑎𝑙𝑢𝑒𝑠.dtype =

numeric then
6: 𝑖 ← ”𝐸𝑥𝑎𝑐𝑡”
7: end if
8: 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 ← get_column_features(𝑐𝑜𝑙𝑢𝑚𝑛_𝑣𝑎𝑙𝑢𝑒𝑠)
9: 𝑖 ← classifier.predict(𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠)
10: return 𝑖

11: end procedure

9.2 LLM fine-tuning Hyperparameters
Hyperparameters for LLM fine-tuning and inference are specified
in Table 8.

https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2407.01183
https://arxiv.org/abs/2407.01183
https://arxiv.org/abs/2407.01183

Algorithm 3 Easy Scope Detection
1: Input: The user question 𝑞, and the database id, 𝑑𝑏_𝑖𝑑
2: Output: the predicted scope label of the given question and database,

𝑠𝑐𝑜𝑝𝑒_𝑙𝑎𝑏𝑒𝑙
3: procedure easy_scope_detection(𝑞,𝑑𝑏_𝑖𝑑)
4: 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ← llm_identify_columns(𝑞,𝑑𝑏_𝑖𝑑) ⊲

Prompt the LLM to identify the columns in the given question
5: 𝑑𝑏_𝑠𝑐ℎ𝑒𝑚𝑎 ← get_db_schema(𝑑𝑏_𝑖𝑑)
6: 𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎 ← []
7: 𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑛𝑜𝑡_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎 ← []
8: for 𝑐𝑜𝑙𝑢𝑚𝑛 in 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do
9: if column_in_schema(𝑐𝑜𝑙𝑢𝑚𝑛,𝑑𝑏_𝑠𝑐ℎ𝑒𝑚𝑎) then
10: 𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎 ←

𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎.append(𝑐𝑜𝑙𝑢𝑚𝑛)
11: else
12: 𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑛𝑜𝑡_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎 ←

𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑛𝑜𝑡_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎.append(𝑐𝑜𝑙𝑢𝑚𝑛)
13: end if
14: end for
15: if len(𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎) = len(𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛𝑠) then
16: 𝑠𝑐𝑜𝑝𝑒_𝑙𝑎𝑏𝑒𝑙 ← ”𝑖𝑛_𝑠𝑐𝑜𝑝𝑒”
17: else if len(𝑐𝑜𝑙𝑢𝑚𝑛𝑠_𝑛𝑜𝑡_𝑖𝑛_𝑠𝑐ℎ𝑒𝑚𝑎) =

len(𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑_𝑐𝑜𝑙𝑢𝑚𝑛𝑠) then
18: 𝑠𝑐𝑜𝑝𝑒_𝑙𝑎𝑏𝑒𝑙 ← ”𝑜𝑢𝑡_𝑜 𝑓 _𝑠𝑐𝑜𝑝𝑒”
19: else
20: 𝑠𝑐𝑜𝑝𝑒_𝑙𝑎𝑏𝑒𝑙 ← ”𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦_𝑖𝑛_𝑠𝑐𝑜𝑝𝑒”
21: end if
22: return 𝑠𝑐𝑜𝑝𝑒_𝑙𝑎𝑏𝑒𝑙
23: end procedure

Hyperparameter Value
Max_Input_Tokens 8k

LoRA r 16
LoRA 𝛼 8

LoRA dropout 0.05
Optimizer AdamW
LR Weight 1e-5
Decay 0.1

Batch Size 16
Train Epochs 1

GPU A100-SXM4-80GB

Table 8: Hyperparameters for model fine-tuning and infer-
ence

9.3 Entity Search Algorithm for Scope Detection
Task

Algorithm 2 showcases the steps of the entity search subcomponent.

Algorithm 2 Search
1: Input: The search query 𝑞 and the database id 𝑑𝑏_𝑖𝑑
2: Output: the list of search results 𝑠𝑒𝑎𝑟𝑐ℎ_𝑟𝑒𝑠𝑢𝑙𝑡𝑠
3: procedure search(𝑞,𝑑𝑏_𝑖𝑑)
4: 𝑠𝑒𝑎𝑟𝑐ℎ_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← []
5: 𝑑𝑏_𝑠𝑐ℎ𝑒𝑚𝑎 ← get_db_schema(𝑑𝑏_𝑖𝑑)
6: for 𝑡𝑎𝑏𝑙𝑒 in 𝑑𝑏_𝑠𝑐ℎ𝑒𝑚𝑎 do
7: for 𝑐𝑜𝑙𝑢𝑚𝑛 in 𝑡𝑎𝑏𝑙𝑒 do
8: 𝑟𝑒𝑠𝑢𝑙𝑡 ← ””
9: 𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛 ← 𝑡𝑎𝑏𝑙𝑒 + ”.” + 𝑐𝑜𝑙𝑢𝑚𝑛

10: 𝑖 ← classify_index(𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛,𝑑𝑏_𝑖𝑑)
11: if 𝑖 = ”𝐸𝑥𝑎𝑐𝑡” then
12: 𝑟𝑒𝑠𝑢𝑙𝑡 ← exact_search(𝑞, 𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛,𝑑𝑏_𝑖𝑑)
13: else if 𝑖 = ”𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒” then
14: 𝑟𝑒𝑠𝑢𝑙𝑡 ← approximate_search(𝑞, 𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛,𝑑𝑏_𝑖𝑑)
15: else
16: 𝑟𝑒𝑠𝑢𝑙𝑡 ← semantic_search(𝑞, 𝑡𝑎𝑏𝑙𝑒_𝑐𝑜𝑙𝑢𝑚𝑛,𝑑𝑏_𝑖𝑑)
17: end if
18: if 𝑟𝑒𝑠𝑢𝑙𝑡 ≠ ”” then
19: 𝑠𝑒𝑎𝑟𝑐ℎ_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← 𝑠𝑒𝑎𝑟𝑐ℎ_𝑟𝑒𝑠𝑢𝑙𝑡𝑠.append(𝑟𝑒𝑠𝑢𝑙𝑡)
20: end if
21: end for
22: end for
23: return 𝑠𝑒𝑎𝑟𝑐ℎ_𝑟𝑒𝑠𝑢𝑙𝑡𝑠
24: end procedure

9.4 Scope Detection Algorithm and Prompts
Algorithm 3 represents the Easy Scope Detection method.

The following prompt was designed for identifying the possible
columns in a user question for the Easy Scope Detection approach:
Input:

Detect the entities which could represent columns in a
database from the given user question.

You are also given a database schema bellow. The entities
can correspond to columns in the schema below or be outside
the schema. If they correspond to the schema output the name
exactly like in the schema; if they do not correspond to the
schema output a name that would be suitable for that column.

user question = {user_question}

schema = {db_schema}

Provide the answer in the following format: {json_format_columns}
There can be one or more column names.
Please ensure that the response is valid json.

Output:

The model is also given a json format for returning the results:
json_format_columns = { "columns": [

{
"column_name": "",

},
{

"column_name": "",
},

]}

The following prompt was designed for identifying the possible
named entities in a user question for the Scope Detection with
Search approach:
Input:

Extract the named entities and/or the column, table they
belong to from the given user question.

You are also given a database schema bellow. The named
entities can correspond to columns in the schema below or be
outside the schema.

user question = {user_question}

Not
in

Sco
pe

In
sco

pe

Par
tia

lly
in

Sco
pe

Predicted

Not in Scope

In scope

Partially in Scope

Ac
tu

al

50 27 123

0 42 58

0 35 65

Scope Detection using LLM

0

20

40

60

80

100

120

Figure 7: Scope Detection Using LLM

Not
in

Sco
pe

In
sco

pe

Par
tia

lly
in

Sco
pe

Predicted

Not in Scope

In scope

Partially in Scope

Ac
tu

al

182 7 11

42 43 15

60 17 23

Easy Scope Detection

20

40

60

80

100

120

140

160

180

Figure 8: Easy Scope Detection

Not
in

Sco
pe

In
sco

pe

Par
tia

lly
in

Sco
pe

Predicted

Not in Scope

In scope

Partially in Scope

Ac
tu

al

170 12 18

3 76 21

18 36 46

Scope Detection

20

40

60

80

100

120

140

160

Figure 9: Proposed Scope Detection

schema = {db_schema}

Provide answer in the following format: {json_format}
Note that some column names or table names can be empty.
There can be one or more named entities.
Each entity is an individual entry in the response:
- put the entity value in the "entity_value" field

- put the corresponding schema column name in the
"column_name" field

- put the corresponding schema table name in the "table_name"
field

Please ensure that the response is valid json.

Output:

The model is also given a json format for returning the results:
json_format = { "entities": [

{
"entity_value": "",
"column_name": "",
"table_name": "",

},
{

"entity_value": "",
"column_name": "",
"table_name": "",

},
]}

Benchmark scope detection prompt for LLM baseline:
Input:

Given the utterance and the database schema below, take
a deep breath and classify whether the utterance can be fully
answered using the database (in scope), partially answered
using the database (partially in scope) or not answered using
the database (not in scope):

utterance = {utterance}
db_schema = {db_schema}

Output:
- 0 for not in scope,
- 1 for in scope,
- 2 for partially in scope

Output only your choice (0, 1 or 2):
###Output:

9.5 Paraphrasing Prompts
Here is the prompt designed for the utterance paraphrasing task:

Input:

You are a helpful AI language model who helps me to paraphrase
the given query. The query contains placeholders that start
and end with '\$' and begin with the word 'PLACEHOLDER'. For
example, '\$PLACEHOLDER_S_PRODUCT.PRODUCT_CATEGORY\$',
'\$PLACEHOLDER_CLIENT.CLIENT_NAME\$'. Maintain the original
meaning, while ensuring the values of the placeholders and
their order remain unchanged in the paraphrased version. Keep
the answer short and to the point, no need for elaboration.
Only output the rephrased query, nothing more. DO NOT output

an answer to the query instead of the paraphrased query.
REMEMBER, placeholders must remain unchanged.

query = {query_with_placeholders}

{previous_responses}

###Output:

For multiple paraphrase generations, when the paraphrase is
regenerated, the previous unsuccessful paraphrases are appended
together with a message instructing the model to avoid repeating
the same paraphrases and to focus on diversity.

Both the zero-shot and the few-shots approaches were employed
while experimenting with paraphrasing. In the few-shot setting,
the diversity of the paraphrases generated by the model was limited
as it tended to heavily rely on the patterns observed in the exam-
ples. Therefore, the zero-shot approach yielded superior results in
this case. However, in future work, we intend to explore different
strategies for example selection for this task, including retrieval-
augmented prompting. This would require creating a dataset of
utterance-paraphrase pairs containing placeholders, specifically
crafted for our use case.

For paraphrasing the entities, the model is provided with a few
examples using the following prompt:
Input:
You are given an entity name. Can you please give a synonym
for it? Please do not provide entire sentences that explain
what the word means.

I will give you a few examples:

"Healthcare" -> "Medical"
"Food and Beverage" -> "Culinary Industry"
"Transportation and Logistics" -> "Shipping, Transport, Supply
Chain"

entity = {entity}

###Output:

9.6 Scope detection.
The confusion matrices for various scope detection methods are
provided in Figures 7, 8, and 9.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Formulation
	5 Proposed Approaches
	5.1 LLM-based Named Entity Recognition
	5.2 Column Matching Logic Classification
	5.3 Entity Search
	5.4 Scope Detection
	5.5 Paraphrasing

	6 Experimental Evaluation
	6.1 Evaluation of LLM-based NER
	6.2 Column Classifier Evaluation
	6.3 Scope Detection Evaluation
	6.4 Paraphrasing Evaluation

	7 Conclusion
	8 Limitations and Future Work
	References
	9 Appendix
	9.1 Column Type Detection
	9.2 LLM fine-tuning Hyperparameters
	9.3 Entity Search Algorithm for Scope Detection Task
	9.4 Scope Detection Algorithm and Prompts
	9.5 Paraphrasing Prompts
	9.6 Scope detection.

