
Learning What Matters: Automated Feature Selection for
Learned Performance Models in Parallel Stream Processing

Pratyush Agnihotri
TU Darmstadt and DFKI

Carsten Binnig
TU Darmstadt and DFKI

Manisha Luthra
TU Darmstadt and DFKI

ABSTRACT
Predicting performance in distributed stream processing systems
relies on selecting relevant input features, a process traditionally
requiring expert-driven manual tuning. However, manual selection
is inefficient and prone to suboptimal choices. For example, features
overly tied to oneworkload can cause the performancemodel tomis-
predict for another workload, affecting the model’s generalizability.
This paper presents an automated feature selection approach that
systematically identifies the most relevant features across work-
loads (streams and queries), and resource dimensions for learned
performance models. We employ feature selection strategies includ-
ing feature ablation and statistical relevance analysis to evaluate
feature importance and distinguish transferable vs. non-transferable
features to improve generalization. By optimizing the feature set,
our approach enhances the accuracy of performance prediction, re-
duces feature redundancy, and thereby improves parallelism tuning
efficiency compared to manual selection. We demonstrate that our
approach reduces reliance on manual tuning and training effort by
11× while maintaining robustness in performance models.

VLDBWorkshop Reference Format:
Pratyush Agnihotri, Carsten Binnig, and Manisha Luthra. Learning What
Matters: Automated Feature Selection for
Learned Performance Models in Parallel Stream Processing. VLDB 2025
Workshop: Applied AI for Database Systems and Applications (AIDB 2025).

1 INTRODUCTION
PerformanceModels for ParallelismTuning.Distributed Stream
Processing (DSP) has become a cornerstone of modern industries
– from e-commerce [20] and finance [15] to social media – for an-
alyzing large-scale data in real time [14]. For instance, Alibaba’s
retail platform processes on the order of 6 million transactions
per second in production [20], and Facebook’s streaming analytics
handle around 9 GiB of event data per second while maintaining
low latency [9]. Achieving such massive throughput demands high
degrees of parallelism, i.e., running many operator instances in
parallel, to keep up with incoming data rates. Thus, tuning the
parallelism of each operator is critical to meet performance targets,
but doing so effectively requires accurate performance models that
predict performance, such as latency and throughput.

WhyAutomated Feature Selection is Important?A key chal-
lenge in building such performance models is selecting the right
input features, such as workload characteristics (operator, query,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

and data stream), or hardware configurations that truly capture
the factors affecting performance. Manual feature selection [18, 34]
is labor-intensive and often suboptimal – engineers may pick fea-
tures that seem relevant to a specific workload, only to find the
model doesn’t generalize. In fact, features that are overly tied to one
scenario, e.g., a particular filter keyword or threshold, can cause
a learned performance model to mispredict when the workload
(query plans and data) characteristics or resource configuration
change. This motivates the need for an automated way to iden-
tify relevant and transferable set of features for a generalizable
performance model of DSP.

Research Question and Pitfalls of Existing Work. RQ: How
can we automate feature selection for learned performance models in
DSP systems to improve parallelism tuning while ensuring that the
models generalize across diverse workloads? We seek to eliminate
the manual trial-and-error in choosing model inputs and instead
systematically find an optimal feature set that yields accurate per-
formance predictions for different streaming jobs. By answering
this question, we aim to enable DSP systems to self-tune their paral-
lelism and resource usage more effectively, without requiring expert
intervention for each new workload and resource configuration.
Feature selection in machine learning particularly for performance
modeling—has been studied in domains such as cloud configura-
tion [7] and compiler optimization [8], but relatively little attention
has been given to its role in DSP. We bridge this gap by proposing a
systematic, multi-strategy feature selection pipeline that combines
ablation analysis and statistical relevance metrics to identify critical
and transferable features for DSP.

Our Idea of Automated Feature Selection for DSP. We pro-
pose a novel automated feature selection method for learned per-
formance models in DSP systems. Instead of relying on intuition or
one-size-fits-all feature sets, our approach systematically evaluates
the importance of each candidate feature using multiple strategies,
especially focusing to each model generalizability. First, we perform
feature ablation studies: we iteratively remove or mask individual
features or groups of related features and observe the impact on the
model’s prediction accuracy. This reveals which features are critical
for predicting performance and which ones contribute little (or even
introduce noise). Second, we conduct statistical relevance analysis,
e.g., correlation and variance analysis, to detect features that are
highly redundant or not informative across different workloads. By
combining these methods, we pinpoint which input features are
consistently useful across various streaming applications – we term
these transferable features – versus those that are workload-specific
or non-transferable. We then train the performance model using
only the selected feature subset.

Our Results. Optimizing the feature set in this way yields a
simpler and more robust model: prediction accuracy improves since
spurious features no longer distract the learner, and the model
generalizes better to unseenworkloads because it is built only on the

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

truly relevant, workload-agnostic characteristics. Ultimately, this
automated feature selection can enhance parallelism tuning in DSP
systems: with more reliable performance predictions, the system
can make better decisions about scaling operators and allocating
resources, achieving lower latency and higher throughput across a
range of streaming jobs. Most importantly our evaluations show
that the automated feature selection yields upto 11× reduction in
training time and improved performance predictions in comparison
to manual selection.

Outline. In the remaining paper, we present our approach in Sec-
tion 2, key findings from our experiments in Section 3, related work
in Section 4 and finally conclude in Section 5.

2 OVERVIEW OF AUTOMATED FEATURE
SELECTION PIPELINE

Raw Features Set1

Raw set of more than
50 features from

DSP System

Feature Determination2

Data Stream (D)

Query (Q)

Hardware (H)

Seen Features

Parallelism Degree (P)

𝜔𝜎SO SI
𝜔𝜉

Parallelism: 10
Event Rate: 100 ev/s
…

Parallelism: 7
Filter-Class: Int
…

Latency: 300 ms

Features

Labels

Training Data Generation3

Feature Ablation
How each features impact
performance, i.e., latency

and throughput?

Feature Ablation Study4

Statistical Relevance
Analysis

Evaluates correlation
among features to detect

redundancy and
low-variance attributes

Feature Relevance Analysis5Transferability Filtering6

Workload-agnostic vs.
Workload-specific

Identify transferable vs
non-transferable and

discard workload-specific
features

Training Cost Model7
Hidden layers

In
p
u
t

la
ye

r

…

x1

x2

x3

O
u
tp

u
t

la
ye

r

…

y1

y2

…

y3…

a1

a2

…

a3

…

D’

Q’

H’

P’

Set of Parallelism
Degrees

Avg.
Costs

So

10 5 5 0.1

8 6 4 0.4

… … … …

𝜔𝜎 𝜔⨝
Unseen Data

Trained

Zero-shot

Cost

model

Predicted Costs

Inference on Unseen Workload8 Parallelism Tuning9

Optimal Parallelism
Search parallelism

configurations - Select
best one based on
predicted costs

Figure 1: Overview of end-to-end pipeline for automated
feature selection and cost modeling in DSP systems. The
process begins with feature extraction from stream, query,
parallelism, and resource dimensions. Ablation studies and
statistical relevance analysis are used to identify transferable
features. These are used to train a GNN-based cost model,
which is later applied to unseen workloads for performance
prediction and parallelism tuning.

In this section, we present a high-level overview of our auto-
mated feature selection pipeline for DSP as presented in Figure 1.
The pipeline is designed to identify a compact, transferable set of
features that improves the accuracy and generalization of learned
performance models, specifically in zero-shot cost model [3, 5]
for DSP.

The process begins with a feature ablation study (Section 2.2),
where we systematically evaluate the impact of individual features
related to workload characteristics (data streams and queries) and
resource configurations. In each iteration, we remove one feature
from the input set and measure the change in prediction accuracy
of our zero-shot cost model. This allows us to distinguish features

that are critical for performance estimation from those that are
negligible or even detrimental.

Following ablation, we perform statistical relevance analysis (Sec-
tion 2.3) using multiple feature selection strategies adapted from
prior work [28]. This includes computing pairwise correlations,
mutual information, and variance-based metrics to identify redun-
dant, highly correlated, or low-variance attributes. The goal is to
retain only those features that meaningfully contribute to predic-
tive accuracy and generalize across different workloads. For each
feature selection strategy, we record the number of features re-
tained, the computational cost (search time), and the prediction
accuracy on a held-out test set. Based on these evaluations, we iden-
tify a set of transferable features (Section 2.4)—i.e., features that
consistently lead to better generalization across unseen workloads.
These features form the input to our learned cost model, while
non-transferable features are pruned to reduce complexity and risk
of overfitting.

Finally, we train a Graph Neural Network (GNN)-based zero-shot
performance model on the selected subset of features and evaluate
its generalization ability on previously unseen query workloads [5].
This fully automated feature selection process ensures that our
learned model is robust, scalable, and adaptive without the need
for manual feature engineering.

2.1 Feature Determination
The automated feature selection pipeline begins with the extrac-
tion of a comprehensive set of around 80 raw features (cf. step 1○
and 2○ in Figure 1) from real-world executions of DSP workloads
a subset presented in Table 1. These features span four essential
categories: data stream characteristics (D), query plans (Q), paral-
lelism degrees (P), and hardware resource profiles (H) (Table 1). Each
training instance is annotated with empirically observed perfor-
mance metrics—primarily latency and throughput—collected under
varying resources and workload configurations.

The primary goal of this stage is to evaluate the influence of indi-
vidual features on query performance, especially as it relates to par-
allelism efficiency and system scalability. To that end, we conduct
an exploratory analysis that inspects the distributional properties,
inter-feature correlations, and statistical associations of each fea-
ture with observed performance metrics. Features that demonstrate
high variability between workloads and strong correlation with
latency or throughput are designated for further analysis in subse-
quent selection steps. Beyond raw statistical association, we further
interpret the relevance of features in terms of their operational
semantics within DSP systems.

2.2 Feature Ablation Study
To systematically assess the contribution of individual features from
each feature dimension to performance prediction, we conduct a
structured ablation study (cf. step 4○ in Figure 1). The goal of this
analysis is to identify features that significantly affect the prediction
accuracy [24] of the cost model, and to distinguish those that are
critical, redundant, or workload-specific/-agnostic.

To evaluate feature importance, we apply a leave-one-feature-
out strategy [26] at both fine-grained and group levels. In the fine-
grained analysis, each feature is individually removed from the

2

Node Category Feature Description

Logical

operator-
parallelism Parallelism degree Parallel instances of the operator

operator-
parallelism Partitioning strategy Strategy for data distribution

(forward, rebalance, hashing)
operator-
parallelism Grouping number Number of operators grouped together by DSP

operator-
parallelism Operator fan-out Number of downstream operators per node

operator-
parallelism Operator chaining index Position of operator in a chained execution group

data Tuple width in Input tuple width
data Input tuple fields Values in input tuples
data Tuple data type Data types in a single tuple
data Selectivity Average selectivity of all instances of a given operator
data Event rate Emitted event rate of the source
query Operator type Type of operator
query Filter function Comparison filter function, e.g., <, ≤, ≥
query Filter literal value Filter literal value, e.g., sensor id = 50
query Operator name Name of the operator for the application
query Number of filter operators Number of filter operators for the application
query Cardinality hint Estimated number of unique values for a key
query Predicate complexity Number of clauses in filter condition
query Window type Shifting strategy (tumbling/sliding)
query Window policy Windowing strategy (count/time)
query Join key class Join key data type
query Agg. class Aggregation data type

Physical

resource CPU cores Number of processing cores
resource CPU frequency CPU frequency on this instance
resource Node identifier Unique identifier of every instance
resource CPU name CPU name where DSP is running
resource OS Type Operating system type in host machines
resource Host name Given unique identifier or name to host machine

Table 1: Selected subset of determined features for DSP in
four dimensions - parallelism, operator, data stream and
hardware resources.

input, and the model is retrained to observe changes in predic-
tion accuracy. In the grouped level analysis, we disable entire fea-
ture dimensions or categories, such as all operator-related or all
parallelism-related features, while keeping the rest of the input
constant. This approach reflects real-world deployment scenarios
where certain feature sources may be unavailable, and provides
insights into the robustness of the model under partial information.
For instance, our experimental evaluation (cf. Section 3) shows that
excluding parallelism- and resource-level features results in a sub-
stantial degradation of prediction accuracy, particularly for unseen
query plans and resource configurations. In contrast, removing cer-
tain operator-level features—such as filter functions or literal data
types has less impact on overall accuracy. These results suggest
that parallelism- and system-level features are more generalizable
across diverse DSP workloads.

In summary, the ablation study provides a basis for identifying
features that are consistently impactful and generalizable. These in-
sightsmotivate the next phase of our automated feature pipeline, i.e.,
statistical relevance analysis, whichmore precisely quantifies feature
redundancy and selects transferable features using information-
theoretic criteria [31].

2.3 Statistical Relevance Analysis
Following the ablation-based evaluation of feature importance, we
proceed with a detailed statistical relevance analysis (cf. step 5○
in Figure 1) to further refine DSP feature space. While the ablation
study provides initial insights into the predictive utility of individ-
ual and grouped features based on model performance, it does not
directly account for inter-feature redundancy, sparsity constraints, or
structural dependencies inherent in graph-based models that become
especially critical when learning compact representations in high-
dimensional spaces. To address these limitations and improve the
interpretability of our cost model, we conduct a detailed statistical

relevance analysis using a diverse set of feature selection strate-
gies [12, 25, 27, 36] spanning wrapper and embedded approaches
(see Table 2), specifically tailored to our zero-shot GNN cost model
named ZeroTune [5].

Table 2 summarizes the ten strategies evaluated. We deliber-
ately omit classical filter methods [33], e.g., mutual information
filters or correlation thresholds, as they typically assume vector-
ized, tabular input and are agnostic to the model architecture. In
contrast, our data is graph-structured—spanning query operators,
data streams, and resources—and is consumed by a GNN-based
cost model. Applying filter methods would require flattening this
structure, thereby discarding crucial topological and relational infor-
mation. Furthermore, to the best of our knowledge, no filter-based
selection methods currently exist that are compatible with hetero-
geneous GNN operating over typed directed acyclic graph (DAG)
typical in stream processing pipelines.

Instead, we focus on wrapper category [23], which are model-
agnostic and rely on the performance of the predictive model itself
to guide feature selection. These include greedy, sequential, and
metaheuristic search methods, e.g., SFS, SBS, SFFS, NSGA-II, each
of which explores the space of feature subsets with different opti-
mization objectives. Such approaches are particularly attractive in
our context because they adapt to the underlying GNN architecture
and are agnostic to the irregularities in graph data.

We also explore embedded methods, which incorporate feature
selection directly into the model’s training process. Notably, we in-
clude two state-of-the-art strategies: ℓ2,1-norm regularization, which
encourages row-wise sparsity in learned weight matrices and has
been used in structured feature selection in deep models [29, 40].
Gumbel-Softmax reparameterization, a differentiable relaxation for
discrete feature selection that enables end-to-end training of binary
masks [19]. Both approaches are well-suited for deep learning mod-
els and can be adapted to GNN without requiring explicit feature
enumeration. However, since these methods output soft masks or
continuous weight scores, we follow a post-hoc discretization pro-
cedure: features are ranked by their learned importance scores, and
a grid search is used to determine the top-𝑘 subset that maximizes
prediction accuracy on validation data.

For GNN-specific feature selection strategy, we implement two
variants of Recursive Feature Elimination (RFE): RFE with GNNEx-
plainer [37], which estimates feature importance by perturbing
node features and measuring the impact on the GNN’s output. This
method is model-agnostic and suitable for graph-level explana-
tion [39], making it ideal for our use case where feature utility
must generalize across diverse query graphs. RFE with first-layer
weights (RFEWI), which builds on the intuition that early layers
in deep networks tend to learn general, transferable features [38].
By extracting and averaging the absolute magnitudes of weights
from the first layer of each node-type encoder in the GNN, we con-
struct global feature rankings, accounting for heterogeneity across
different node types, e.g., operators vs. resources.

When features appear in multiple node-type encoders, e.g., Tuple
Width used in both filter and aggregation operators, we compute
the mean importance score across encoders, yielding a consistent,
graph-level feature ranking that respects structural asymmetry.

Overall, this statistical relevance analysis enables us to distill a
compact, transferable, and semantically meaningful feature set that

3

Strategy Category Description

Exhaustive Search (ES) [10] Wrapper (Greedy) Brute-force evaluation of all possible feature subsets.
Sequential Forward Selection (SFS) [6] Wrapper (Sequential) Iteratively adds the feature that improves performance the most.
Sequential Backward Selection (SBS) [17] Wrapper (Sequential) Iteratively removes the least important feature.
Sequential Forward Floating Selection (SFFS)[32] Wrapper (Sequential) Allows backtracking during forward search to re-evaluate combinations.
Sequential Backward Floating Selection (SBFS)[32] Wrapper (Sequential) Similar to SFFS, but starts from the full feature set.
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [11, 36] Wrapper (Metaheuristic) Multi-objective evolutionary algorithm optimizing Q-error and feature count.
Recursive Feature Elimination with GNNExplainer (RFE)[16, 37] Wrapper (GNN-specific) Uses GNNExplainer to rank and iteratively remove features.
Recursive Feature Elimination with First-Layer Weights (RFEWI) [30] Wrapper (Model-aware) Uses early layer weights of GNN to rank features.
ℓ2,1-norm Regularization [29] Embedded (Regularization) Promotes group sparsity in the model; selects features with non-zero weights.
Gumbel-Softmax Feature Selection [1] Embedded (Reparameterization) Learns discrete feature masks via Gumbel-Softmax sampling.

Table 2: List of evaluated feature selection strategies, their methodological categories, and descriptions. Wrapper methods use
performance feedback from the cost model. Embedded methods integrate selection within model training.

forms the basis for zero-shot model training in the final stage of
our pipeline.

2.4 Transferability Filtering
After identifying high-impact and statistically relevant features,
we introduce a final filtering step (cf. step 6○ in Figure 1) to iso-
late features that are transferable—those that consistently improve
prediction accuracy across a wide variety of parallelism, query
plans, data streams, and resource configurations. In contrast to fea-
tures that are only useful in specific scenarios (non-transferable or
workload-specific), transferable features [38] contribute to the gen-
eralization capability of the learned cost model, a core requirement
in the zero-shot based machine learning model [35]. We define a
feature as transferable if it satisfies the following properties:

• P1: It is retained by multiple feature selection strategies,
including both ablation-based and statistical methods.

• P2: It consistently contributes to model accuracy on new
or unseen workloads, as measured by stable or improved
Q-error across test queries not included during training.

• P3: It exhibits minimal variance in importance rankings
across query types and system architectures, i.e., it is not
workload (query or data stream)- or resource-specific in
utility.

To assess these properties, we use the subset of selected features
from each feature selection strategy and intersect them with those
found effective in our leave-one-out ablation (cf. Section 2.2) and
statistical relevance analysis (cf. Section 2.3). We then evaluate their
generalization performance across the four main dimensions of
variability: (i) parallelism, e.g., parallelism degree, (ii) query plans,
e.g., linear, joins, filters, (iii) data characteristics, e.g., event rates,
selectivity, and (iv) type of resources and configurations, e.g., ho-
mogeneous vs. heterogeneous clusters.

Features such as parallelism degree, operator selectivity, event
rate, and CPU cores are found to be reliably useful across nearly all
configurations. For instance, the parallelism degree directly gov-
erns the distribution of workload among operator instances and
thus strongly correlates with query latency and throughput across
different streaming workloads—making it highly transferable. In
contrast, features like filter literal values (e.g., temperature sensor
value < 50) tend to have a limited and inconsistent effect on pre-
diction accuracy. Their impact varies significantly depending on
the specific query logic and data distribution, and they are often
pruned by multiple feature selection strategies. These are classified

as non-transferable due to their scenario-specific utility and poor
generalization in zero-shot settings.

We also quantify transferability using a cross-validation over
workload types, where each held-out fold represents a new, unseen
workload and resource configurations. A feature is marked as non-
transferable if its inclusion does not improve prediction accuracy
(i.e., reducing Q-error) across a majority of folds, or if it introduces
performance instability (e.g., higher variance in predictions). By
filtering out non-transferable features, we reduce model complexity
and improve its ability to generalize in the zero-shot regime. The
resulting feature set serves as the final input to our zero-shot model
training pipeline [5].

3 EXPERIMENT RESULTS
In this section, we present the effectiveness of our automated fea-
ture selection pipeline for zero-shot DSP performance modeling.
Specifically, we aim to answer the following questions:

• Exp. 1: Comparing feature selection strategies and
manually selected features.Which feature selection strate-
gies (e.g., RFE, GumbelSoftmax, ℓ2,1-norm) or manual se-
lection yield the best trade-off between model accuracy,
search time, and feature compactness?

• Exp. 2: Importance of transferable vs. non-transferable
features. What is the predictive performance when using
only transferable features versus only non-transferable fea-
tures?

• Exp. 3: Model compactness and training efficiency.
How does feature selection reduce model complexity and
training overhead without sacrificing accuracy?

Experiment Setup and Metrics.We adapt the experimental
setup as used in ZeroTune [5], deploying our experiments on the
CloudLab [13] testbed. The underlying stream processing system
is Apache Flink v1.16, with task orchestration managed via Ku-
bernetes. The system is evaluated on a heterogeneous mix of ho-
mogeneous (Ho) and heterogeneous (He) cluster configurations
as summarized in Table 3. These include diverse CPU, memory,
and network configurations, enabling a comprehensive assessment
across realistic deployment scenarios. The model is trained and
validated on seen clusters, while generalization is tested on a mix
of both seen and previously unseen cluster types. Our dataset is
derived from 24, 000 synthetic DSP queries encompassing linear
pipelines and 2- to 3-way window joins. Each query is annotated
with observed latency and throughput across various configura-
tions of event rates, parallelism degrees, window parameters, and

4

Parameters Unit Training Range Testing Range
(Seen) (Unseen)

Event rate ev/sec.
100, 200, 400, 500, 700,
1k, 2k, 3k, 5k, 10k, 20k,
50k, 100k, 250k, 500k, 1m

50, 75, 150, 300, 450, 600, 850,
1.5k, 4k, 7.5k, 15k, 35k, 175k,
375k, 750k, 1.5m, 2m, 3m, 4m

Tuple width
and data type values [1 - 5] x [str., doubles, int] [6 - 15] x [str., double, int]

Window length tuples 5, 10, 25, 50, 75, 100
2, 3, 4, 7, 17, 37, 62, 82,

150, 200, 250, 300, 350, 400

Window duration ms 250, 500, 1k, 2k, 3k
50, 100, 150, 200, 325, 750, 1.5k,
2.5k, 4k, 5k, 6k, 7k, 8k, 9k, 10k

Sliding length ratio [0.3, 0.4, 0.5, 0.6, 0.7] x Window length

Cluster type - ms510, rs620 c6420, c8220x, c8220,
dss7500, c6320, rs625

Network link speed Gbps 1, 10
Number of workers - 2, 4, 6 3, 8, 10

Parallel query structures - Linear, 2-way join,
3-way join

2-chained filters,
3-chained filters, 4-way join,

5-way join, 6-way join

Benchmark queries - - Spike detection, Smart-grid
(local), Smart-grid (global)

Operator type - Source, Filter, Window-join, Window-Aggregation
Parallelism degree

categories - 1 ≤ 𝑋𝑆 < 8, 8 ≤ 𝑆 < 16, 16 ≤ 𝑀 < 32,
32 ≤ 𝐿 < 64, 64 ≤ 𝑋𝐿 < 128

CloudLab cluster type - Ho: m510,
He: rs620

Ho: c6420,
He: c8220x, c8220, dss7500, c6320, rs6525

Table 3: Training and inference parameter ranges [2, 4, 5]
for feature selection strategies. Underlined values denote ex-
trapolation scenarios used to evaluate model generalization
beyond the training datasets. “Ho” and “He” denote homoge-
neous and heterogeneous cluster types [13].

cluster resources. The training dataset comprises 80% of the queries,
with the remaining split equally into validation and test sets. To
evaluate generalization, we use a distinct set of unseen queries,
including real-world benchmarks such as smart-grid and spike
detection workloads (cf. Table 3).

Implementation and Feature Selection Integration. We in-
tegrate our feature selection pipeline with the ZeroTune cost model
by augmenting the training stage to include selected subsets of
features obtained through our automated pipeline. This enables
end-to-end evaluation of the impact of different feature sets on
model performance. During training, we evaluate the model with
features selected via wrapper and embedded strategies (cf. Sec-
tion 2.3), while the test phase remains fixed in input dimensions to
ensure fair comparisons. Unlike ZeroTune, which relies on expert-
curated transferable features, our model dynamically selects them
from a larger candidate pool.

Evaluation Metrics. We use the Q-error metric [24] to quan-
tify prediction accuracy. For a given predicted cost 𝑐 and the true
observed cost 𝑐 , Q-error is defined as:

Q-error(𝑐, 𝑐) = max
(
𝑐

𝑐
,
𝑐

𝑐

)
≥ 1

Q-error provides a robust, scale-invariant measure of prediction
deviation and is particularly suitable for evaluating models across
heterogeneous workloads. We report both the median and tail, i.e.,
50th and 95th percentiles of Q-error over the unseen test set to
characterize accuracy under varying operational conditions.

3.1 Comparing Feature Selection Strategies
In this experiment, we evaluate and differentiate the performance
of ten distinct feature selection strategies (cf. Section 2.3) by ana-
lyzing their trade-offs across three key criteria: (i) model accuracy,
measured by median Q-error (cf. Figure 2a); (ii) search time, mea-
sured in hours (cf. Figure 2b); and (iii) feature compactness, defined

as the number of selected features (cf. Figure 2c). These strate-
gies span a diverse spectrum—ranging from brute-force wrappers
and sequential heuristics to model-aware explainability methods,
metaheuristics, and embedded regularization-based methods.

Comparison of Feature Selection Stategies. Figure 2 high-
lights that ℓ2,1-norm regularization yields the best overall trade-off,
achieving the lowest Q-error 1.30, selecting the most compact sub-
set 15 features, and requiring minimal search time 5.5 hours. This
method promotes group sparsity by regularizing feature weights
during training, thereby automatically retaining only informative,
transferable features. For instance, features like tuple width, win-
dow length, or event rate, which correlate strongly with latency and
throughput across queries and hardware, are consistently preserved.
At the same time, non-transferable features, such as node ID or literal
constants, are pruned. Similarly, Gumbel-Softmax strategy, another
embedded approach, also demonstrates strong performance. It pro-
duces similarly compact feature sets with competitive accuracy
and slightly higher but still efficient runtime. Its differentiable bi-
nary masking mechanism enables end-to-end optimization through
reparameterization. However, its sensitivity to hyperparameters,
such as sampling temperature, may introduce variance and reduce
reproducibility across setups.

In contrast, Exhaustive Search (ES), while theoretically optimal
by evaluating all possible subsets, is computationally prohibitive
in practice. Even after restricting the search space using feature
groupings, e.g., freezing operator features while searching over data
features, the runtime exceeded 232 hours. Despite its relatively low
Q-error 1.35, the marginal gain over embedded approaches does
not justify the extreme computational burden. This demonstrates
the infeasibility of exhaustive methods in high-dimensional feature
spaces common in stream processing.

NSGA-II, a multi-objective genetic algorithm, achieves a favor-
able balance between accuracy 1.32 and compactness by optimiz-
ing for both Q-error and feature count. However, its stochastic
population-based nature incurs a substantial search time of 159
hours, and results may vary across runs. Although suitable for
Pareto-optimal exploration, such costs limit its applicability in time-
constrained deployments.

Sequential heuristics—SFS, SBS, SFFS, and SBFS—demonstratemod-
erate trade-offs. Their greedy selection behavior results in runtimes
of 39 − 142 hours but prone to local optima. For instance, SFS tends
to repeatedly select highly correlated features such as CPU cores
and CPU frequency, leading to redundancy. Floating variants SFFS,
SBFS improve accuracy slightly by permitting backtracking but do
not significantly reduce feature counts or runtimes.

The RFEWI strategy, which ranks features based on GNN first-
layer weight magnitudes, performs worst overall. It yields the high-
est Q-error 1.55 and retains a large number of features (21), indi-
cating that shallow signals from early layers are insufficient for
capturing complex, multi-hop interactions in the graph structure.
In comparison, RFE with GNNExplainer performs better across all
axes, as it derives feature importance from end-to-end saliency
scores, although it remains more tied to the training distribution
and is less interpretable.

In summary, embedded strategies, particularly ℓ2,1-norm regular-
ization, offer the best balance of accuracy, compactness, and compu-
tational efficiency. As reinforced in Table 4, such approaches are

5

1.
35 1.

42 1.
48

1.
38

1.
39

1.
32

1.
33 1.

55

1.
3

1.
31

M
ed

ia
n

Q
-E

rr
or

1.5

0.0

1.0

0.5

Feature Selection Strategies

ES

Gumbel-Softm
ax

SBS
SBFS

NSGA

RFE (G
NNEx.)

RFEWI (F
L.)

2,1- normSFS
SFFS

(a) Prediction accuracy (in Median Q-error)

S
ea

rc
h

T
im

e
(H

ou
rs

)

Feature Selection Strategies

1
ES

Gumbel-Softm
ax

SFS

100

200

SBS
SFFS

SBFS
NSGA

RFE (G
NNEx.)

RFEWI (F
L.)

2,1- norm

23
2.

6

42
.3

39
.4

14
2.

5

12
1.

7 15
9.

3

10
.9

10
.3

5.
5

5.
5

(b) Search time (in Hours)

20

15

10

Feature Selection Strategies

ES

Gumbel-Softm
ax

SBS
SBFS

NSGA

RFE (G
NNEx.)

RFEWI (F
L.)

2,1- normSFS
SFFS#

of
 S

el
ec

te
d

F
ea

tu
re

s

17

20
22

19
18

16
17

21

15 15

(c) # of features selected

Figure 2: Comparison of feature selection strategies across three dimensions: (a) prediction accuracy, (b) search time required,
and (c) number of selected features. Embedded strategies such as ℓ2,1-norm and Gumbel-Softmax achieve high accuracy while
minimizing search time and feature count. In contrast, Exhaustive Search (ES), while accurate, is computationally prohibitive.
Sequential wrappers (SFS, SBS, SFFS, SBFS) incur moderate time and yield larger feature sets with varying accuracy.

more scalable, generalizable, and interpretable than wrapper-based
methods, making them better suited for learned cost models in
distributed stream processing environments. While wrappers and
metaheuristics can provide marginal accuracy gains, their high
computational cost and poor reproducibility limit their practicality
for real-world or time-sensitive scenarios.

Feature Selection by Strategies vs. Manual Selection. To
complement our quantitative comparison, we provide a qualitative
assessment of feature selection strategies by examining a represen-
tative subset of the features they selected from all set of features in
comparison to manually selected features. In Figure 3 represents
which features were chosen by each strategy, focusing on a selection
of semantically meaningful attributes from the full feature space.
The figure reveals that embedded strategies, particularly ℓ2,1-norm
regularization and Gumbel-Softmax, consistently select a compact
and high-quality subset of features in comparison to manually se-
lected features. These primarily include transferable features such
as parallelism degree, event rate, and CPU cores, which are known
to exhibit strong generalization across heterogeneous workloads
and resources. Their selections align with the low Q-error and com-
pactness observed in prior experiments (cf. Figure 2), confirming
that sparsity-inducing regularization and differentiable selection
mechanisms are effective at capturing core performance drivers.

In contrast,wrapper-based methods such as RFEWI and sequential
heuristics, e.g., SFS, SBS, often select a broader and more redundant
set of features, including less transferable ones such as window
policy or node ID. This behavior suggests limited ability to prune
irrelevant features, which explains their comparatively higher pre-
diction error and reduced generalizability under distributional shifts.
Notably, Exhaustive Search and NSGA-II strategies cover a broader
spectrum of features, capturing both relevant and marginally useful
signals due to their large search space and multi-objective opti-
mization design. While this can improve accuracy in controlled
scenarios, it also increases computational cost and risks overfitting,
especially when applied to high-dimensional or evolving environ-
ments. Overall, the feature-level analysis substantiates the superior
selectivity and generalization of embedded strategies. It also rein-
forces our earlier conclusion that principled sparsity mechanisms

are more effective than heuristic or brute-force approaches for con-
structing compact and transferable representations in learned cost
models.

Parallelism degree

A
ll

Fea
tu

re
s

M
an

ua
l

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 0 1 1

1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 0 0 1 0 0

1 0 0 1 1 1 1 0 0 1 0 0

1 1 0 1 1 0 0 0 0 1 0 0

1 0 1 1 1 1 1 0 0 1 0 0

1 0 0 0 1 1 1 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 0 0 1 0 0

1 1 0 0 1 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 1 0 0

F
ea

tu
re

 S
el

ec
te

d
 (

1
 =

 Y
es

,
0
 =

 N
o
)

Feature Selection Strategies

ES

Gumbel-S
oftm

ax
SBS

SBFS
NSGA

RFE (G
NNEx.)

RFEWI (F
L.)SFS

SFFS

2,1- n
orm

Filter literal value
Operator name

of filter operators
Preiction hint

Predicate complexity

Window policy
Sliding interval
Agg. key class
Agg. function

Node identifier
CPU name

OS type
Host name

Filter function

Grouping number
Partitioning strategy

Operator fan-out
Operator chaining index×

Tuple width
Input Tuple Fields

Tuple data type
×
×

Event rate
Operator type

×
×
×
×
×

Window type
Window length

×
×
×

CPU cores
CPU frequency

×
×
×
×

S
u
b
se

t
o
f

F
ea

tu
re

s

Average selectivity

Figure 3: Representative subset of features from the total set
of features selected by different strategies vs. all and manu-
ally selected features (baselines). Colored cells indicate in-
clusion of a feature by a strategy. Embedded methods (e.g.,
ℓ2,1-norm, Gumbel-Softmax) favor compact, transferable fea-
tures, while some wrappers (e.g., SBS, RFEWI) include often
select noisy, workload-dependent attributes. A cellmarked as
1 (colored) indicates that the feature is selected. The features
are annotated (✓) indicating transferable and (×) indicating
non-transferable features.

3.2 Transferable vs. Non-Transferable Features
We further investigate the role of transferable and non-transferable
features in predictive performance by isolating their impact. Specif-
ically, we train two separate models: one using only transferable
features, e.g., operator semantics, data selectivity, parallelism, and

6

Strategy Type Accuracy Search Time Compactness Reasoning

Exhaustive Search (ES) Brute-force wrapper ✓ Highest × Very High ✓ Optimal (theoretically)
Evaluates all feature subsets. Although optimal,
it is computationally infeasible for large spaces
and prone to overfitting on small datasets.

SFS / SBS / SFFS / SBFS Sequential wrappers ✓ Moderate to High ∼Moderate ∼ Often Redundant
Greedy heuristics that may converge to suboptimal
solutions. SFFS/SBFS allow limited backtracking to
improve coverage at the cost of additional runtime.

NSGA-II Metaheuristic wrapper ✓ High ∼ High ✓ Pareto-optimal

Effectively balances accuracy and compactness
using evolutionary search. Well-suited for

multi-objective optimization, but computationally
expensive and non-deterministic.

RFE (GNNExplainer) Model-specific wrapper ✓ High ∼Medium ✓ Good
Utilizes model explainability to rank features,
aligning well with internal model behavior.

May inherit training data bias.

RFEWI (First-layer) Model-aware wrapper ∼Moderate ✓ Fast ∼ Coarse

Relies on initial-layer GNN weights,
making it fast but often insufficient

for capturing complex interactions and
deeper semantics.

ℓ2,1-norm Regularization Embedded ✓ High ✓ Fast ✓ Sparse
Promotes group sparsity through regularization,
leading to compact and transferable feature sets.

Efficient and generalizable.

Gumbel-Softmax Embedded ✓ High ∼Medium ✓ Sparse
Learns discrete masks via differentiable

relaxation. Balances accuracy and sparsity,
but is sensitive to tuning.

Table 4: Comparison of feature selection strategies based on accuracy, search time, and compactness.

Seen Latency

Seen Throughput

Unseen Latency

Unseen Throughput1.0

1.5

2.0

2.5

3.0

3.5

M
ed

ia
n

Q
-E

rr
or

Query Types

Non-Transferable Only
Transferable Only
All Features

1.42

1.51

1.88

2.12

1.35

1.44

1.36

1.41

1.40

1.49

3.10

3.32

2

4 2.95

3.10

4.25

4.85

2.62

2.78

2.71

2.76

2.89

3.05

6.30

6.90

Query Types
Seen Latency

Seen Throughput

Unseen Latency

Unseen Throughput

Non-Transferable Only
Transferable Only
All Features

95
th

 Q
-E

rr
or

Figure 4: Median and 95th percentile Q-error across
query types when training with transferable-only, non-
transferable-only, and all features. Transferable features
match or outperform full models on unseen data.

another using only non-transferable features, e.g., literal constants,
hardware IDs, filter conditions. We then evaluate both models’
accuracy across seen and unseen query workloads and resource
configurations, as presented in Figure 4. The results show that the
transferable-only model achieves predictive accuracy comparable
to—or better than—the full feature model on unseen workloads. For
instance, on 95th percentile Q-error in unseen latency and through-
put prediction, the transferable model significantly outperforms the
non-transferable-only model. Similar trends are evident for median
Q-error, confirming that transferable features are both high-signal
and generalizable.

These findings align with prior observations in Experiments 1.
In Experiment 1 (cf. Figure 2), selection strategies like ℓ2,1-norm,
Gumbel-Softmax, and RFE-GNNExplainer excelled by favoring these
features—offering compact yet accurate models. This experiment
consolidates this evidence, showing that transferable features alone
suffice for robust generalization under distribution shifts in work-
load or system configuration. In contrast, the non-transferable-only
model, while effective on seen data, suffers significant degrada-
tion on unseen setups. This highlights its susceptibility to overfit-
ting—capturing spurious correlations in context-specific features
like node IDs, literal constants, or memory values that lack general

0 1 2 3 4 5 6 7 8 9 10
Number of Transferable Features Removed

1

2

3

4

5

M
ed
ia
n
Q
-E
rr
or

Seen Query Types
Unseen Query Types

Figure 5: Effect of feature removal on model accuracy. As
top-ranked transferable features are removed, the Q-error
remains stable initially but increases sharply after a critical
threshold, demonstrating that a small subset of features car-
ries most predictive power.

utility. Such features often act as shortcuts that fail when deployed
in new or unseen environments.

In summary, this experiment emphasizes the foundational role of
transferable features in building accurate and generalizable learned
cost models for distributed stream processing. These features not
only improve performance and reduce variance but also stream-
line feature selection, leading to faster training and better scalabil-
ity—particularly valuable in dynamic, heterogeneous systems.

3.3 Model Compactness and Training Efficiency
Model Compactness. To understand the sensitivity of the cost
model to individual features, we analyze the impact of systemat-
ically removing transferable features in decreasing order of their
importance (cf. Figure 5). The plot tracks the median Q-error as
the top-10 ranked subset of transferable features are removed one-
by-one, comparing prediction accuracy on both seen and unseen
queries. Initially, we observe that the removal of the least important
features induces only marginal increases in prediction error. For
instance, eliminating the bottom five features raises the median
Q-error from approximately 1.3 to just 1.6 for seen queries, and

7

All Features

Manual Selection

Automated Selection0

20

40

60

T
ra

in
in

g
T

im
e

(H
ou

rs
) 56.3

35.6

5.3

Figure 6: Comparison of model training time across three
strategies—All Features, Manual Selection, and Automated
Selection, highlighting the efficiency gains of automated se-
lection. The automated model achieves up to 11× reduction
in training time while maintaining predictive accuracy.

from 1.4 to 1.7 for unseen queries. This behavior confirms that
a large fraction of low-impact features can be discarded without
significantly affecting accuracy—indicating that the model is robust
to feature sparsification and that many features are redundant.

However, as higher-ranked features are removed, the Q-error be-
gins to rise steeply. When the most important features are excluded,
e.g., after removing more than seven, the median Q-error spikes
sharply, reaching 3.1 for seen and over 4.0 for unseen queries. This
inflection—often referred to as a knee in the error curve—highlights
the existence of a small but critical subset of transferable features
that contribute disproportionately to model performance. These
findings underscore two important insights: First, cost models ben-
efit from aggressively pruning irrelevant or weakly informative fea-
tures, which simplifies model training and improves generalization.
Second, preserving top-ranked transferable features is essential for
maintaining accuracy, particularly in scenarios involving distribu-
tion shifts such as unseen queries or resource configurations.

Furthermore, this experiment aligns with earlier findings from
Experiment 2 (cf. Section 3.2), where models trained solely on trans-
ferable features achieved strong generalization.

Training efficiency. To further assess the impact of feature
selection on model complexity and training overhead, we compare
the training time excluding search time, required by three config-
urations: (i) full feature set (no selection), (ii) manually selected
features, and (iii) features selected via our automated pipeline. As
shown in Figure 6, the model trained on all available features re-
quires over 56 hours to converge, while the automated selection
achieves near-optimal accuracy with only 5.3 hours of training—an
11 reduction in training time. Manual selection, although better
than the full model, still requires approximately 35.6 hours, largely
due to redundant or less informative features included based on
intuition.

This stark contrast demonstrates the effectiveness of automated
feature selection in improving training efficiency. The reduction
stems from two factors: (a) smaller feature sets that reduce input
dimensionality and model size, and (b) prioritization of high-signal,
transferable features that enable faster convergence. For instance,
with only 15 features, the automated pipeline yields better gen-
eralization and significantly reduces learning time. In contrast,
training with all features imposes both computational and statis-
tical burdens—longer runtime and increased overfitting risk—due

to the inclusion of context-specific or noisy features. Manual fea-
ture engineering, while helpful, is limited by human bias and lacks
systematic assessment of feature relevance. Thus, this experiment
confirms that automated feature selection not only yields compact
and generalizable models but also offers considerable computa-
tional savings, making it ideal for real-time or resource-constrained
stream processing systems.

4 RELATEDWORK
In this section, we summarize existing work based on recent ad-
vances in feature selection for machine learning on (1) graph-
structured data and (2) performance modeling. To the best of our
knowledge, our work is the first to propose and evaluate a com-
prehensive multi-strategy feature selection framework specifically
tailored to GNN-based cost models in stream processing.

Feature Engineering in Machine Learning. Selecting rele-
vant features is a well-studied problem in machine learning. Classic
feature selection [12, 25, 27, 36] include filter methods, (e.g., using
statistical tests or information gain), wrapper methods (searching
for the best feature subset via cross-validation), and embedded meth-
ods (where feature selection is part of model training). In general,
reducing feature sets can mitigate overfitting and the curse of di-
mensionality, leading to simpler, more generalizable models. Our
work shares this motivation but is applied in a novel context of
stream processing performancemodels withmultiple feature dimen-
sions. Unlike standard feature selection, our DSP scenario involves
streaming workloads (query plans and data streams from different
applications) and resource characteristics for query plan execution
and deployment, requiring careful consideration of what consti-
tutes a feature. For instance query graph properties are unique to
this domain. There is emerging work on feature selection for data
stream classification, but our focus is on features for performance
prediction in stream processing systems, which to our knowledge
has not been explicitly addressed before. Furthermore, traditional
approaches in stream processing often assume hand-crafted fea-
tures that reflect intuition about operator characteristics, data rates,
and resource metrics. While effective to an extent, these methods
fail to scale across diverse workloads or adapt to evolving system
behaviors.

Feature Selection for Performance Modeling. Feature se-
lection in machine learning—particularly for performance model-
ing—has been studied in domains such as compiler optimization [8]
and cloud configuration [7], but relatively little attention has been
given to its role in DSP. We bridge this gap by proposing a system-
atic, multi-strategy feature selection pipeline that combines ablation
analysis and statistical relevance metrics to identify critical and
transferable features for DSP.

Research Gap. As our model architecture builds on GNNs, fea-
ture selection for GNNs is a relatively underexplored topic. While
filter-based methods [22, 33] are widely used in traditional tabular
domains [25], their application to GNNs is non-trivial due to the
need to preserve structural dependencies. Recent embedded and
wrapper methods [23], such as GNNExplainer [37] and GSAT [21],
have shown promise in interpreting node-level importance. Our
work leverages such methods—along with architectural insights
from GNN literature—to evaluate feature relevance in the context of

8

DSPworkload prediction. Notably, we extend existing methods (e.g.,
RFE with GNNExplainer [37], ℓ2,1-norm [29], and GumbelSoftmax
regularization [19]) to systematically rank and select features for
graph-based cost models. While prior work has explored learned
models for stream processing and the utility of GNNs for structured
prediction tasks, few efforts have tackled the problem of automating
feature selection for zero-shot performance modeling in DSP systems.

5 CONCLUSION
In this paper, we presented a novel automated feature selection
pipeline for performance modeling in DSP systems for parallelism
tuning. Our approach systematically evaluates a diverse set of fea-
tures across query, data, parallelism, and hardware dimensions,
using a combination of ablation studies and statistical relevance
analysis to identify those that are transferable across workloads.
By isolating generalizable features and eliminating redundant or
scenario-specific ones, we enable the training of robust zero-shot
cost models that generalize effectively to unseen queries and de-
ployment configurations. Our evaluation demonstrates that using
only the selected transferable features improves both the predic-
tive accuracy and generalization capability of learned cost models,
while significantly reducing feature redundancy and training com-
plexity. These improvements also translate into better decisions
for parallelism tuning, ultimately enhancing the throughput and
latency trade-offs in DSP systems.

While our study focused on feature selection for GNN-based zero-
shot cost models, several promising directions remain for future
exploration. First, we plan to investigate adaptive feature selection
approaches that dynamically adjust the feature subset during model
retraining in evolving workloads. Second, the integration of tem-
poral patterns in streaming data—captured via time-series analysis
or recurrent neural architectures—could further enrich the feature
space and benefit prediction tasks. Finally, extending the proposed
pipeline to support multi-objective optimization, e.g., balancing ac-
curacy with energy efficiency or cost constraints, represents a valu-
able direction for practical deployments in resource-constrained
environments.

ACKNOWLEDGMENTS
This work has been supported by the LOEWE program (Reference
III 5 - 519/05.00.003-(0005)), etaGPT project under grant number
03EN4107, Athene Young Investigator Programme and hessian.AI
at TU Darmstadt, as well as DFKI Darmstadt.

REFERENCES
[1] Deepak Bhaskar Acharya and Huaming Zhang. 2020. Feature selection and

extraction for graph neural networks. In Proceedings of the 2020 ACM southeast
conference. 252–255.

[2] Pratyush Agnihotri and Carsten Binnig. 2025. Demonstrating PDSP-Bench:
A Benchmarking System for Parallel and Distributed Stream Processing. In
Companion of the 2025 International Conference on Management of Data. 7–10.

[3] Pratyush Agnihotri, Boris Koldehofe, Carsten Binnig, and Manisha Luthra. 2023.
Zero-Shot Cost Models for Parallel Stream Processing. In Proceedings of the Sixth
International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management. 1–5.

[4] Pratyush Agnihotri, Boris Koldehofe, Roman Heinrich, Carsten Binnig, and
Manisha Luthra. 2025. PDSP-Bench: A Benchmarking System for Parallel and
Distributed Stream Processing. In Performance Evaluation and Benchmarking:
Traditional to Big Data to Internet of Things, Raghunath Nambiar andMeikel Poess
(Eds.). Springer International Publishing, 1–23. https://arxiv.org/abs/2504.10704

[5] Pratyush Agnihotri, Boris Koldehofe, Paul Stiegele, Roman Heinrich, Carsten
Binnig, and Manisha Luthra. 2024. ZeroTune: Learned Zero-Shot Cost Models
for Parallelism Tuning in Stream Processing.. In 2024 IEEE 40th International
Conference on Data Engineering (ICDE). 2040–2053.

[6] David W Aha and Richard L Bankert. 1995. A comparative evaluation of se-
quential feature selection algorithms. In Pre-proceedings of the Fifth International
Workshop on Artificial Intelligence and Statistics. PMLR, 1–7.

[7] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. {CherryPick}: Adaptively unearthing the
best cloud configurations for big data analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). 469–482.

[8] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. 2018. A survey on compiler autotuning using machine learning. ACM
Computing Surveys (CSUR) 51, 5 (2018), 1–42.

[9] Guoqiang Jerry Chen, Janet L Wiener, Shridhar Iyer, Anshul Jaiswal, Ran Lei,
Nikhil Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat Yilmaz.
2016. Realtime data processing at facebook. In Proceedings of the International
Conference on Management of Data. 1087–1098.

[10] Manoranjan Dash and Huan Liu. 2003. Consistency-based search in feature
selection. Artificial intelligence 151, 1-2 (2003), 155–176.

[11] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on
evolutionary computation 6, 2 (2002), 182–197.

[12] Justin Doak. 1992. An evaluation of feature selection methods and their applica-
tion to computer security. Techninal Report CSE-92-18 (1992).

[13] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 1–14.

[14] Data Flair. 2016. Apache Flink Use Cases – Real life case studies of Apache Flink.
[Online; accessed 20-05-2022].

[15] Sebastian Frischbier, Mario Paic, Alexander Echler, and Christian Roth. 2019.
Managing the Complexity of Processing Financial Data at Scale - An Experience
Report. In Complex Systems Design and Management. Springer International
Publishing, 14–26.

[16] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. 2002.
Gene selection for cancer classification using support vector machines. Machine
learning 46 (2002), 389–422.

[17] Amin Ul Haq, Jianping Li, Muhammad Hammad Memon, Muhammad Hunain
Memon, Jalaluddin Khan, and Syeda Munazza Marium. 2019. Heart disease
prediction system using model of machine learning and sequential backward se-
lection algorithm for features selection. In 2019 IEEE 5th International Conference
for Convergence in Technology (I2CT). IEEE, 1–4.

[18] Md Rashedul Islam, Aklima Akter Lima, Sujoy Chandra Das, Muhammad Firoz
Mridha, Akibur Rahman Prodeep, and Yutaka Watanobe. 2022. A comprehensive
survey on the process, methods, evaluation, and challenges of feature selection.
IEEE Access 10 (2022), 99595–99632.

[19] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[20] Xiaowei Jiang. 2021. Blink: How Alibaba Uses Apache Flink. https://www.
ververica.com/blog/blink-flink-alibaba-search. [Online; accessed 27-05-2022].

[21] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 66–74.

[22] Alan Jović, Karla Brkić, and Nikola Bogunović. 2015. A review of feature selection
methods with applications. In 2015 38th international convention on information
and communication technology, electronics and microelectronics (MIPRO). Ieee,
1200–1205.

[23] Ron Kohavi and George H John. 1997. Wrappers for feature subset selection.
Artificial intelligence 97, 1-2 (1997), 273–324.

[24] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? 9, 3 (2015),
204–215.

[25] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,
Jiliang Tang, and Huan Liu. 2017. Feature selection: A data perspective. ACM
computing surveys (CSUR) 50, 6 (2017), 1–45.

[26] Jianguo Liu, Neil Danait, Shawn Hu, and Sayon Sengupta. 2013. A leave-one-
feature-out wrapper method for feature selection in data classification. In 2013
6th International Conference on Biomedical Engineering and Informatics. IEEE,
656–660.

[27] Luis Carlos Molina, Lluís Belanche, and Àngela Nebot. 2002. Feature selection
algorithms: A survey and experimental evaluation. In 2002 IEEE International
Conference on Data Mining, 2002. Proceedings. IEEE, 306–313.

[28] Felix Neutatz, Felix Biessmann, and Ziawasch Abedjan. 2021. Enforcing Con-
straints for Machine Learning Systems via Declarative Feature Selection: An

9

https://arxiv.org/abs/2504.10704
https://www.ververica.com/blog/blink-flink-alibaba-search
https://www.ververica.com/blog/blink-flink-alibaba-search

Experimental Study. In Proceedings of the 2021 International Conference on Man-
agement of Data. 1345–1358.

[29] Feiping Nie, Heng Huang, Xiao Cai, and Chris Ding. 2010. Efficient and robust
feature selection via joint ℓ2,1-norms minimization. In Proceedings of the 24th
International Conference on Neural Information Processing Systems - Volume 2.
1813–1821.

[30] Cheng Peng, Xinyu Wu, Wen Yuan, Xinran Zhang, Yu Zhang, and Ying Li. 2019.
MGRFE: Multilayer recursive feature elimination based on an embedded genetic
algorithm for cancer classification. IEEE/ACM transactions on computational
biology and bioinformatics 18, 2 (2019), 621–632.

[31] Jose C Principe, Dongxin Xu, Qun Zhao, and John W Fisher. 2000. Learning from
examples with information theoretic criteria. Journal of VLSI signal processing
systems for signal, image and video technology 26 (2000), 61–77.

[32] Pavel Pudil, Jana Novovičová, and Josef Kittler. 1994. Floating search methods in
feature selection. Pattern recognition letters 15, 11 (1994), 1119–1125.

[33] Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, and María Tombilla-
Sanromán. 2007. Filter methods for feature selection–a comparative study. In
International Conference on Intelligent Data Engineering and Automated Learning.
Springer, 178–187.

[34] Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature selection for classifi-
cation: A review. Data classification: Algorithms and applications (2014), 37.

[35] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. 2018.
Zero-shot learning—a comprehensive evaluation of the good, the bad and the
ugly. IEEE transactions on pattern analysis and machine intelligence 41, 9 (2018),
2251–2265.

[36] Bing Xue, Mengjie Zhang, Will N Browne, and Xin Yao. 2015. A survey on
evolutionary computation approaches to feature selection. IEEE Transactions on
evolutionary computation 20, 4 (2015), 606–626.

[37] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec.
2019. Gnnexplainer: Generating explanations for graph neural networks. Ad-
vances in neural information processing systems 32 (2019).

[38] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How trans-
ferable are features in deep neural networks? Advances in neural information
processing systems 27 (2014).

[39] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. 2020. Xgnn: Towards model-
level explanations of graph neural networks. In Proceedings of the 26th ACM
SIGKDD international conference on knowledge discovery & data mining. 430–438.

[40] Xiaotong Yuan, Ping Li, Tong Zhang, Qingshan Liu, and Guangcan Liu. 2016.
Learning Additive Exponential Family Graphical Models via ℓ{2,1}-norm Reg-
ularized M-Estimation. In Advances in Neural Information Processing Systems,
Vol. 29.

10

	Abstract
	1 Introduction
	2 Overview of Automated Feature Selection Pipeline
	2.1 Feature Determination
	2.2 Feature Ablation Study
	2.3 Statistical Relevance Analysis
	2.4 Transferability Filtering

	3 Experiment Results
	3.1 Comparing Feature Selection Strategies
	3.2 Transferable vs. Non-Transferable Features
	3.3 Model Compactness and Training Efficiency

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

