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ABSTRACT
In the complex infrastructure of today’s cloud environment, ana-
lyzing performance issues in Spark jobs is a daunting challenge.
This paper introduces AutoDebugger, an automated tool crafted
to improve the understanding of runtime anomalies in Spark jobs
and facilitate automated triaging. AutoDebugger harnesses ma-
chine learning algorithms along with a white-box prediction model
and integrates with the Spark Metrics Service to establish a com-
prehensive analytics pipeline. AutoDebugger efficiently identifies
performance outliers, and conducts thorough root cause analyses.
Notably, AutoDebugger enhances the existing Root Cause Anal-
ysis (RCA) algorithm by delivering a speedup of over 10x. Our
experiments validate AutoDebugger’s efficacy in pinpointing the
root causes of anomalies in real-world Microsoft Fabric Spark jobs,
ensuring scalability and near real-time analysis capabilities.
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1 INTRODUCTION
The flexibility and ease of use of cloud computing have fueled a sig-
nificant surge in demand over recent years, as users can seamlessly
provision and scale resources as needed. Spark has emerged as a
preferred choice for handling large datasets in analytics, supported
by major cloud vendors like Amazon AWS [1], Microsoft Azure [11],
and Google GCP [5]. In the ever-evolving realm of data processing,
the efficiency and reliability of job execution are paramount. These
cloud platforms provide extensive dashboards that monitor job exe-
cution times and other crucial metrics. Despite these advancements,
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diagnosing issues efficiently when job anomalies occur remains a
formidable challenge. Given the system complexity, slowdowns in
job execution are inevitable, caused by various system-induced or
user-induced factors [15]. For example, in the Microsoft Fabric en-
vironment [12]—an all-in-one platform for database management,
analytics, messaging, and business intelligence—over 850 recurring
Spark jobs were executed in a single week, with more than 100
exhibiting anomalies, some exceeding the average job duration by
over 10,000%. Additionally, over 40% of these jobs had instances
where execution time doubled the average. Many of these recurring
jobs are critical to company operations, and manual error triaging
of these anomalies is both slow and error-prone.

The primary goal of AutoDebugger is to enhance the understand-
ing of runtime anomalies within Spark jobs in the Fabric environ-
ment and to provide a tool for automated triaging. In the intricate
infrastructure of today’s Fabric environment, effectively analyzing
performance issues for Spark jobs has become increasingly chal-
lenging. In this paper, we present an automated root cause analysis
tool deployed in production for Fabric users across all regions. This
tool addresses several key challenges:
Fragmented Logs. In Fabric, logs are distributed and fragmented,
making manual exploration ineffective for managing the growing
volume of job instances. A comprehensive analytic pipeline should
aim to consolidate all relevant information from disparate sources.
Efficiency Requirement. The algorithm must exhibit very low
latency to ensure scalability and facilitate near real-time analysis
immediately following the completion of a customer job. Traditional
root cause analysis approaches, particularly those based on treat-
ment testing and interventional methods [2, 10, 16], often suffer
from substantial computational overhead, as they typically require
extensive counterfactual simulations or interventional data.
Lack of Labeled Data. Developing a specific classification model
that pinpoints the root cause of job anomalies necessitates labeled
data. Unfortunately, such data is unavailable in our system, making
these methods impractical for our needs [9].
Feature Correlation. Another approach to root cause analysis
leverages global interpretations of black-box models to assess fea-
ture contributions [6]. However, predicting job performance with
explainable ML models is challenging due to the large number of
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collected metrics and features. Pure black-box predictors (e.g., Grif-
fon [15] and more recent models [20]) often struggle with accuracy.

To address these challenges, we developed AutoDebugger, which
leverages machine learning algorithms in tandem with a white-box
prediction model, fully integrated with the Spark Metrics Service
that gathers a comprehensive set of metrics for Fabric Spark jobs.
A new algorithm was developed to improve on an existing state-of-
the-art Root Cause Analysis algorithm with more than 10x speed
up. AutoDebugger makes the following contributions:

• AutoDebugger incorporates domain knowledge in its anal-
ysis, revealing concrete relationships between metrics.

• We developed a HybridRCA method that improves latency
by more than 10x over state-of-the-art algorithms.

• The system is deployed in production for Microsoft Fabric
and has been widely adopted by users.

2 BACKGROUND
In Spark job execution within Fabric, we observe that jobs originat-
ing from the same Spark Job Definition (SJD) or notebook (i.e.,
recurrent jobs) often exhibit varying execution times. For instance,
consider a Spark job that performs daily aggregation of customer
interaction data across multiple regions and writes the summarized
results to a report table. Although such jobs run regularly, their
performance can vary significantly due to infrastructure-related
delays (e.g., I/O or shuffle bottlenecks) as well as evolving business
logic (e.g., increased input volume). We define an anomalous job
as a job instance whose execution time significantly exceeds ex-
pectations, as identified using state-of-the-art anomaly detection
algorithms [13]. Each job instance is associated with a large num-
ber of metrics that correlate with execution time. However, when
an anomalous job appears alongside normal jobs from the same
SJD or notebook, isolating the root causes becomes particularly
challenging. Understanding these causes is crucial for mitigating
performance issues and enhancing job reliability. Inspired by sys-
tems such as Griffon [15], our goal in this work is to provide a quan-
titative breakdown of each factor’s contribution to performance
degradation in anomalous job instances.

2.1 Spark Metrics Service
Diagnosing job anomalies is challenging due to the need for detailed
metrics. The Spark Metrics Service (SMS) addresses this by imple-
menting a Spark listener to capture metrics and a post-processing
pipeline that aggregates and stores data in Cosmos DB, providing
crucial input for analysis (Figure 1). SMS offers over 40 metrics for
Fabric Spark jobs, including read time, cores allocated, and shuffle
time, all accessible via an intuitive user interface.

Based on the collected data, several analytics pipelines, including
Anomaly Detection and Root Cause Analysis (RCA), are triggered
to diagnose job slowness. However, the RCA algorithm’s complex-
ity leads to high latency (over 100 seconds per job). Thus, a key
objective of our work is to enhance its efficiency, enabling faster
and more reliable performance analysis.

3 ALGORITHM
In this section, we present the proposed algorithm for efficient root
cause analysis, named HybridRCA.

Figure 1: End-to-end architecture of Spark Metrics Service.

3.1 Problem Formulation
Root Cause Analysis (RCA) aims to quantify the contribution of
eachmetric or feature to the observed anomaly in a Spark job. Given
a causal graph 𝐺 constructed from domain knowledge and execu-
tion metrics, and an anomaly instance characterized by deviations
in a set of features, RCA identifies which features have the most
significant causal effect on the observed performance degradation.

Formally, let 𝑋0 denote the observable outcome of interest (e.g.,
job execution time), and let 𝑢 ∈ V denote a feature from the set
of input metrics. The objective of RCA is to compute the causal
contribution of feature 𝑢 to the anomaly in 𝑋0, denoted as:

𝑆𝐺 (𝑢 → 𝑋0), (1)

where 𝑆𝐺 (𝑢 → 𝑋0) represents the attribution score of node 𝑢 to
node 𝑋0 under the causal graph 𝐺 .

Let Φ ⊆ V be the subset of features that directly contribute to
𝑋0 (i.e., its immediate descendants in the graph). We assume the
total deviation in𝑋0 between the abnormal and normal execution is
attributable to the combined contributions of all its direct causes. Let
E∗ [𝑋0] and E[𝑋0] denote the expected values of𝑋0 in the abnormal
and normal cases, respectively. Then the sum of attribution scores
over Φ should satisfy:∑︂

𝑢∈Φ
𝑆𝐺 (𝑢 → 𝑋0) = E∗ [𝑋0] − E[𝑋0] . (2)

For example, given a Spark job delayed by 10 minutes, we aim
to attribute this delay to its immediate causes in the causal graph
(e.g., QueuingTime, ApplicationRuntime), ensuring their attribution
scores sum to the total delay. We further decompose delays in Ap-
plicationRuntime into components like StartingTime, IdleTime, Com-
pilationTime, and ExecutionTime, based on their causal impact. We
assume the causal graph 𝐺 is constructed from domain knowledge
and system specifications. Future work may incorporate structure
learning techniques (e.g., NOTEARS [19] or FCI [18]) to automate
or augment graph construction.

3.2 The Birth of HybridRCA
The traditional treatment-based algorithm [2, 16] applies the do-
calculus [17], constructed based on domain knowledge, to eval-
uate the causal-effect graph [14] that tackles the issues of inter-
correlation between input features. The algorithm has been proven
to be complete, though suffering from computational complexity,
particularly when handling high-dimensional data and complex
causal models. Specifically, to evaluate the impact of one feature
anomaly on the final observable variable, one needs to enumerate
all the combinations of the features given they are both abnormal
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Figure 2: Causal relationships for a subset of metrics.
or not and compute the impact of the factor based on trained ML
predictors. For instance, to compute the impact of factor 𝑋1 on the
observation 𝑋0, which is also impacted by factors 𝑋2 and 𝑋3, we
need to train an ML predictor for 𝑋0 and compute the conditional
estimation of 𝑋0 given as the powerset of factors 𝑋2 and 𝑋3, i.e.,
(Ω = {}, {𝑋2}, {𝑋3}, {𝑋2, 𝑋3}), to be abnormal and the difference of
observational variable’s value given 𝑋1 is normal or not. i.e.,
𝐸 (𝑋0 |𝑋1 ∪ Φ abnormal) − 𝐸 (𝑋0 |𝑋1 normal, Φ abnormal), ∀Φ ∈ Ω. (3)

The above computation, to iterate over all sets in Ω, takes 𝑂 (2𝑁 )
where 𝑁 is the number of variables. We have 40+ variables, hence
the algorithm takes approximately 100 seconds for a single anomaly
job instance. Therefore, there is a pressing need for improvement.

Using metrics from Spark Metrics Service (SMS) and domain
knowledge, we constructed the causal graph (Figure 2).We observed
that deterministic relationships, such as ReadRows and ReadBytes,
eliminate the need for the𝑂 (2𝑁 ) algorithm, allowing certain metric
scores to be computed in 𝑂 (1). Additionally, linear relationships,
such as CPUTime, ExecutorComputingTime, and OverheadTime, sup-
port a divide-and-conquer approach, enabling analysis of smaller
subgraphs instead of a single large graph.

Thus, we propose the HybridRCA algorithm, which improves
efficiency by applying “divide-and-conquer” to do-calculus. It (1) de-
composes the graph to compute local contributions from subgraphs
and (2) integrates these results into the full graph.

3.3 Graph Decomposition
The graph decomposition leverages prominent nodes to partition
a large causal graph𝐺 into smaller, more manageable subgraphs.
A prominent node is a special type of node in the causal graph
whose contribution to its parent node can be explicitly isolated
from that of its siblings. This structural property enables the graph
to be decomposed around such nodes, facilitating more efficient
root cause analysis.

For each prominent node, the graph can be divided into two
parts: (1) the subgraph rooted at the prominent node, and (2) the
remaining portion of the graph, where the original subgraph rooted
at the prominent node is replaced by the node itself as a leaf.

For example, in Figure 3a, we identify 𝑌0 as a prominent node
because its contribution to 𝑋0 is independent of other inputs, such
as𝑋1,𝑋2, etc. We can thus partition the graph into: (1) the subgraph
rooted at 𝑌0 (corresponding to 𝐺2 and its descendants), and (2) the
modified graph 𝐺1, which contains the rest of the structure with
𝑌0 treated as a leaf node.

In the following section, we provide a formal definition of promi-
nent nodes and describe the decomposition process in detail.

X0

Y0

Y1

X2

X1

G1

G2

(a) Case 1 (b) Case 2

Figure 3: Graph decomposition and combination.

3.3.1 Assumption: Prominent Node Selection. Consider a node 𝑋0
in the graph, as illustrated in Figure 3a. The relationships of 𝑋0
with other nodes in the graph are defined as follows:

𝑋1, ..., 𝑋𝑐 , 𝑌0: Direct children of 𝑋0;
𝑋1, ..., 𝑋𝑐 , 𝑌0, 𝑌1, ..., 𝑌𝑒 : Descendants of 𝑋0;
𝑌1, ..., 𝑌𝑒 : Descendants of 𝑌0;

The relationship between 𝑋0 and its children is expressed as:

𝑋0 = 𝑓 (𝑌0) + 𝑔(𝑋1, ..., 𝑋𝑐 ) + 𝑁0, (4)

where 𝑓 (𝑌0) describes the contribution of 𝑌0, 𝑔(𝑋1, ..., 𝑋𝑐 ) captures
the contribution of 𝑋1, ..., 𝑋𝑐 , and 𝑁0 represents the noise associ-
ated with 𝑋0. In this context, 𝑌0 is identified as a prominent node
because its contribution to 𝑋0 can be explicitly separated through
the function 𝑓 (𝑌0). This separability makes 𝑌0 a natural conjunc-
tion point for graph decomposition. Its prominent role simplifies
breaking the graph into smaller subgraphs, allowing the subgraph
rooted at 𝑌0 to be analyzed independently while preserving the
original structural relationships.

In Figure 2, ShuffleTime, and IOTime are identified as prominent
nodes because of the independent contribution of ShuffleTime and
IOTime.

3.3.2 Decomposition Approach. To perform the decomposition, we
divide the graph 𝐺 into two separate graphs, namely 𝐺1 and 𝐺2,
using the following steps:

• 𝐺1 is obtained by removing the subgraph rooted at 𝑌0 (any
prominent nodes) from 𝐺 and replacing it with 𝑌0 as a leaf
node. If 𝑌0 is already a leaf node,𝐺1 remains the same as𝐺 .

• 𝐺2 represents the subgraph rooted at 𝑌0, where the node
𝑌0 is replaced by 𝑓 (𝑌0).

Instead of running the root cause analysis (RCA) algorithm on the
original graph 𝐺 , we run separate instances of the RCA algorithm
on𝐺1 and𝐺2. We denote the attribution score of the node𝑢 to node
𝑣 obtained from the RCA algorithm on the graph 𝐻 as 𝑆𝐻 (𝑢 → 𝑣).

3.3.3 Combination Strategy. Next, we derive the attribution scores
obtained from the original graph 𝐺 using the attribution scores
obtained from the combined graphs 𝐺1 and 𝐺2. For the variables
(𝑋1, ..., 𝑋𝑑 ) and 𝑌0, we use the attribution scores obtained from 𝐺1,
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as they are identical to the scores obtained from 𝐺 .

𝑆𝐺 (𝑢 → 𝑋0) = 𝑆𝐺1 (𝑢 → 𝑋0),∀𝑢 ∈ 𝑋1, ..., 𝑋𝑐 , 𝑌0 . (5)

For variables 𝑌1, 𝑌2, ..., 𝑌𝑒 , we use a scaled version of the attribution
scores obtained from 𝐺2.

𝑆𝐺 (𝑢 → 𝑋0) = 𝑆𝐺2 (𝑢 → 𝑌0)
𝑆𝐺 (𝑌0 → 𝑋0)
𝐸∗ (𝑌0) − 𝐸 (𝑌0)

,∀𝑢 ∈ 𝑌1, ..., 𝑌𝑒 , (6)

where the value of 𝑆𝐺 (𝑌0→𝑋0 )
𝐸∗ (𝑌0 )−𝐸 (𝑌0 ) “scales” the computed contribution

of nodes according the contribution of 𝑌0 to 𝑋0 (the root node of
the whole graph, i.e., the target) where 𝐸∗ (𝑌0) denotes the anomaly
value of 𝑌0 and 𝐸 (𝑌0) the “normal” value of this feature. One can
prove that as long as the contribution of 𝑌0 and the other variables
to 𝑋0 can be separated, this chain rule computes the exact value
of the contribution. In cases such as Figure 3b, where multiple
paths exist from a node to the root (e.g., via both direct and indirect
dependencies), the total contribution of that node is computed
as the sum of its propagated contributions along all valid paths.
This chaining rule is critical for ensuring accurate attribution in
non-trivial graphs.

3.4 Time Complexity Analysis
The original method computes results for every subset of all vari-
ables, requiring𝑂 (2𝑁 ) repetitions. In contrast, the proposedmethod
applies the same process to each subgraph separately, reducing com-
plexity to 𝑂 (∑︁𝑖 2𝑛𝑖 ), where 𝑛𝑖 is the number of nodes in the 𝑖th
subgraph. This optimization is particularly beneficial for large vari-
able sets with linear relationships that naturally partition the graph
into smaller subgraphs.

4 EXPERIMENT
Production Workloads. To validate the algorithm, we evaluated
records from over 30 real Fabric recurrent job groups, comprising
more than 2,000 job instances (see Figure 4). Each job had over 50
instances and at least one anomaly. The primary cause identified
was longer idle time, partially due to user errors and provisioning
delays. The average root cause analysis time per anomaly job was
147 seconds using the original causal structural methods, compared
to just 12 seconds with HybridRCA. For root causes contributing
at least 5% to the issues, the ranking remained consistent with the
original do-calculus algorithm, with an average error of 0.4% and a
maximum absolute error of 5%.
Synthetic Scenarios. Additionally, we developed a custom anom-
aly data generator designed to emulate realistic customer usage
patterns within Microsoft Fabric Spark. Using this framework, we
created five representative scenarios that are known to frequently
cause anomalies in real-world settings: (1) Executor Downscale
Scenario: A notebook initially runs on a large Spark cluster with
8 executors, but the number of executors is later reduced to 3, re-
sulting in increased job runtime. (2) Executor Upscale Scenario:
A notebook begins execution with only 3 executors on a small
cluster and is subsequently scaled up to 8 executors, potentially
altering job behavior and resource contention. (3) Query Variation
Scenario: The notebook executes the same query for multiple hours
daily, but the query content varies slightly from day to day, intro-
ducing fluctuations in performance. (4) Data Scale-Up Scenario:

The notebook first processes a 100GB dataset, but the dataset size
is later increased to 1000GB, stressing the system’s memory and
I/O capabilities. (5) Data Scale-Down Scenario: The notebook ini-
tially processes a 1000GB dataset, but the data volume is reduced to
100GB in subsequent runs, potentially altering the job’s execution
path and optimization strategy. These synthetic scenarios were
constructed to isolate different sources of performance variation.
The system consistently identified the correct root causes across
all those test cases, demonstrating its robustness and suitability for
deployment in real operational environments.
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Figure 4: Root cause analysis results on recurrent job groups.

5 RELATEDWORK
Various algorithms tackle root cause analysis (RCA) in complex sys-
tems. The Bayesian Inference-based RCA (BI) [7]models conditional
probabilities but operates at the dataset level, lacking instance-
specific insights. The Hypothesis Testing-based RCA (HT) [8] iden-
tifies root causes via statistical tests but assumes linear relation-
ships and independent effects, overlooking complex dependencies.
Sawmill [10] computes Average Treatment Effect to infer root cause
for query latency. Adaptive Interventional Debugging (AID) [4]
employs a feedback-driven approach with dynamic instrumenta-
tion to iteratively refine fault localization in software execution
environments. Explanation Tables [3] generate human-readable
rules that link specific parameter settings to failures, providing
an interpretable method for understanding binary outcomes in
computational workflows. The do-calculus [17], widely used for
estimating causal effects from observational data, eliminates the
need for controlled experiments by leveraging domain knowledge.
However, applying do-calculus to high-dimensional data, such as
Spark job performance metrics, presents significant computational
challenges due to the necessity of evaluating all possible feature
combinations.

6 CONCLUSION
In this work, we presented an efficient root cause analysis frame-
work for performance anomalies in Spark jobs, leveraging a causal
graph and efficient attribution techniques. Our method accurately
identifies key contributors to performance degradation and has
been validated through synthetic anomaly scenarios and real pro-
duction workloads. In the future, we plan to extend the current
definition of prominent nodes to allow for more granular decom-
position and generalize the algorithm to other graph-based RCA
methods. Furthermore, we envision AutoDebugger as a critical com-
ponent of an autonomous database system, where root cause signals
can be fed into adaptive control loops for workload reconfiguration,
resource tuning, or query rewriting.
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