TailorSQL: An NL2SQL System Tailored to Your Query Workload

Kapil Vaidya'*, Jialin Dingz, Sebastian Kosak?*, David Kernert**, Chuan
Lei?, Xiao Qin?, Abhinav Tripathy?, Ramesh Balan?, Balakrishnan Narayanaswamy?, Tim Kraska®

!Parallel Web Systems 2Amazon Web Services

ABSTRACT

NL2SQL (natural language to SQL) translates natural language ques-
tions into SQL queries, thereby making structured data accessible
to non-technical users, serving as the foundation for intelligent data
applications. State-of-the-art NL2SQL techniques typically perform
translation by retrieving database-specific information, such as the
database schema, and invoking a pre-trained large language model
(LLM) using the question and retrieved information to generate the
SQL query.

However, existing NL2SQL techniques miss a key opportunity
which is present in real-world settings: NL2SQL is typically applied
on existing databases which have already served many SQL queries
in the past. The past query workload implicitly contains information
which is helpful for accurate NL2SQL translation and is not apparent
from the database schema alone, such as common join paths and the
semantics of obscurely-named tables and columns. We introduce
TailorSQL, a NL2SQL system that takes advantage of information in
the past query workload to improve both the accuracy and latency
of translating natural language questions into SQL. By specializing
to a given workload, TailorSQL achieves up to 2X improvement in
execution accuracy on standardized benchmarks.

VLDB Workshop Reference Format:

Kapil Vaidya, Jialin Ding, Sebastian Kosak, David Kernert, Chuan Lei, Xiao
Qin, Abhinav Tripathy, Ramesh Balan, Balakrishnan Narayanaswamy, Tim
Kraska. TailorSQL: An NL2SQL System Tailored to Your Query Workload.
VLDB 2025 Workshop: Applied Al for Database Systems and Applications
(AIDB 2025).

1 INTRODUCTION

NL2SQL translates natural language questions into SQL queries,
making data analysis accessible to non-technical users and serving
as a foundation for intelligent data applications like smart dash-
boards and visualizations. For instance, a business owner can simply
ask, “What were last month’s total sales by product?” and the data
application can use the NL2SQL system to generate the correspond-
ing SQL, retrieve the relevant data, and summarize the results. Such
possibilities make NL2SQL an important tool to explore.

NL2SQL tools are increasingly being integrated into widely-used
commercial database systems [1-3]. Usage of NL2SQL tools typically
exhibit two behaviors. First, NL2SQL-generated queries are only a
small fraction of the overall query workload that is executed on a

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

*Work performed while employed at AWS.

3Technical University of Munich *STACKIT

database; most SQL queries are still either hand-written or machine-
generated according to application logic. Second, users of NL2SQL
tools care not only about the accuracy of the output SQL query, but
also the latency of invoking the NL2SQL tool.

Recent improvements in NL2SQL technology has been propelled
by the advent of large language models (LLMs). What sets LLMs
apart from the previous language models is their capacity to gener-
alize to unseen tasks. LLMs achieve this through in-context learning,
where examples of the task completion and information relevant to
the task are provided within their context. Using this context, the
LLM generates the desired output. Capitalizing on these capabili-
ties, LLMs consistently excel in various tasks, including NL2SQL,
where they currently lead on two well-known NL2SQL benchmarks:
Spider [37] and BIRD [13].

Since NL2SQL aims to output SQL queries that can execute on
the user’s database, one key step in the NL2SQL pipeline is acquir-
ing database-specific information (e.g., the names of tables which
the SQL query should reference) to provide in the LLM’s context.
Some commercial NL2SQL tools ask the user to manually specify
certain information, such as the tables and views to be used in the
SQL query [1] or the literals to use in filters [3]. On the other hand,
NL2SQL techniques proposed in the research literature typically aim
to automatically retrieve the relevant database-specific information
without any human intervention [7, 20, 32].

However, one source of database-specific information is consis-
tently ignored or underutilized by existing NL2SQL tools: the logs
of past SQL queries which have executed on the database. These
logs typically contain queries originating from various applications,
including machine learning pipelines, ETL processes, and reporting
tools, rather than being limited to those generated by NL2SQL inter-
faces. Databases often have repetitive workloads with similar queries
in historical logs due to overlapping analyses driven by consistent
business goals and standard reports. This leads to recurrences of
similar patterns across queries, such as frequently-used join paths.
As aresult, SQL queries generated by NL2SQL systems often match
or share components with logged queries.

An Illustrative Example. We illustrate the potential benefit of
using past query logs for NL2SQL with an example which is derived
from the BIRD benchmark [13]. Fig. 1A depicts a chemistry data-
base containing tables named atoms, cnt, and bond, among others.
Notably, the cryptically-named cnt table is meant to “connect” the
atoms and bond tables via their respective id fields. Assume that a
number of SQL queries have already been run on this chemistry data-
base, not necessarily generated from the NL2SQL interface. Given
the user’s natural language question, an accurate NL2SQL system
should produce the desired output SQL query, which joins atoms
and bond via the cnt table.

A typical NL2SQL pipeline (Fig. 1B) will invoke an LLM with a
prompt that includes the user’s question and schema information

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

(A) NL2SQL Example

Input Desired Output
Database
User Question { Schema Past Queries SQL Query
5’ ") ! " table atoms {id, symbol, number, ..} } { select count (distinct bond.bondtype) i select bond.bondtype ' ' i
{ Find the type of bonds | i | table cnt {atomid, bondid, ..} : | from atoms join cnt on atoms.id = cnt.atomid i from atoms join cnt on atoms.id = cnt.atomid 4
i = i
{ forHeliumatoms. i1 table bond {id, bondtype, ..} ! i join bond on cnt.bondid = bond.id { join bond on connect.bondid = bond.id :
. / | |_table reactions ... i i where atoms.number > 90 _Where atoms.symbol = He /
1 8
(B) Typical NL2SQL Workflow (C) NL2SQL Workflow Using Information From Past Queries
LLM Prompt
LLM Prompt E'Ptease generate SQL to answer the
p | question: Find the type of bonds for
{ Please generate SQL to answer the LLM Output 1 Helium atoms.

H

! question: Find the type of bonds for i _____________________________

E Helium atoms. ! select bond.bondtype

| The database schema is: i—s LLM —! fromatoms join bond onid

Schema 1 tapie atoms (id, symbol, number, ..} { where atoms.symbol = He'

information | table cnt {atomid, bondid, .} 1 emmmmsmmsmmsmmesmmeemooo
i table bond...

Schema
information | table cnt {atomid, bondid, ..}

Hints from
s
Past Queries | atoms.id = cnt.atomid

| The database schemaiis: LLM Output

| table atoms {id, symbol, number, ..}

:’ select bond.bondtype

i from atoms join cnt on atoms.id = cnt.atomid
| table bond... — — " -
 taie bon L i join bond on cnt.bondid = bond.id

i Where atoms.symbol = "He’

H
1 Hint: acommon join pattern seen in
1 7 past queries is: ‘atoms join cnt on

i join bond on cnt.bondid = bond.id"

Figure 1: (A) The input to NL2SQL is a user question over a database which has a certain schema and past query workload, and the desired output
is a SQL query. (A) The typical NL2SQL workflow will invoke the LLM with a prompt that includes the user question and the database’s schema,
which may not include enough information to produce an accurate SQL query. (C) Hints extracted from past queries help the LLM produce more

accurate queries.

from the database. However, due to the cryptic name of the cnt table,
the LLM might erroneously choose an incorrect join path: in this
example, it joins the atoms and bond tables on their respective id
columns. Figuring out the correct join path based solely on table
schemas is challenging for the LLM, especially if there is no join path
information and tables have no conclusive names.

To mitigate this lack of information, we can take advantage of
past queries to augment the information provided in the prompt
(Fig. 1C): suppose that the join path between the atoms, cnt, and
bonds tables has been observed in multiple past queries, such as the
query shown in Fig. 1A. We incorporate this common join path as
a hint in the LLM prompt, which guides the LLM to generate the
correct SQL query. In this example, past queries provide informa-
tion about common query patterns, which implicitly indicate the
appropriate usage of schema items which may otherwise be unclear
from inspecting the database schema alone. Note that hints are not
directives, i.e., they do not force the LLM to act a certain way, but
rather provide the LLM with useful information which the LLM is
allowed to ignore.

Following this intuition, we introduce TailorSQL, a NL2SQL sys-
tem that tailors itself to a given query workload by harnessing the
information that is implicitly stored in past queries. TailorSQL im-
proves both the accuracy and latency of NL2SQL with two core ideas.

First, TailorSQL performs an offline analysis of the past query
workload and extracts hints from past queries (e.g., the hint about
the common join path in Fig. 1). Hints provide useful information
for accurate NL2SQL translation which is missing from schema in-
formation alone. Individual hints are stored as text-based documents
and can be retrieved into the LLM context if relevant for a given
question. TailorSQL also stores schema information in documents.

Second, TailorSQL introduces a workload-specialized framework
forretrieving the relevant documents for a given user question, while
ignoring irrelevant documents. Retrieval frameworks (see Section 2)

are often necessary for real-world NL2SQL pipelines because LLMs
are subject to a context limit, which is the maximum amount of input
text the LLM can process. Database schemas often comprise thou-
sands of tables and including all of them in the limited prompt context
becomes infeasible. Even in cases where the entire schema fits into
the prompt context, it is desirable to avoid adding irrelevant infor-
mation to an LLM’s prompt, since doing so will incur higher latency
and cost when invoking the LLM. A typical NL2SQL retrieval frame-
work maps user questions and documents into an embedding space,
ensuring the proximity of questions to relevant documents; then
for a given question, the framework retrieves documents in order of
decreasing embedding similarity until the LLM’s context is filled. Tai-
lorSQL’s retrieval framework improves upon the typical framework
by using the past query workload to create fine-tuned document em-
beddings, which improves its ability to retrieve relevant documents
while avoiding irrelevant documents. Furthermore, instead of using
a single context size limit for all documents, TailorSQL performs
an analysis over past queries to allocate a separate context limit for
each class of document (i.e., schema vs. hint documents) in order to
mitigate class imbalances when performing document retrieval.

Finally, given that TailorSQL specializes to a specific workload,
it may perform poorly if the workload distribution changes in the
future. To mitigate such performance regressions, we introduce
an abstention policy, which TailorSQL uses to dynamically decide
whether to abstain from using query hints in the NL2SQL pipeline
(i.e., whether to fall back to a generic NL2SQL pipeline that does not
use TailorSQL’s proposed specializations). The abstention policy is
based on a multi-armed bandit framework and incorporates user
feedback into the decision-making process.

We evaluate TailorSQL across multiple NL2SQL benchmarks,
demonstrating up to 2X improvement in execution accuracy com-
pared to baselines that do not take advantage of past queries. Addi-
tionally, for the same execution accuracy, TailorSQL improves SQL
generation latency by 2-4X compared to the baselines. Furthermore,

TailorSQL does not overfit to historical queries and exhibits robust-
ness against shifts in query distribution. In summary, we make the
following key contributions:

o We present TailorSQL, a NL2SQL system that tailors itself to a
given database by utilizing database-specific hints extracted from
past queries to improve accuracy.

e We demonstrate how TailorSQL tailorsits embedding and retrieval
procedures to a given database, which improves SQL generation
latency without sacrificing accuracy.

e We ensure that TailorSQL is robust to workload distribution shifts
using a bandit-based policy to decide when to abstain from uti-
lizing query hints.

e We present an evaluation of TailorSQL'’s overall performance in
terms of accuracy and latency as well as microbenchmarks on its
individual components.

2 PRELIMINARIES

In this section we give background on retrieval models and retrieval-
augmented generation, which is useful for understanding TailorSQL.

Dense Retrieval Models and Document Retrieval: Dense re-
trieval models are a type of information retrieval method that ef-
ficiently matches text-based queries! to text-based documents by
encoding queries and documents into dense vectors (commonly re-
ferred to as embeddings) in a continuous vector space, then retrieving
documents whose embeddings are similar to a given query embed-
ding. The similarity between a query embedding Eq and a document
vector E; in the embedding space can be measured using various
similarity metrics. One popular metric, which we use throughout
this paper, is cosine similarity, defined as:

EqEy
lIEqll- Il Eql|
where the numerator denotes the dot product between the query
and document embeddings, and the denominator represent their
respective Euclidean norms. Cosine similarity varies between -1
(denoting perfect dissimilarity) and 1 (denoting perfect similarity).

Semantically-related queries and documents should ideally have
similar embeddings. A common approach for generating embed-
dings is to use a pretrained sentence transformer such as Sentence-
BERT (SBERT) [22], which has been trained on large text corpora
specifically for the purpose of generating semantically meaningful
embeddings of sentences such that embeddings can be compared
using cosine similarity. Here, “sentence” refers to arbitrary pieces of
text that can contain multiple English sentences. Therefore, to avoid
ambiguity, for the remainder of this paper we use the term document
instead of “sentence”

Given a query, one can retrieve the top-K most similar documents
by computing the similarity between the query embedding and all
document embeddings. To enable efficient retrieval at query time,
it is common to precompute document embeddings offline.

CosSim(Eg,Eq) = (1)

Retrieval-Augmented Generation (RAG) is an approach that
merges retrieval-based and generative models to improve text gen-
eration tasks. RAG comprises three main elements: a document
store, retrieval model, and generative model. The document store
contains relevant text-based documents, typically along with each

Here, “queries” is a general term that does not necessarily refer to SQL queries.

document’s precomputed embedding. The retrieval model efficiently
selects the most relevant documents based on a given query, employ-
ing techniques described above. Typically, the generative model is
a pre-trained LLM, which produces contextually-relevant text based
on the query and retrieved documents.

When RAG is applied to NL2SQL, the document store typically
contains documents with database-specific information, such as
schema information (e.g., a document describing the column names
and data types of a particular table) or database documentation (e.g.,
a document describing the supported SQL syntax for the database’s
particular SQL dialect).

3 TAILORSQL SYSTEM OVERVIEW

TailorSQL is aNL2SQL system which accepts anatural language ques-
tion as input from the user and produces a corresponding SQL query
as output. Like other recent NL2SQL systems [7, 20, 32], TailorSQL
employs an LLM by creating a prompt based on the input question,
invoking the LLM using the prompt, and extracting the SQL output
from the LLM’s response. TailorSQL’s core novelty compared to
prior NL2SQL systems is its ability to specialize the NL2SQL pipeline
to the user’s workload by taking advantage of historical query logs.

We first describe the end-to-end workflow of TailorSQL’s NL2SQL
pipeline, with a particular emphasis on how TailorSQL specializes
each part of this pipeline using historical query logs. We then provide
some further illustrative examples that intuitively showcase how
historical query logs can improve NL2SQL accuracy.

3.1 End-to-End Workflow

TailorSQL’s NL2SQL system (shown in Fig. 2) is composed of an
offline pipeline and an runtime pipeline. The offline pipeline prepro-
cesses the information in the database and historical query logs so
that the information can be retrieved for user questions. The offline
pipeline must run before TailorSQL can start serving user questions,
and it can be retriggered periodically (e.g., every night) so that Tai-
lorSQL is up to date with changes in the database schema or query
workload patterns. The offline pipeline has two parts:
¢ Document generation: we compile information from the data-
base which might be useful to include in the LLM prompt into
individual pieces of text called documents. For example, prior
NL2SQL techniques often generate one document for each table
in the database, containing information such as the table’s name
and the name and data type of its columns. TailorSQL specializes
to the workload by additionally generating documents contain-
ing information about common patterns in the historical query
workload. Section 4 describes the process in further detail.
¢ Document embedding generation: each document is identified
by a fixed-length vector embedding. The embedding is meant to
capture semantic information about the contents of the document,
so that the embedding of a document is similar (in terms of cosine
similarity; see Eq. (1)) to the embeddings of user questions which
make use of the document and dissimilar to the embeddings of
unrelated user questions. A common approach for generating doc-
ument embeddings is to feed the content of the document through
a pretrained embedding model, such as SBERT [22]. TailorSQL
specializes to the workload by generating document embeddings
that are a function of not only the document’s contents, but also

(A) Document Generation (B) Embedding Generation
Database Documents Input -
document
) Catalog) Schema Documents
{"table atoms {id, symbol, number, ..} 4 S
i table cnt {atomid, bondid, ..} i table atoms {id int primary key, symbol Auxiliary Information
i i text,))
i :a::e bom:_(.d, bondtype, ..} i X Co-occuring L
{_table reactions ... j documents || Doc | || Doe — —) Document
Data table cnt {atomid int, bondid int, ...}) embedding
Offline Rel r\ SBERT I 1
elevant —— — -/
Hint Documen N
Query 't Documents past queries Si
join pattern seen in 7 past queries: —l LLIED
Query Log “atoms join cnt on atoms.id = Pooling
cnt.atomid join bond on cnt.bondid = Lm
lect count (distinct bond.bondtype) bond.id"
atoms join cnt on atoms.id = cnt.atomid
ond on cnt.bondid = bond.id N L
e filter predicate seen in 4 past queries: Synthetic ‘ g —— e —
S “atoms.number > 90 questions {|SynthQ
N (D) SQL Generation
(C) Document Retrieval User Question Q
{ Find the type of bonds |
| forHeliumatoms. [SBERT e
Document Store { J
(generated offline) LLM Prompt
Document #Tokens Embedding Question question: Find the type of bonds
for Helium atoms.
Docs1 1000 [ey | Cossim([&0 |, [esv |)=06
The following tables exist in the
Docs2 700 Es2)) = Retrieved Schema LLM Output
E €2 |)=0. database:
Gossim(o 2)=08 Documents {"select bond.bondtype 3
900 = H H
Runtime fees = Cossim([0 | , [&5 |)=05 (2K token limit) 262 Docs1 LM | from atoms join cnt on atoms.d = cntatomid |
Query Hint Documents | join bond on cnt.bondid = bond.i 1
The following hints are extracted { where atoms symbol = "He'

2000 £ cossim([& |, [&mw |)=04

Doc H2 700) .
— Cossim([&0 | , [[&W2 |)=01
Cossim(|_e@ |, [EH |)=0.2

Retrieved Hint
Documents
(2.5K token limit)

Unused Context

from past queries on this database:

Doc H1

Figure 2: In an offline process, TailorSQL (A) generates schema and query hint documents based on information in the database, then (B) generates
an embedding for each document using a combination of the document itself and several pieces of auxiliary information related to the document.
(C) At runtime, we compute similarity between the user question’s embedding and document embeddings in order to retrieve the most relevant
documents, up to a per-document-class token limit. (D) The prompt, which includes the question and information in retrieved documents, is

used to invoke an LLM to generate the SQL query.

of other related documents and related queries from the historical
logs, which helps capture semantic information that is not present
in the document’s contents alone. Section 5 describes the process
in further detail.

The runtime pipeline is triggered whenever the user asks a natu-

ral language question, and its output is a SQL query. The runtime

pipeline has two components:

e Document retrieval: we compute the embedding of the user
question, then compute the cosine similarity between the question
embedding and the document embeddings which were generated
offline. Prior NL2SQL techniques would then retrieve documents
in decreasing order of similarity, until the prompt limit is saturated
(i.e., until the total number of tokens in all retrieved documents
surpasses the token limit of the LLM prompt). However, prior
techniques do not distinguish between different types of docu-
ments. TailorSQL introduces a context allocator which performs
an offline analysis to determine how much of the context to allo-
cate for documents of each class in order to balance the precision
and recall of document retrieval on the historical query workload.
Section 6 describes the process in further detail.

e SQL generation: we assemble the retrieved documents into a
prompt template. The same prompt template is used across all
user questions. We invoke the LLM with the constructed prompt
and parse the LLM response to yield the SQL query. TailorSQL
does not perform any workload specialization for the SQL gen-
eration step. Indeed, prior NL2SQL systems make use of complex

reasoning pipelines to perform SQL generation, e.g., by taking

advantage of chain-of-thought and least-to-most prompting [20].

These improvements to SQL generation are orthogonal and com-

plementary to TailorSQL’s use of information from past queries.
Specialized NL2SQL pipelines perform well when future questions
have similar patterns as historical query logs, but can perform poorly
otherwise. To avoid performance regressions, TailorSQL uses an ab-
stention policy (Section 7) to dynamically decide when to fall back
to using a non-specialized NL2SQL pipeline.

3.2 Illustrative Examples

The example from Section 1 showed how past queries can help
disambiguate cryptically-named tables by providing information
about common join paths. We now present two further examples
where past queries provide information beyond that which is already
provided through the database schema.

Filter Expressions: Filter expressions in past queries provide in-
sights into the format of various columns, including literals within
those columns, aiding the LLM in determining the appropriate filter
for a query. In Fig. 3, the user table contains user information such
as ids and birth date. Notably, birthdate is stored as an 8-digit in-
teger in a distinctive manner. Past queries use filter expressions of a
specific form to accurately extract the year from birthdate values.
Incorporating this query hint into the prompt assists the LLM in
understanding the format of the birthdate column.

Database Schema: user {userid, birthdate}

user Query Hint
userid birthdate
10201 05052005 Filter predicate seen in 3 past queries:
‘substring(birthdate, 5, 4) = '2003"
10202 30041996
10203 01011991

User Question: Find the number of customers born in 1991

LLM output w/o query hint LLM output w/ query hint

" \| " \‘
! select count(*) 1 1 select count(*) H
! fromuser ! | fromuser !
! where birthdate ='1991' | | where substring(birthdate, 5, 4) ='1991' i
L b J
Figure 3: Past filter predicates help interpret column values.
Query Hint
Database Schema: The following group-by was
venue {id, name, state} seen in 6 past queries that read
events {id, venueid, num_tickets} the venue table: “group by v.id"
User Question: Find the name of the venue with the most events
LLM output w/o query hint LLM output w/ query hint
’ p} N,

{ select

v.name, count(*) AS num_events
from venue v join event e

on v.id = e.venueid

select
v.name, count(*) as num_events
from venue v join event e

]
i i
1 1
1 1
i i
: 1
I onv.id = e.venueid i
1
i i
i i
i i
i i
i i

| T ————
——————————————

group by v.name group by v.id
order by num_events desc order by num_events desc
iy limit 1 ! limit 1
~, ~, 4

Figure 4: Past group-by clauses help indicate an implicit primary key.
Note that the SQL query on the right only executes for SQL dialects
that allow bare columns in aggregation queries, like SQLite.

Group-By Clauses: In Fig. 4, the id column serves as the primary
key for the venue table, not the name column, since multiple venues
may share the same name. Past aggregation queries tend to group
by the id column, signifying that id refers to unique venues. If a
user requests information about venues that requires aggregation,
a query hint based on past group-by clauses will guide the LLM to
aggregate over the id column instead of the name column.

4 DOCUMENT STORE

TailorSQL uses information about the database schema and past
query workload to help generate accurate SQL queries for user ques-
tions. TailorSQL stores this information in two broad classes of doc-
uments: (1) schema documents, which capture information about
the database schema, and (2) query hint documents, which capture
information from the past query workload.

4.1 Schema Documents

Schema documents capture information about the database schema.
Similar to prior NL2SQL techniques [20, 32], TailorSQL generates a
document for each table in the database. By default, the schema docu-
ment will contain the CREATE TABLE SQL statement which is used to

create the table, which typically captures the following information:
(1) the table’s name, (2), the name, data type, default value, nullability,
and other properties for each column, and (3) table properties such
as the primary key and any foreign keys. All of this information
helps the LLM reason about the correct SQL for a user question.
Note that the exact contents of the schema document will vary
depending on the database management system. For example, some
multi-node database systems define distribution keys for each table,
which do not exist for single-node systems. Indeed, we found that cer-
tain additional information beyond the CREATE TABLE SQL statement
are useful for TailorSQL, which we describe further in Section 8.2. In
general, the exact contents of the schema document are orthogonal
to the core idea of TailorSQL, and TailorSQL’s procedure will work
with whatever schema documents are generated for a given DBMS.

4.2 Query Hint Documents

Unlike schema documents, which are standard in prior NL2SQL
techniques, query hint documents are a novel class of documents in-
troduced by TailorSQL. Query hint documents capture information
about common query structures in the past workload. Since queries
often repeat in analytic workloads, including information about
past query structures should help the LLM generate accurate SQL
for future user questions. There are many options for the structure
of query hint documents, which vary on a tradeoff space between
information content and information density:

o Create a hint document for each query observed in the past work-
load, containing the SQL text of the query. This provides the
maximum amount of information to the LLM. However, there
are several disadvantages to this approach: (1) SQL queries can
have very long text [30, 31], which quickly exhausts the context
space. (2) SQL queries often have repetitive text, which means that
hint documents would contain redundant information. For exact
repeats of the same SQL query text, it is simple to deduplicate
documents, but queries often do not repeat exactly but rather have
repeating subcomponents (e.g., repeating filter predicates [30]).
(3) SQL query text often contains boilerplate text which does not
provide any useful information.

e To alleviate the redundancy described above, an alternative is
to create a hint document for each past query template, where a
template is created by removing literals from the SQL text, and
then to store the literals separately. This approach might help
reduce information redundancy for dashboarding and reporting
workloads where the same queries are issued repeatedly with
differing literals, but it does not work as well for ad-hoc query
workloads where distinct templates are not as prevalent.

o Break down each past SQL query into subcomponents, where each
subcomponent roughly corresponds to a different SQL clause, and
generate a hint for each distinct subcomponent. The intuition is
that queries in the past workload, despite being distinct overall,
share significant subcomponents like join paths and filter predi-
cates. Although this approach decreases information redundancy
in documents, its disadvantage is that by extracting only a subset
of information in each query, we lose some information content.

TailorSQL uses the approach of breaking down past queries into

subcomponents, and in Section 8.2 we describe the specific content

of hint documents used in our evaluation. However, we believe the

workload-specialization techniques described in this paper are help-
ful regardless of the exact format of hint documents. Deciding on
the content of hint documents, similar to deciding on the content
of schema documents and LLM prompt engineering more generally,
is more an art than a science, and further optimization to the hint
document format is left to future research.

5 DOCUMENT EMBEDDING GENERATION

In this section, we describe how TailorSQL generates an embed-
ding for each of the documents in its document store. One simple
workload-agnostic approach is to feed the contents of a document
through an embedding model such as SBERT [22], which produces
an embedding that captures the semantics of the document con-
tents. For the remainder of this section, we refer to a document’s
embedding produced by feeding its contents through an embedding
model as a raw document embedding. However, TailorSQL gener-
ates tailored embeddings in a manner that makes use of the past
query workload, which we show in Section 8 to perform better than
workload-agnostic raw SBERT embeddings.

For a given user question, we define a relevant document as one
which is helpful for answering the question. A schema document
is relevant to a question if the table described in the document is
used in the SQL query that answers the question. Similarly, a query
hint document is relevant to a question if any content in the hint
document is used in the SQL query that answers the question.

TailorSQL’s embedding generation procedure takes advantage
of the following intuition: the ideal document embedding is one that
maximizes the similarity between the document embedding and the
embeddings of future relevant user questions (and also minimizes
its similarity to the embeddings of future irrelevant questions). We
first describe how TailorSQL formalizes this intuition into an opti-
mization objective which can be used to quantify the goodness of a
document embedding. We then describe TailorSQL’s procedure for
generating document embeddings to optimize that objective.

5.1 Optimization Objective

We define embedding similarity as the cosine similarity (see Eq. (1))
between two embeddings. For a given pair of question embedding
Eg and document embedding Eg,., we define cosine loss as:

1—cos(EQ,Eqoc) if doc relevant for Q

loss(Eo,E, =
(EQEdoc) {maX(O,cos(EQ,Edoc) if doc irrelevant for Q

Loss is high when either (1) the document is relevant to the ques-
tion but the embeddings are not similar, or (2) the document is not
relevant to the question but the embeddings are similar.

One challenge is that we do not know the exact questions that the
user will ask in the future, so it is difficult to directly optimize for
loss(Eq,Eqqc). TailorSQL tackles this challenge by taking advantage
of the observation that in a stable workload, past SQL queries are
likely to be similar to the queries that answer future user questions.
Therefore, TailorSQL generates a synthetic question workload using
the past SQL queries: for each past query, TailorSQL generates a
synthetic question which, when given to a NL2SQL system, would
yield that particular past query as the answer. TailorSQL employs
an LLM model to generate these synthetic questions. The model is

prompted with the SQL query and the schema of the tables involved
in the query, and is tasked with generating a potential user question.

Given this synthetic question workload, our objective is to find an
embedding for every document in order to minimize the total cosine
loss for all documents in the document store D over all queries in
the synthetic query workload Q:

min Z Z loss(EsynthQ’EdOC) (2)
doceDsynthQeQ

5.2 Optimization Procedure

Given this optimization objective, one possible strategy for determin-

ing document embeddings is to independently create an embedding

for each document that minimizes cosine loss over the synthetic
question workload. However, we found that this leads to overfitting.

For example, in a degenerate case where a document is only relevant

for a single synthetic question, then we would set the document em-

bedding to be the same as the synthetic question embedding; clearly,
this would not generalize to future questions which make use of the
document, but which are not the same as the synthetic question.

Therefore, instead of allowing arbitrary embeddings for each
document, in TailorSQL we impose a structure for document embed-
dings. For each document, we generate a number of proxy embed-
dings, which are embeddings that should be similar to the relevant
question embeddings and which capture information that may not
be present in the content of the document itself:

o We identify all the past queries which this document is relevant
for. We use the embedding model (e.g., SBERT) to generate an em-
bedding of each SQL query based on the query text, then average
the embeddings across all queries: Eggr.. We include this proxy
embedding because documents are expected to be similar to the
queries which use it, and SQL query information is not entirely
present in documents and so would not be accounted for in the
raw document embedding.

e For each of the relevant past queries, we prompt an LLM to gen-
erate a synthetic user question, and take the average embedding
of the synthetic user questions: Egynen. We naturally want doc-
ument embeddings to be similar to the embeddings of questions
which might use it.

o We identify co-occurring documents, which are other documents
that are relevant to at least one of the queries that the current
document is relevant to. We average the raw embeddings of all co-
occurring documents: E¢o-occur. We include this proxy embedding
because this information is useful for documents with obscure
meanings, as co-occurring documents with clearer semantics can
help improve their understanding. For example, in Fig. 1, atom
and bond have clearer semantics than the cnt table.

For a given document, its embedding is the weighted sum of each

of its proxy embeddings, along with its raw embedding, Eraw:

Edoc = (Wl *Eraw + W2 Eco-occur+ W3- Esgr +wy "EsynthQ)

We use the same weights for all documents, i.e., the weights must
be optimized once per workload, not once per document. Using the
same weights for the entire workload encourages generalization. For
agiven workload, we find the weights that minimize the optimization
objective (Eq. (2)) using gradient descent.

Proxy embeddings essentially extend the information content
of the document itself. It is as if, instead of generating an embed-
ding for a document based purely on the contents of the document
itself, we are generating an embedding based on an augmented doc-
ument that also includes information about relevant SQL queries
and co-occuring documents. Instead of creating proxy embeddings,
we could have achieved a similar effect by generating a “virtual”
augmented document (which includes the original document con-
tents along with the text of co-occurring documents, relevant SQL
queries and synthetic questions) and using SBERT to generate an
embedding of this augmented document. However, we found that by
using a weighted sum, we have more fine-grained control over the
relative importance of each piece of information when constructing
the embedding, which produced better embeddings.

6 DOCUMENT RETRIEVAL

When the user asks a question to TailorSQL, we first convert the ques-
tion into an embedding by feeding the question contents through the
embedding model (e.g., SBERT). We then retrieve relevant documents
from the document store and put their contents into the LLM prompt.
One simple workload-agnostic approach is to retrieve documents
in descending order of similarity between the question embedding
and document embedding, until the LLM prompt context is filled.
However, there are several drawbacks to this simple retrieval
approach, related to the existence of multiple document classes:

e The optimal retrieval recall and precision may differ for each doc-
ument class, where recall is defined as the fraction of relevant
documents that are retrieved and precision is defined as the frac-
tion of retrieved documents that are relevant. For example, it is
intuitively more critical to have high recall for schema documents
than for hint documents: if a relevant schema document is not
present in the context, then TailorSQL will have difficulty gen-
erating the correct SQL because it does not know what table or
column name to use, but if a relevant hint is not present in the
context, TailorSQL might still generate the correct SQL.

e The number of documents in each class may be vastly different.
By retrieving documents in a class-agnostic manner, we may end
up with many more of one document class than the other, which
may not be desirable.

o The scale of embedding similarities for each document class may
be different. For example, query hint documents may naturally
have embeddings that are less similar to question embeddings
than schema documents, due to the difference in information con-
tent of the two documents. Some of these scale differences are
mitigated due to the document embedding generation process
(Section 5), but there are nonetheless still effects due to the in-
clusion of raw document embeddings in the weighted sum that
produces the tailored document embeddings.

To address these drawbacks, TailorSQL performs document retrieval

in a workload-adaptive manner. TailorSQL performs an offline anal-

ysis over the past query workload to determine a context allocation
over the document classes, i.e., a way to split up the number of to-
kens in the context among the document classes. When performing
document retrieval for a given user question, we fill the allocated
context for each document class independently. That is, for each

document class, we retrieve documents of that class in descending
order of similarity until the class context limit is reached.
TailorSQL determines context allocation using Bayesian opti-
mization. Specifically, we select a sample of past queries and use
an LLM to generate a synthetic question for each query. The opti-
mization objective is to identify a context allocation that maximizes
TailorSQL’s accuracy on the synthetic workload while adhering to
a user-specified token limit. As we will describe in Section 8.2, Tai-
lorSQL uses two classes of schema documents: table documents and

column documents. Thus, the optimization is expressed as:
maximize Accuracy (1, teolsthint)
0ty <T, 0=t o1 <T, O0=Ztyine<T,

tibl+teol +thint < T

subject to

Here, ty], teol, and thin: represent the number of tokens allocated

to table documents, column documents, and hint documents, re-

spectively, subject to the total token constraint T. However, a naive

Bayesian optimization implementation that samples configurations

from [0,T] % [0,T] % [0,T] would waste time exploring configurations

that do not satisfy the token limit constraint. To address this, we

reparameterize the problem by introducing variables that effectively

eliminate the constraint:

e p:Fraction of the token limit that is allocated. The remaining to-
kens are not allocated to any document class and remain unused.

o py,): Fraction of the allocated tokens that is allocated to tables.

® p.ol: Fraction of the remaining allocated tokens (after table allo-
cation) that is allocated to columns.

Using these new variables, the token allocations are expressed as:

t1=T P Pbl
teol =T v (l _Ptbl) Peol
thint=T"p - (1=pwp1) - (1= Ppcol)

By reparameterizing the token allocation in this manner, the original
constraint) +to] +thint < T is naturally satisfied, as all components
are expressed as proportions of the total token limit. The reformu-
lated optimization problem is now given by:

maximize Accuracy (p,piblsPeol)

subject to 0<p<1, 0<pp1<1, 0<Lp<1

This reformulation ensures a clean optimization space, making it
particularly well-suited for standard Bayesian optimization.

We use Bayesian optimization, instead of a simpler method such as
gradient descent, to determine context allocation for several reasons:
(1) Bayesian optimization is more sample-efficient than gradient
descent (i.e., it takes fewer iterations) which is ideal for cases where
evaluations of the optimization function are expensive. In our case,
evaluating the objective function involves running the NL2SQL
pipeline and invoking the LLM for each synthetic question, which
is indeed expensive. (2) There are interactions between different
document classes which makes the objective function surface com-
plex and multi-modal. For example, increasing the context allocation
for a given document class is not always desirable: although larger
context improves retrieval recall, it may degrade precision, and a
high concentration of irrelevant documents may in fact distract the
LLM [14]. Bayesian optimization is better at finding global optima,
whereas gradient descent may get stuck in local optima.

7 ABSTENTION POLICY

TailorSQL specializes its NL2SQL workflow for a given query work-
load. However, its performance may degrade when the workload
characteristics change (e.g., tables which were commonly queried
in the past are now used rarely), since its specializations are no
longer aligned with the user questions. In this section, we describe
TailorSQL’s abstention policy, which we use to decide whether user
questions no longer align with the workload that TailorSQL was
specialized for, and therefore to instead answer user questions using
a generic, non-workload-specialized NL2SQL pipeline.

TailorSQL’s abstention policy relies on the existence of two NL2SQL
pipelines: TailorSQL’s specialized runtime pipeline (i.e., Fig. 2C-D),
and a generic runtime pipeline which does not use tailored embed-
dings or context allocations for document retrieval. Instead, the
generic pipeline only retrieves schema documents by comparing
similarity between the question embedding and raw document em-
beddings. Note that if we already ran TailorSQL’s offline pipeline,
there is no additional overhead for supporting a generic runtime
pipeline: the schema documents and raw document embeddings
needed for the generic pipeline already exist.

Conceptually, if a user question is similar to the past query work-
load, then we should use the specialized pipeline, and otherwise
we should use the generic pipeline. Instead of directly comparing
the similarity of user questions against the past query workload,
TailorSQL uses runtime feedback to inform its abstention policy. We
assume that after TailorSQL answers a user question with a SQL
query, the user gives a binary signal (e.g., thumbs up or thumbs
down) about whether they find the answer correct or useful.

TailorSQL uses a multi-armed bandit as its abstention policy: for
each incoming question, TailorSQL chooses one of the two pipelines
to run. After running, we collect the binary feedback from the user.
We maintain the average feedback over all past questions that are
run on each pipeline, where a thumbs up maps to 1 and a thumbs
down maps to 0. TailorSQL chooses which pipeline to run using an
e-greedy strategy: with probability e we choose a random pipeline,
and with probability 1—e we choose the pipeline with the higher
average historical feedback.

TailorSQL’s abstention policy has two aspects which are different
froma typical e-greedy strategy: (1) We maintain a sliding window of
feedback, so that feedback that was given earlier than the window’s
start boundary are not considered when computing the average
feedback for a pipeline. We do not want to maintain stale feedback,
since we are only concerned with determining which pipeline is
better for the current workload. (2) We delete all collected feedback
whenever we retrigger TailorSQL’s offline pipeline, i.e., whenever
we regenerate documents and embeddings (see Section 3.1).

Alternative Formulations: Instead of a multi-armed bandit, we
also considered using a contextual bandit formulation. Intuitively,
the multi-armed bandit determines which pipeline the current work-
load should be run on, whereas a contextual bandit determines which
pipeline a given question (i.e., the decision “context”) should be run
on. Contextual bandits may do better than a multi-armed bandit at
routing questions to the best pipeline if the current workload is com-
posed of a mix of questions that are similar and dissimilar to the past
queries. However, contextual bandits require many more feedback
points to learn the optimal decision strategy. We were not able to

justify such a long learning process through the benchmarks in our
evaluation due to the low number of questions (Section 8), though
contextual bandits may provide more benefit in other benchmarks
or in real-world settings.

Instead of a bandit approach, we also considered using a super-
vised learning approach. However, this requires a different feedback
mechanism, which leads to a different user experience. To train a
binary classifier that decides whether a question should be processed
using the generic or specialized pipeline, we would need to first col-
lect training data by taking each question, passing it through each
pipeline to produce two different responses, and asking the user to
choose the better one. This type of feedback is more informative
than the simple yes/no feedback used in our bandit approach, but
it places a greater mental load on users.

8 EXPERIMENTAL EVALUATION

We first describe the experimental setup and then present an in-depth
experimental study that shows TailorSQL’s performance on three
NL2SQL benchmarks. Overall, the evaluation demonstrates that:

e TailorSQL achieves 10-22% higher end-to-end SQL generation ac-
curacy compared to other baselines while utilizing 2—-15X smaller
prompts for the same accuracy (Section 8.3).

e Query hint documents alone enhance performance by 4-5%, but
TailorSQL achieves greater accuracy and latency improvement
through tailored embeddings and context allocation (Section 8.4.1).

o Incase of workload changes, TailorSQL’s abstention policy adapts
to the workload change to maintain high accuracy (Section 8.5).

o TailorSQL’s workload specialization techniques are complemen-
tary to the methods in state-of-the-art NL2SQL systems and can
improve their performance (Section 8.6).

8.1 Experimental Setup

Datasets: We use three NL2SQL benchmarks to test TailorSQL.

e Bird-Union combines tables from the databases in the dev set
of the BIRD benchmark [13] into a single database containing
71 tables and 1200 NL2SQL question-SQL pairs®. By using one
combined database, we simulate real-world scenarios where data
is not so cleanly separated into distinct databases for every topic.

e Spider-Union combines tables from the databases in the dev set
of the SPIDER benchmark [37] into a single database containing
221 tables and 480 NL2SQL question-SQL pairs.

e FIBEN [25] contains a single database containing 152 tables and
300 NL2SQL question-SQL pairs.

In general, Bird-Union and FIBEN pose a greater challenge than

Spider-Union due to having more semantically intricate table names,

column names, and questions.

Workloads: For each benchmark, we need to split the question-SQL

pairs into two sets: one set to use for simulating historical query logs

(i-e., the “training” set) and the other to use for simulating future

user questions (i.e., the “test” set). We employ two types of splits:

e Random Split: In this case, question-SQL pairs are randomly
assigned to either the query log or test set with equal probability.

2We exclude primary key-foreign key (PK-FK) information from the schema and omit
the evidence field provided by the benchmark to simulate real-world scenarios where
this data is typically unavailable.

As aresult, the test set mirrors the same distribution as the query
logs. This case is ideal for showcasing the benefits of TailorSQL.
e Disjoint Split: In this case, question-SQL pairs are divided in
such a way that the SQL queries in the query log and test set do
not access the same tables. Consequently, the test set exhibits a
completely different distribution from the query logs. This case
highlights workload drift when user questions have no similar
counterparts in the query log. This is similar to the train/dev/test
splits provided by the BIRD and SPIDER benchmarks, where the
databases observed in the train set are completely disjoint from
those in the dev or test sets.
All experiments have half the question-SQL pairs in the query log
and the other half in the test set. Unless specified otherwise, we run
experiments using Random Split.

Baselines: The leading techniques on the BIRD and Spider bench-
marks, such as [7, 8, 19, 20, 27, 32], focus more on obtaining the best
answer using superior LLMs or better decomposition or prompting
techniques (e.g., least-to-most prompting). On the other hand, the
goal of our evaluation is to assess how incorporating information
from past query logs influences NL2SQL performance. The tech-
niques described in this paper are orthogonal and complementary to
the techniques on the benchmark leaderboards and can be combined
for further improvement in accuracy (see Section 8.6). Therefore,
to isolate the performance effects of using query log information
and avoid confounding factors such as LLM model and prompting

techniques, in our evaluation we adhere to using the same LLM

(Claude 3 Haiku 1.2 [10]) and perform SQL generation via a single

call to the LLM for TailorSQL and for all baselines.
We use two baselines:

e SBERT: In this baseline, we use SBERT [22] (specifically, the
all-MinilLM-L6-v2 model [4]) to generate embeddings for user
questions and for documents. This baseline does not use any
workload-related specializations, i.e., it does not store query hint
documents, does not generate workload-tailored embeddings, and
does not perform an offline analysis for prompt context allocation.
For a given user question, this baseline retrieves documents into
the LLM prompt in order of decreasing embedding similarity until
hitting a specified prompt token limit.

e BM25: In this baseline, we use BM25 [23], a lexical retrieval
method, to retrieve documents. BM25 is often used for retrieval
over long documents, where SBERT-based models might not per-
form as well. All other aspects of the baseline are the same as
SBERT.

Metrics: We evaluate the accuracy of each NL2SQL approach based
on execution accuracy (EX), which measures the fraction of question-
SQL pairs for which the execution results of the NL2SQL-generated
SQL query and the ground-truth SQL query matches. Following the
precedent of earlier papers, we measure improvement in accuracy
in absolute numbers instead of relative numbers. For example, if
execution accuracy increases from 20% to 60%, we refer to a 40%
improvement in accuracy instead of a 3X improvement. We also
evaluate the latency of each NL2SQL approach, which includes the
latency of retrieving relevant documents to create an LLM prompt
and the latency of invoking the LLM using the prompt. We repeat
each experiment 5 times and we report the median value of each
metric being measured in the experiment.

8.2 Implementation Details

TailorSQL uses SBERT as its embedding model for generating ques-
tion embeddings and raw document embeddings.

As described in Section 4, TailorSQL’s fundamental contributions
are not the exact format of documents. Here, we describe the doc-
ument format we used for our evaluation, but alternative formats
may work better for other workloads.

8.2.1 Schema Documents. TailorSQL uses two classes of schema
documents: table documents and column documents. Each column
document contains information specific to a given column, including
the column name, table name, and the ten most commonly-occurring
column values. We separated table documents from column docu-
ments because we found that including samples for every column
in a unified schema document results in very long documents which
quickly use the limited context space in the LLM’s prompt. Further-
more, if a question only requires a subset of columns from a table,
it is unnecessary to retrieve the entire table document.

8.2.2 Query Hint Documents. TailorSQL generates the following

types of query hints from past queries:

e Join path hints: for each query, we extract the set of tables which
are scanned and the join conditions between the tables.

o Filter hints: for each query, we construct a document for each
filter. This includes the names of the tables whose columns are
referenced in that filter.

o Group-by hints: we construct one document for the entire group-
by condition, including the names of the tables whose columns
are referenced in the group-by.

These query hints cover the types of SQL clauses which we most

commonly observed in our benchmarks and which appeared most

useful to TailorSQL, but they are not exhaustive. We believe that

TailorSQL can be easily extended to generate hints for other SQL

clauses if needed.

If a query hint is found in multiple past queries, we merge the
query hint documents and add a counter for the number of times
this hint has been observed in the past.

8.3 End-to-End Evaluation

The objective of this experiment is to demonstrate that TailorSQL
can enhance performance by leveraging past queries. In Fig. 5, the
first row shows the SQL execution accuracy of TailorSQL and the
baselines across three benchmarks. Additionally, we include a con-
strained TailorSQL baseline, where we artificially limit the context
size for documents to 1K tokens?, in order to evaluate how TailorSQL
performs in terms of accuracy if the user requires low latency. For
the baselines, we vary the limit on the LLM prompt context size. For
TailorSQL, only a single point is shown since the context allocator
automatically determines the context size for each document class.

Accuracy for all techniques varies across benchmarks, reflecting
the varying levels of benchmark difficulty. TailorSQL consistently
achieves the highest accuracy across all benchmarks compared to
the baselines, while BM25 consistently underperforms. Specifically,
TailorSQL achieves 12.5%, 10.9%, and 22.7% higher accuracy than the
next best baseline on the three benchmarks, respectively. TailorSQL

3We guarantee that the Bayesian optimization algorithm will select a context allocation
with at most 1K tokens by down-scaling all candidate allocations to fit within the limit.

—e— BM25 —— SBERT —&— TailorsQL TailorsQL(constrained)

= Spider-Union = Bird-Union = FIBEN

g7 . S s " S i
[w] [u) o 4

bt 68.33 5 44.90 5 % 52.67
=8 65.00 o 407 =8
= 60 : - 40.70 = a0

> > 35 >

@ @ @

5 55.83 5 30 4 33.98 .

o 504 o 30192 © 31

o] 51125 O 354 o] 30.00
< < < 5

5 5 20 5 *
2 40 4 2 2

3 ERLE 2 101
[10? 104 [} 107 104 [10? 104

Prompt Size (tokens) Prompt Size (tokens) Prompt Size (tokens)
51 61

™ o 2 ™

@ 4 [0} [}

) 2 4] 2

> > >

Z 3 3656, 1.56 o I

2 . ;

— = 3 7 . —

1] L]]

— 24 — —

. 27
1+ T T T T T
107 104 107 104 10? 104

Prompt Size (tokens)

Prompt Size (tokens)

Prompt Size (tokens)

Figure 5: TailorSQL achieves 12.5%, 10.9% and 22.7% higher match execution accuracy compared to the next best baseline (SBERT). TailorSQL
achieves the greatest accuracy gains on FIBEN due to the benchmark’s complex queries and cryptically-named schema items, which benefit from
query hints. Additionally, to achieve the same accuracy, TailorSQL (constrained) uses 2-15% times fewer tokens and incurs lower latency than the

baselines.

achieves more significant accuracy improvements on FIBEN than
the other benchmarks due to FIBEN’s complex queries (e.g., nested
queries, multi-table joins) and cryptic table names, which especially
benefit from query hints and tailored embeddings.

Among the two baselines, the BM25 baseline typically requires
more prompt tokens than the SBERT baseline to achieve its best
accuracy. This is because BM25 is worse at document retrieval than
SBERT and therefore requires more prompt tokens to achieve a suffi-
ciently high document recall to generate accurate SQL queries. Note
that for SBERT, increasing the prompt size only improves accuracy
up to a certain point, after which further increases in prompt size
cause accuracy to drop. This implies that as prompt size increases
past the optimal point, the additional documents retrieved into the
prompt have an increasing likelihood of being irrelevant, which
degrades retrieval precision more than it improves recall. This obser-
vation is consistent with findings that adding irrelevant information
to LLMs can reduce accuracy [26].

The SBERT baseline achieves its best accuracy with 2.3K, 21.5K,
and 2.5K prompt tokens for the Spider-Union, Bird-Union, and FIBEN
benchmarks, respectively. In contrast, TailorSQL matches or exceeds
SBERT’s best accuracy using at most 1.3K tokens? for the same
benchmarks, as shown by the constrained TailorSQL baseline. As a
result, TailorSQL achieves the same accuracy as SBERT while using
1.8%, 15X, and 1.9% fewer tokens.

The second row of Fig. 5 depicts the latency of invoking the
NL2SQL pipeline for a user question, which includes both docu-
ment retrieval and SQL generation. Latency is primarily influenced

4This is larger than the context allocation limit of 1K tokens because total prompt size
also includes the question and other boilerplate.

Accuracy | Latency (s) | Prompt Tokens
TailorSQL 0.449 1.578 2424
w/o Tailored Embeddings 0.409 3.34 5999
w/o Context Allocator 0.369 6.29 41975
w/o Query Hints 0.382 3.56 6384

Table 1: TailorSQL Ablation Study on Bird-Union Benchmark

by the latency of the large language model (LLM) calls, which de-
pend on factors such as the number of input and output tokens.
Generally, latency increases as the number of input prompt tokens
grows. Compared to the SBERT baseline, TailorSQL incurs higher
latency because it uses more input prompt tokens than the SBERT
baseline, since TailorSQL includes both schema and hint documents
in its prompts, whereas the SBERT baseline only includes schema
documents, though this effect is mitigated using TailorSQL’s tailored
embeddings for more effective document retrieval. However, if the
user is concerned with latency, they can constrain TailorSQL to use
a smaller prompt size, which achieves much lower latency than the
SBERT baseline.

8.4 Ablation Study

We perform an ablation study for the components of TailorSQL’s
end-to-end workflow, as well as for the components of its workload-
tailored embeddings.

8.4.1 End-to-End Workflow. In this section, we analyze the per-
formance impact of each key technique employed by TailorSQL.
Table 1 presents the impact of disabling each of TailorSQL’s compo-
nents, when evaluated on accuracy on Bird-Union. Disabling tailored

B BM25 BN SBERT TailorsQL WM Fine Tuned SBERT
Top-1 Table Recall Top-5 Table Recall
6k secs 6k secs 9k secs

3k secs

9k secs

Recall

0.0 0.0
Spider-Union Bird-Union FIBEN Spider-UnionBird-Union ~ FIBEN

Figure 6: TailorSQL’s tailored document embeddings achieve higher
top-1 and top-5 table document recall compared to baselines. Fine-
tuned SBERT achievesbetter recall than TailorSQL but requires higher
training time (shown above each bar).

Top-1 Table Recall Top-5 Table Recall

E 2.6 E 2.6

w 24 [N Co-Occuring Tables w24 @ Co-Occuring Tables
a 22 =3 Past Queries g 22 I Past Queries
o @23 Past Questions o X7 Past Questions
° 2° B TailorSQL ° 2° B TailorsQL

> >

= 18 b= 18

o o

Q 16 T 16

o o

— 14 — 14

8 12 8 12

-2 < ol e :

v SpideriUnion Bird-Union FIBEN . Spideriunion Bird-LIJnion FIB'EN

Figure 7: Improvementinrecall achieved by including each individual
factor into TailorSQL’s tailored embeddings, while ignoring other
factors. Recall improves the most when all factors are used (denoted

by the bar marked “TailorSQL”).

embeddings results in a noticeable increase in context size and a cor-
responding rise in latency. This is because less effective embeddings
lead to a larger context being required to gather all the necessary
information, resulting in an accuracy drop due to the reduced preci-
sion in identifying relevant documents. When the context allocator
is disabled, a large fixed context is used to maintain high recall. How-
ever, this results in high latency (since LLM invocation latency is
correlated with the size of the input prompt) and reduced precision
when retrieving relevant documents, negatively impacting accuracy.
Lastly, disabling query hints causes an increase in context usage
and a reduction in accuracy. Without query hints, the system lacks
crucial information that assists in SQL generation, forcing the re-
trieval of more schema documents, which contributes to the higher
context size. In summary, each component plays a critical role in
maintaining optimal accuracy and latency for TailorSQL.

8.4.2 Tailored Embeddings. This section evaluates the effectiveness
of TailorSQL’s tailored embeddings for documents (see Section 5).
The first takeaway that TailorSQL’s tailored embeddings perform
better than using SBERT and BM25 to generate document embed-
dings. In Fig. 6, each bar represents the table recall for strategies
selecting the top-K relevant tables for a user question. Top-K docu-
ment recall measures the fraction of user questions where the top-K
most similar documents include all relevant documents. TailorSQL
consistently outperforms vanilla SBERT embeddings by specializing
document embeddings based on the past query workload, leading
to significant accuracy improvements (Section 8.3). BM25 performs
the worst, consistent with its low accuracy in Fig. 5.

0.6 T
— Bandit — Generic

—— TailorSQL

0.5

0.4

0.3

Reward (Execution Accuracy)

0.1

o
=
1)
S]

200 300 400 500
Question Number

Figure 8: All questions before the vertical dotted line are similar to
past queries, while all questions afterwards are dissimilar to past
queries. TailorSQL’s bandit-based abstention policy is able to select
the better pipeline in case of this workload shift, and performs better
than purely using TailorSQL’s workload-tailored pipeline or a generic
SBERT-based pipeline on all questions.

The second takeaway is that TailorSQL’s tailored embeddings
achieve worse recall than the approach of fine-tuning SBERT and
using the fine-tuned model to generate embeddings. However, fine-
tuning requires up to 2.5 hours of additional training time (as shown
in Fig. 6), whereas TailorSQL’s tailored embeddings require less than
one minute of training on a CPU. Furthermore, fine-tuned models
require additional storage space and may not generalize as well as
TailorSQL’s purposefully underparameterized model. While fine-
tuned embedding modelsis a great approach when maximumrecall is
desired, we decide to use TailorSQL’s method of learned embeddings
to minimize training time and storage overhead.

We now explore the effect of each factor that contributes to Tai-
lorSQL’s tailored document embeddings. Fig. 7 illustrates the impact
on recall when integrating each of the three factors individually into
the tailored embedding, along with raw SBERT document embed-
dings, while ignoring the two other factors. Among the three factors,
embeddings based on synthetic past questions demonstrate the most
substantial improvement across all benchmarks, while the incorpora-
tion of co-occurring documents contributes the least improvement.

8.5 Robustness against Workload Drift

In this section, we evaluate whether TailorSQL’s abstention policy
is able to correctly select whether user questions should run on Tai-
lorSQL’s workload-tailored pipeline or on a generic NL2SQL pipeline.
Intuitively, we expect the policy to choose to run on TailorSQL’s
pipeline if the user question follows similar patterns as the past query
workload, and to choose to run the generic pipeline otherwise. In
particular, as the user question characteristics drift over time, we
expect the policy to dynamically switch from favoring TailorSQL’s
pipeline to favoring a generic pipeline.

Fig. 8 illustrates the behavior of the abstention policy under work-
load drift, which occurs over the course of many user questions. The
first half of user questions follows the Random Split workload (see
Section 8.1), which means that the user questions are similar to the
past queries; the second half of user questions follows the Disjoint
Split workload, which means that the user questions are dissimilar

Baseline Accuracy | Latency (s) | Prompt Tokens
DIN-SQL+SBERT 0.5 61.79 40255
DIN-SQL+TailorSQL 0.6125 15 1460
MAC-SQL+SBERT 0.516 38.16 40212
MAC-SQL+TailorSQL 0.654 3.419 1397

Table 2: (Spider-Union) TailorSQL improves state-of-the-art NL2SQL
systems (DIN-SQL and MAC-SQL) by using past queries.

Baseline Accuracy | Latency (s) | Prompt Tokens
DIN-SQL+SBERT 0.219 158 26899
DIN-SQL+TailorSQL 0.4 21 1889
MAC-SQL+SBERT 0.255 34.73 26856
MAC-SQL+TailorSQL 0.47 4.03 1851

Table 3: (Bird-Union) TailorSQL improves state-of-the-art NL2SQL
systems (DIN-SQL and MAC-SQL) by using past queries.

to the past queries. The plot shows the reward obtained by the ab-
stention policy, which represents the execution match accuracy over
a sliding window of 100 questions, as user questions are submitted.
A 95% confidence interval is plotted around the abstention policy’s
reward to indicate variability. For comparison, we include the per-
formance of only using TailorSQL’s pipeline for every question and
of only using a generic pipeline, equivalent to the SBERT baseline.
As expected, a policy of only using TailorSQL’s pipeline performs
better during the first half of the workload, while the policy of only
using the generic SBERT baseline performs better in the second
half. Initially, the abstention policy’s bandit algorithm explores both
pipelines, quickly converging to TailorSQL’s pipeline in the first half.
Upon detecting the distribution shift at the midpoint, the accuracy
briefly drops, but the bandit algorithm soon adapts, selecting the
SBERT pipeline as the optimal choice for the second half. Thus, the
bandit-based abstention policy ensures adaptation to workload drift.

8.6 Impacton other NL2SQL methods

We now present empirical evidence that leveraging past queries
to improve NL2SQL generation is beneficial for existing NL2SQL
systems. State-of-the-art NL2SQL methods, such as those on the
Spider and BIRD benchmarks, focus on enhancing SQL generation
through advanced reasoning techniques like Chain-of-Thought [36]
and Self-Consistency [34]. The core innovation of TailorSQL lies in
its use of past queries, which is complementary and orthogonal to
these techniques, allowing TailorSQL to augment their performance.

To demonstrate this, we modified two well-known NL2SQL sys-
tems, DIN-SQL [20] and MAC-SQL [32], to incorporate TailorSQL’s
provided prompt as the initial prompt, and compared this against
the use of SBERT-based retrieval for the initial prompt. Tables 2
and 3 show that using TailorSQL as the initial prompt significantly
improves accuracy and reduces SQL generation latency compared to
SBERT-based retrieval across both benchmarks and NL2SQL systems.
Note that the accuracy of DIN-SQL and MAC-SQL in our results
differs from the values reported on the public Spider and BIRD leader-
boards due to modifications in our setup—we introduced changes to
the benchmarks by combining each benchmark’s databases into one
Union database and excluding evidence from the BIRD benchmark,
and we employed a different LLM than the one originally used to
tune the DIN-SQL and MAC-SQL prompts.

9 RELATED WORK

LLMs for NL2SQL: Today, the leaderboards for NL2SQL bench-
marks like Spider and BIRD are dominated by LLM-based solu-
tions [8, 9, 19, 27], while earlier methods leading the benchmarks
were mostly based on manually-tweaked encoder-decoder LSTM-
based architectures, e.g. [24, 33]. Top-performing NL2SQL systems
primarily focus on question representation and information organi-
zation. DIN-SQL [20] uses decompositions and intermediate query
representations following chain-of-thought [36] and least-to-most
prompting [39] paradigms. DAIL-SQL [7] evaluates different meth-
ods of question representations, code representation, information
(metadata) organization and picks the best combination of the three.
CodeS [12] is a pretrained LLM designed specifically for NL2SQL.
These methods are orthogonal to our idea of incorporating past query
history and combining these method into TailorSQL can further im-
prove performance. SNAILS [15] shows that NL2SQL techniques
generally perform worse on databases that use less natural schema
names, which further motivates the need for NL2SQL techniques like
TailorSQL that can understand obscurely-named tables and columns.

Retrieval Methods: Retrieval-augmented generation (RAG) [11]
has been employed to boost LLM accuracy across various NLP do-
mains. Bi-encoding retrieval methods encode both question and
document separately using the same embedding transformation,
and compute their similarity via a distance metric such as cosine sim-
ilarity. Recent literature shows that variants of the BERT model
for embedding [6, 16] exhibit the best retrieval accuracy. Cross-
encoding [5, 17] feeds the concatenated question-document pair
into BERT and trains a FCN classifier layer on its vector representa-
tion. It commonly outperforms bi-encoded similarity scoring since it
is able to capture more complex cross-feature interactions between
the question and document. However, this approach is often prohib-
itively expensive at inference time, as it requires full encoding of
each question-document pair at retrieval time.

Fine-tuning LLMs: Fine-tuning techniques are commonly classi-
fied into supervised [18, 28, 35], unsupervised [38], and reinforce-
mentlearning [21, 29] based methods. In the case of NL2SQL pipelines,
the past query workload along with synthetically generated user

questions could be used as input-output pairs for supervised fine-
tuning of the model. This method could potentially deliver better

results than the RAG-style solution. However, users may have pri-
vacy concerns about using their data to train LLMs shared across

users, and training and maintaining a separate fine-tuned LLM per

database is an expensive operation.

10 CONCLUSION

We introduced TailorSQL, an NL2SQL system that tailors itself to
a specific database by leveraging the database’s query history to en-
hance document generation, document embedding, and document
retrieval in a RAG-based NL2SQL pipeline. We further introduced a
bandit-based abstention policy which dynamically determines when
TailorSQL’s workload-specialized pipeline is no longer suitable for
the current workload, thereby avoiding performance degradations
due to workload drift. TailorSQL demonstrates consistent accuracy
and latency improvements across three NL2SQL benchmarks.

REFERENCES

=

[9

=

[10]
[11]

[12]

(13

[17]

[18

[19]

[20]

[21

[22]

[23

[24

[25]

[n.d.]. https://learn.microsoft.com/en-us/azure/azure-sql/copilot/query-editor-
natural-language-to-sql-copilot

[n.d.]. https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-
generative-ai.html

[n.d.]. https://docs.snowflake.com/en/user-guide/snowflake-copilot

2022. https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2.

Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. 2019.
Cross-Domain Modeling of Sentence-Level Evidence for Document Retrieval.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan (Eds.). Association for Computational Linguistics, Hong Kong, China,
3490-3496. https://doi.org/10.18653/v1/D19-1352

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs.CL]

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and
Jingren Zhou. 2023. Text-to-SQL Empowered by Large Language Models: A
Benchmark Evaluation. arXiv:2308.15363 [cs.DB]

Yinggqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li,
Wei Li, Yuntao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. 2025. A
Preview of XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL.
arXiv:2411.08599 [cs.Al] https://arxiv.org/abs/2411.08599

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran Huang,
and Xiao Huang. 2025. Next-Generation Database Interfaces: A Survey of LLM-
based Text-to-SQL. arXiv:2406.08426 [cs.CL] https://arxiv.org/abs/2406.08426
Anthropic Inc. 2024. https://www.anthropic.com/news/claude-3-haiku.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Kittler, Mike Lewis, Wen tau Yih, Tim Rocktéschel,
Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. arXiv:2005.11401 [cs.CL]

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie
Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. CodeS: Towards Building
Open-source Language Models for Text-to-SQL. Proc. ACM Manag. Data 2, 3,
Article 127 (May 2024), 28 pages. https://doi.org/10.1145/3654930

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma,
Guoliang Li, Kevin C. C. Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A Blg Bench for Large-Scale
Database Grounded Text-to-SQLs. arXiv:2305.03111 [cs.CL]

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the middle: How language models
use long contexts. arXiv preprint arXiv:2307.03172 (2023).

Kyle Luoma and Arun Kumar. 2025. SNAILS: Schema Naming Assessments for
Improved LLM-Based SQL Inference. Proc. ACM Manag. Data 3, 1, Article 77 (Feb.
2025), 26 pages. https://doi.org/10.1145/3709727

Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. 2019. CEDR:
Contextualized Embeddings for Document Ranking. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR °19). ACM. https://doi.org/10.1145/3331184.3331317

Rodrigo Nogueira and Kyunghyun Cho. 2020. Passage Re-ranking with BERT.
arXiv:1901.04085 [cs.IR]

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730-27744.
Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei,
Gaurav Tarlok Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O. Arik.
2024. CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Se-
lection in Text-to-SQL. arXiv:2410.01943 [cs.LG] https://arxiv.org/abs/2410.01943
Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed In-
Context Learning of Text-to-SQL with Self-Correction. arXiv:2304.11015 [cs.CL]
Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D
Manning, and Chelsea Finn. 2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint arXiv:2305.18290 (2023).

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Conference on Empirical Methods in Natural
Language Processing. https://api.semanticscholar.org/CorpusID:201646309
Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333-389.
https://doi.org/10.1561/1500000019

Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. arXiv:2109.05093 [cs.CL]

Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Ozcan, Vasilis Efthymiou,
Ayushi Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik

[26

[27

(28]

[29]

[30]

[31

(32]

[33

(34]

[36

(37]

[38

Sankaranarayanan. 2020. ATHENA++: Natural Language Querying for Complex
Nested SQL Queries. Proc. VLDB Endow. 13, 11 (2020), 2747-2759.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi,
Nathanael Scharli, and Denny Zhou. 2023. Large language models can be easily
distracted by irrelevant context. In International Conference on Machine Learning.
PMLR, 31210-31227.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and
Amin Saberi. 2024. CHESS: Contextual Harnessing for Efficient SQL Synthesis.
arXiv:2405.16755 [cs.LG] https://arxiv.org/abs/2405.16755

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Alpaca: A strong,
replicable instruction-following model. Stanford Center for Research on Foundation
Models. https://crfm. stanford. edu/2023/03/13/alpaca. html 3, 6 (2023), 7.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

Alexander van Renen, Dominik Horn, Pascal Pfeil, Kapil Eknath Vaidya, Wenjian
Dong, Murali Narayanaswamy, Zhengchun Liu, Gaurav Saxena, Andreas Kipf,
and Tim Kraska. 2024. Why TPC is not enough: An analysis of the Amazon
Redshift fleet. In VLDB 2024. https://www.amazon.science/publications/why-
tpc-is-not-enough-an-analysis- of- the-amazon- redshift-fleet

Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kemper, Viktor
Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel Then. 2018. Get
Real: How Benchmarks Fail to Represent the Real World. In Proceedings of
the Workshop on Testing Database Systems (Houston, TX, USA) (DBTest ’18).
Association for Computing Machinery, New York, NY, USA, Article 1, 6 pages.
https://doi.org/10.1145/3209950.3209952

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang,
Zhao Yan, and Zhoujun Li. 2023. Mac-sql: Multi-agent collaboration for text-to-sql.
arXiv preprint arXiv:2312.11242 (2023).

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2021. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. arXiv:1911.04942 [cs.CL]

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves
Chain of Thought Reasoning in Language Models. arXiv:2203.11171 [cs.CL]
https://arxiv.org/abs/2203.11171

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi,
Amirreza Mirzaei, Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran,
Atharva Naik, David Stap, et al. 2022. Super-naturalinstructions: Generalization
via declarative instructions on 1600+ nlp tasks. arXiv preprint arXiv:2204.07705
(2022).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2019. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. arXiv:1809.08887 [cs.CL]
Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe
Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206 (2023).

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi
Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. 2023.
Least-to-Most Prompting Enables Complex Reasoning in Large Language Models.
arXiv:2205.10625 [cs.Al]

https://learn.microsoft.com/en-us/azure/azure-sql/copilot/query-editor-natural-language-to-sql-copilot
https://learn.microsoft.com/en-us/azure/azure-sql/copilot/query-editor-natural-language-to-sql-copilot
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-generative-ai.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-generative-ai.html
https://docs.snowflake.com/en/user-guide/snowflake-copilot
https://doi.org/10.18653/v1/D19-1352
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2005.11401
https://doi.org/10.1145/3654930
https://arxiv.org/abs/2305.03111
https://doi.org/10.1145/3709727
https://doi.org/10.1145/3331184.3331317
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://api.semanticscholar.org/CorpusID:201646309
https://doi.org/10.1561/1500000019
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet
https://www.amazon.science/publications/why-tpc-is-not-enough-an-analysis-of-the-amazon-redshift-fleet
https://doi.org/10.1145/3209950.3209952
https://arxiv.org/abs/1911.04942
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2205.10625

	Abstract
	1 Introduction
	2 Preliminaries
	3 TailorSQL System Overview
	3.1 End-to-End Workflow
	3.2 Illustrative Examples

	4 Document Store
	4.1 Schema Documents
	4.2 Query Hint Documents

	5 Document Embedding Generation
	5.1 Optimization Objective
	5.2 Optimization Procedure

	6 Document Retrieval
	7 Abstention Policy
	8 EXPERIMENTAL EVALUATION
	8.1 Experimental Setup
	8.2 Implementation Details
	8.3 End-to-End Evaluation
	8.4 Ablation Study
	8.5 Robustness against Workload Drift
	8.6 Impact on other NL2SQL methods

	9 Related Work
	10 Conclusion
	References

