
Research Challenges in Relational Database Management
Systems for LLMQueries

Kerem Akillioglu
University of Waterloo

Waterloo, Canada
k2akilli@uwaterloo.ca

Anurag Chakraborty
University of Waterloo

Waterloo, Canada
a8chakra@uwaterloo.ca

Sairaj Voruganti
University of Waterloo

Waterloo, Canada
sairajv@uwaterloo.ca

M. Tamer Özsu
University of Waterloo

Waterloo, Canada
tamer.ozsu@uwaterloo.ca

ABSTRACT
Large language models (LLMs) have become essential for appli-
cations such as text summarization, sentiment analysis, and au-
tomated question-answering. Recently, LLMs have also been inte-
grated into relational database management systems to enhance
querying and support advanced data processing. Companies such
as Amazon, Databricks, Google, and Snowflake offer LLM invoca-
tion directly within SQL, denoted as LLM queries, to boost data
insights. However, open-source solutions currently have limited
functionality and poor performance. In this work, we present an
early exploration of two open-source systems and one enterprise
platform, using five representative queries to expose functional,
performance, and scalability limits in today’s SQL-invoked LLM
integrations. We identify three main issues: enforcing structured
outputs, optimizing resource utilization, and improving query plan-
ning. We implemented initial solutions and observed improvements
in accommodating LLM powered SQL queries. These early gains
demonstrate that tighter integration of LLM+DBMS is the key to
scalable and efficient processing of LLM queries.

VLDBWorkshop Reference Format:
Kerem Akillioglu, Anurag Chakraborty, Sairaj Voruganti, and M. Tamer
Özsu. Research Challenges in Relational Database Management Systems
for LLM Queries. VLDB 2025 Workshop: Applied AI for Database Systems
and Applications (AIDB 2025).

1 INTRODUCTION
Recent advances in artificial intelligence (AI) have enabled large
language models (LLMs) to offer enhanced processing capabilities
for structured (relational) data [29], as well as workloads that re-
quire access to both structured and unstructured data [30, 38, 45].
LLMs excel at row-level inference because they can reason over con-
text and semantics instead of relying on exact string matches. This
semantic capability has proven effective for some of the most impor-
tant data management tasks, such as entity and schema matching

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

[47, 51], and data cleaning [34] by overcoming the limitations of
earlier approaches that completely relied on exact string matching.

The promise of row-level LLM inference has led to its integration
into database management systems (DBMS). Database vendors such
as Amazon [3], Databricks [2], MotherDuck [8], Google [4], and
Snowflake [5] have accommodated the invocation of LLM infer-
ence within SQL queries. This integration extends relational DBMS
capabilities by enabling advanced sentiment analysis and natural
language processing, thus enriching query results with nuanced in-
sights. We refer to such SQL queries that invoke LLMs as relational
LLM queries, or simply LLM queries.

Despite their growing adoption by major enterprises, the in-
tegration of LLMs with DBMSs remains underexplored, and the
incorporation of LLMs introduces additional challenges. For ref-
erence, enterprise LLM inference solutions expose data to third-
party providers, and it incurs significant privacy risks for sensitive
information. Organizations seeking to leverage LLM capabilities
without compromising data confidentiality must serve models lo-
cally. This paper demonstrates the functional challenges of current
LLM+DBMS integrations and shows that, even when they function,
the eminent systems are slow because they lack effective optimiza-
tions and they scale poorly. As an example, running the simple LLM
query in Figure 1 on only 17,000 rows takes 5 hours to complete
using local inference on a single A100 GPU combined with an open
source DBMS; and it would take around 12 days to process one
million rows in our single GPU setup. Hence, closing the function-
ality and efficiency gaps is critical for DBMSs to scale AI-enhanced
workloads.

In this work, we provide an early exploration of processing
LLM queries on existing systems through analyzing two open-
source systems and one enterprise system from functionality and
performance aspects. We use a fixed set of LLM queries in our
analysis (see Section 2). We demonstrate that existing systems
have difficulty executing many of the queries in this set, and we
analyze the underlying challenges and potential solutions. Our
contributions are the following:

(1) We present an evaluation of emerging systems that inte-
grate LLM capabilities into SQL querying. Our evaluation
uses open source solutions PostgreSQL with pgAI [39] and
DuckDB with FlockMTL [17], and an enterprise solution in
MotherDuck [8]. For each case, we examine functionality

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


and overall performance, and analyze why queries are not
able to run or have poor performance.

(2) Our study provides practical insights and recommenda-
tions on what opportunities exist for query optimization for
queries that involve LLM invocations, and what inference-
based optimizations can be implemented to meet the spe-
cific requirements of analytical queries.

2 RELATIONAL LLM QUERIES
In our study, we focus on the queries outlined by Liu et al. [29] since
they are a good representation for embedding LLM invocations at
various points within SQL queries. Each query is identified by
a unique name and characterized by its distinct LLM invocation
strategy. Below, we summarize the five representative queries we
use:

Q1: LLM Projection – This query invokes the LLM in the
SELECT clause to project a transformed output from input text
fields. The purpose is to derive insights directly from the provided
textual data.

SELECT LLM("Recommend movies for the user based on
{movie information} and {user review}",
m.movie_info , r.review_content)

FROM reviews r
JOIN movies m ON r.rotten_tomatoes_link ==
m.rotten_tomatoes_link

Figure 1: LLM Projection Query.

Q2: LLM Filter – Here, the LLM is invoked in the WHERE clause
to evaluate and filter rows based on semantic criteria. The LLM
function determines if the input text meets a specified condition,
thereby controlling which records are included in the result set.

SELECT m.movie_title
FROM Movies m
JOIN Reviews r ON r.rotten_tomatoes_link =
m.rotten_tomatoes_link
WHERE LLM("Analyze whether this movie would be

suitable for kids based on {movie information}
and {user review}", m.movie_info , r.

review_content) == "Yes"
AND r.review_type == "Fresh"

Figure 2: LLM Filter Query.

Q3: Multi-LLM Invocation – This query combines two LLM
invocations: one in SELECT clause to generate primary outputs and
the other in the WHERE clause to filter the results based on additional
content suitability criteria. The purpose is to refine the final output
by sequentially applying multiple LLM functions.

SELECT LLM("Recommend movies for the user based on
{movie information} and {user review}", m.

movie_info , r.review_content) AS
recommendations

FROM Movies m
JOIN Reviews r ON r.rotten_tomatoes_link =
m.rotten_tomatoes_link
WHERE LLM("Analyze whether this movie would be

suitable for kids based on {movie information}
and {user review}", m.movie_info , r.

review_content) == "Yes"
AND r.review_type == "Fresh"

Figure 3: Multi-LLM Query.

Q4: LLMAggregation – The LLM is called to assign satisfaction
ratings for reviews for each movie title to qualitatively measure
average sentiment for overall customer feedback. Then these numer-
ical scores are aggregated using an average function. This approach
synthesizes qualitative data into a quantitative summary metric.

SELECT AVG(LLM("Rate a satisfaction score between
0 (bad) and 5 (good) based on {review} and {
info}: ",r.review_content , m.movie_info)) as
AverageScore

FROM reviews r
JOIN movies m ON r.rotten_tomatoes_link =
m.rotten_tomatoes_link
GROUP BY m.movie_title

Figure 4: LLM Aggregation Query.

Q5: RAG – This query implements a Retrieval-Augmented Gen-
eration (RAG) approach by first retrieving relevant context via a
similarity search and then using the LLM to generate an answer. The
LLM invocation here enhances response generation by leveraging
externally retrieved contextual data.

SELECT LLM("Given the following {context}, answer
this question",
VectorDB.similarity_search(s.question),
s.question)

FROM squad s
WHERE s.is_impossible == False;

Figure 5: RAG Query.

3 SYSTEMS TESTING
Our objectives are two-fold: (1) we want to understand what is
required to be able to execute the queries discussed in the previous
section, and (2) we want to test the performance of executing them
and understand the factors that affect query performance. As we
discuss below, most of these queries cannot be executed using
these open-source systems. Some of the issues can be addressed
by careful engineering designs, but others require new approaches
that require research.

2



3.1 Testing Setup
Our setup uses a local inference model: Meta’s LLaMA 3.1 with
8B parameters [19]. This model is served with both Ollama and
vLLM to understand the role of the model serving engine’s impact
on functionality and performance of LLM+DBMS integrations. As
noted above, the open source systems we use are PostgreSQL 16
with pgAI 0.8.0 and DuckDB v1.1.4 with FlockMTL v0.2.0 [22]. We
run our experiments on a Linux server equipped with a single
NVIDIA A100 80GB PCIe GPU, an Intel Xeon® Platinum 8380 CPU
with 160 cores. We also test an enterprise system, MotherDuck,
through using its API and MotherDuck Prompt() [1] functionality
which uses OpenAI GPT4o-mini [6] as the LLM endpoint, and we
use their built-in embedding [32] function.

Our queries (Section 2) and the datasets are the same as those
in Liu et al. [29]: Rotten Tomatoes [37] and Stanford Question An-
swering Dataset (SQuAD) [40]. We had to limit the size of our
datasets as explained in Section 1, because applying LLMs to large
datasets incurs significant computational costs. We used the size of
the movies table of the Rotten Tomatoes dataset as our limit row
number for the reviews and SQuAD data, which is 17,712 rows, and
we randomly sample from these datasets. Rotten Tomatoes is used
for queries 1-4 as it has a relational structure, and SQuAD is used
for Q5 since question & answering datasets are natively compatible
with RAG because they are context-rich and semantically search-
able. For RAG queries on open source systems, we utilize the Stella
embedding model [50].

3.2 Functional Testing
Table 1 shows which systems are capable of running which queries,
and we discuss the related research challenges in more detail in
Section 4. Query 1 runs successfully on all tested systems since it
simply summarizes previously retrieved rows and does not incur
additional challenges. In contrast, queries 2, 3, and 4 fail in both
FlockMTL1 and pgAI due to structured output problems that are
discussed further in Section 4.1. Specifically, queries 2 and 3 require
the LLM to strictly output "Yes", and any deviation from this format
prevents proper filtering. Similarly, query 4 demands the LLM to
provide only a numeric output between 1 and 4 to compute an av-
erage. However, the LLM consistently adds extra text, which causes
execution failures. MotherDuck, utilizes GPT-4o-mini for inference
and successfully executes queries 1–4 due to OpenAI’s structured,
constrained decoding capabilities [36]. To leverage vLLM’s struc-
tured decoding capabilities through XGrammar [16], we modified
FlockMTL to work with vLLM [9], and ran queries on FlockMTL.
This modification enabled the successful execution of queries 2 and
3, but not query 4 (LLM aggregation). The problem with query 4
stems from a structured output and query planner mismatch. Even
with constrained decoding, FlockMTL’s llm_reduce, FlockMTL’s
LLM-aggregation function, returns an untyped text blob rather than
the structured numeric type the planner needs for AVG(), so the op-
erator and optimizer cannot align. Query 5 also suffers from query
planning issues and fails to run both on MotherDuck as well as
FlockMTL. We traced this issue in DuckDB’s query planner where
the HNSW index lookup fails to trigger and instead performs a

1After sharing results with the FlockMTL team, they have enabled structured output
when using OpenAI-compatible and Ollama providers.

Systems Q1 Q2 Q3 Q4 Q5
pgai-ollama ✓ ✗ ✗ ✗ ✓

flockmtl-ollama ✓ ✗ ✗ ✗ ✗

flockmtl-vllm ✓ ✓ ✓ ✗ ✗

motherduck-gpt ✓ ✓ ✓ ✓ ✗

Table 1: Query success/failure for each system running
Queries 1-5 from Section 2. ✓ denotes success, ✗ denotes
failure.

cross join between the two vector embedding tables being refer-
enced. This leads to the query running out of memory due to the
large intermediate table being materialized. pgAI is the only sys-
tem that could execute query 5 because we manually enforced the
optimal query plan (see Figure 10) to make it run, and the pgvector
extension is tightly integrated into the pgAI environment. First, we
applied the filter s.is_impossible == False to narrow down the
data, and then performed the similarity search (filter pushdown &
top-k pushdown). This returns only the top 3 relevant contexts for
each question before making the LLM call. This fix is specific to
this query because we had to alter its plan to make it run. Broader
planning issues and requirements are discussed in Section 4.3.

3.3 Performance Testing
In this section, we report query latencies and resource utilization for
the studied workload. Table 2 lists the latencies for each query, and
Figures 6-9 showGPU utilization graphs for a selected set of queries.
As FlockMTL and pgAI follow different execution strategies, we
first analyze how these strategies influence overall performance.
We then present MotherDuck’s results separately since it is a closed
enterprise service running on proprietary hardware, which is not
directly comparable to the open-source systems.

Systems Q1 Q2 Q3 Q4 Q5
pgai-ollama 719.5 - - - 204.9
flockmtl-ollama 370.0 - - - -
flockmtl-vllm 342.4 447.6 617.2 - -

Table 2: Query Latency (minutes) for each system. pgai-
ollama denotes the relational extension (pgai) and inference
engine (ollama) being used. - denotes the query was not able
to run.

The general execution strategy of FlockMTL for all its LLM
functions is to batch multiple rows in a single prompt request by
taking the total context window of the model (e.g., 128,000 tokens
for Llama models), subtracting the tokens needed for the system
prompt, and then sending enough rows until the window limit is
reached. It then instructs the model to output exactly 1 row for each
input row in JSON format. In practice, this approach does not work
well since the LLM is not robust enough to follow these instructions
for hundreds of rows. Another issue is that the LLM may output
multiple lines of rows, and sometimes not even a single row for an

3



Figure 6: FlockMTL (Ollama) GPU Utilization for Q1

Figure 7: FlockMTL (vLLM) GPU Utilization for Q1

input row. These issues make it infeasible to track which output row
from the LLM output maps to an input row. To fix these issues we
modified FlockMTL’s code to keep the batch size for each prompt
to exactly one row, which ensured the queries run to completion.
However, in terms of GPU utilization, this approach is inefficient
since it only sends 1 input row as a prompt request at-a-time which
is why FlockMTL’s runtime numbers are an order of magnitude
slower (with both Ollama and vLLM) compared to the enterprise
system MotherDuck. From Figure 6, we observe that the peak GPU
utilization across the query runtime for Q1 with Ollama (85%) is less
than the peak GPU utilization with vLLM (Figure 7, 95%), which
reflects in the runtime numbers (Table 2).

On the other hand, in PostgreSQL, parallel query execution
enhances performance by distributing the work among multiple
worker processes. As the data volume increases, PostgreSQL auto-
matically assigns more workers to process the data concurrently,
and pgAI is designed similarly. However, when we attempted to
run Q1 as a single block, we observed that pgAI’s implementation
and its corresponding UDF (User-Defined Function) try to initiate
subtransactions within these parallel workers. Since PostgreSQL

Figure 8: pgAI (Ollama) GPU Utilization for Q1

Figure 9: pgAI (Ollama) GPU Utilization for Q5

does not allow subtransactions during parallel operations, an error2
gets triggered, and the query does not run.

To resolve this issue, we forced the query to run in a single-
process context where subtransactions are permitted. While this
fix resolves the error, processing one row at-a-time results in poor
performance and resource utilization. To improve efficiency, we
implemented an optimization to batch requests in pgAI and ob-
served significant performance gains. Without this optimization,
processing a single row for query 1 took around 4 seconds on av-
erage; and after applying it, per row processing time dropped to
2.5 seconds. Our implementation also showed its effect on GPU
utilization. When there’s no batch optimization of requests, GPU
utilization fluctuates dramatically, as can be seen in Figure 9. With
optimization, we recorded a stable and higher GPU utilization graph
compared to processing other queries, which shows an average uti-
lization of 76% and a median of 75%.

The enterprise solution (motherduck-gpt) performs best across
all queries, as shown in Table 3. The reason is largely because it
leverages the OpenAI API for inference rather than relying on local
inference. This approach takes advantage of the state-of-the-art
performance and efficiency of enterprise systems and hardware

2We opened an issue on the pgAI GitHub repository; however, as of this writing, it
has remained unanswered for more than a week.

4



as opposed to having to optimize local inference on a single GPU.
In addition, MotherDuck further improves speed by concurrently
sending up to 256 requests to the model provider [31]. By paralleliz-
ing these requests, the system significantly reduces overall latency
and accelerates processing, leading to consistently lower query
response times.

System Q1 Q2 Q3 Q4 Q5
motherduck-gpt 16.2 4.3 13.4 8.3 –

Table 3: Query latency (minutes) for the proprietary Mother-
Duck platform.

4 RESEARCH CHALLENGES
Existing systems are still in the development stage, and many re-
search challenges remain to be addressed. These challenges span
multiple aspects, including structured output handling, resource
utilization, and query planning.

4.1 Structured Outputs
Due to their non-deterministic nature, LLMs can generate syntac-
tically inconsistent outputs, and for LLM queries, this can lead to
the generation of schema-breaking text that disrupts downstream
processing. For example, in an “LLM-Aggregation” query, the model
must return a single number between 1 and 5; if LLM instead out-
puts anything else, the AVG SQL function cannot parse the value, and
the query fails to execute. For any system that supports relational
LLM queries, structured outputs are not a technical enhancement,
it’s a fundamental requirement to run queries. To address this issue,
there are three possible solutions, each with its own trade-offs: fine-
tuning the model, prompt engineering and constrained decoding.

Fine-tuning is the process of supplementing a pretrained model
with domain-specific training on small datasets to perform better for
particular tasks. Once tuned, the fine-tunedmodel captures nuanced
domain semantics with minimal runtime overhead. It has also been
effective on tabular data for applications like data synthesis and
privacy protection [44, 46]. The trade-offs are as follows: collecting
schema-accurate examples can be costly, parameter-efficient tuning
consumes significant time and compute resources [15], in the case
of a schema change, another tuning pass is required, and closed-
source models cannot be tuned at all.

Prompt engineering seeks optimal task performance by tailoring
prompts to a specific model–dataset pair [49]. It can be comple-
mented with system prompts that add global instructions [33]. This
technique adds virtually no runtime cost and is model-agnostic
because behavior changes are just text edits. Its success, however,
is probabilistic and context-specific. Despite having semantically
equivalent prompts for the same question, performance can vary
significantly [12]. Also, each task, schema, or domain requires its
own tailored prompt, whose effectiveness can decline in long or
multi-turn contexts [25, 28].

Constrained decoding is the technique to modify LLM’s token-
generation process so that each subsequent token is restricted to
choices that preserve the required output structure. Doing so, the

generated text can be ensured to adhere to constraints like high-
level templates through using regular expressions [10], context-free
grammars [16, 48], or a combination of both [23]. It has proven
to be effective in text-to-SQL translation tasks [42], and has been
used in practical applications like vLLM [16, 18]. Advantages of
using structured decoding removes the need for fine-tuning, any
additional post-processing, ad-hoc parsing, retrying and prompting
on top of LLMs [11]. Although effective in ensuring correctness, it
increases the computational overhead and incurs challenges with
batch and parallel processing as discussed in Section 4.2.

For our work, our initial solution for this problem was to use
prompt engineering. Once the dataset grew, our optimized prompts
yielded inconsistent outputs that prevented efficient parsing. We
ruled out fine-tuning due to its high cost of curating large volumes
of schema-perfect examples and spending hours of GPU compute.
Instead, we used constrained decoding: giving the model an explicit
grammar that systematically forces every answer to match the table
schema and requires no retraining.

4.2 Resource Utilization
During inference, batching strategies play a key role in resource
utilization as well as query latency. Frequent data transfers between
the CPU and GPU reduce overall GPU utilization, and the absence of
an effective batching strategy largely explains the spikes observed
in Figures 6, 7, and 9. Our workload requires a combination of GPU-
CPU operations, and the inference engine uses the GPU to process
the input prompt (prefill) and generate output tokens (decode). A
good scheduling design for relational LLM queries should aim for
maximumGPU utilization, and involve sendingmultiple concurrent
asynchronous requests to the inference backend instead of blocking
API calls. Asynchronous parallel requests to the inference engine
ensure that the GPU bound output token generation operation
overlaps with the CPU bound operations. This allows the GPU to
remain active by generating tokens for a concurrent request while
waiting for output validation of a prior request.

Also, when batching requests, the inference engine should sepa-
rate batches that require constrained generation from those that do
not. Due to structured decoding, the logit masks for each decoding
step must be generated and validated on the CPU to constrain the
output. This results in each decoded token being passed to the CPU
one at-a-time. When output token validation occurs on the CPU,
the GPU remains idle in the blocking API request case. Therefore,
mixing constrained and non-constrained requests in the same batch
leads to performance degradation as the overhead of constrained
requests slows down the non-constrained ones [7].

On top of batching requests, row level batching is a potential
strategy as FlockMTL’s design suggests. However, it comes with
practical challenges, as mentioned in Section 3.3. When using this
approach, the number of input tokens and the output size must
be carefully calculated to fit within the model’s context window.
Ideally, the best performance would come from batching multiple
rows into a single request while ensuring each row’s output is
handled separately and running multiple requests asynchronously.
This would depend on new methods being developed beyond con-
strained decoding that can send multiple rows of input to an LLM,
and return separate, per-row output back to the database.

5



Projection
(llm_complete)

Hash Join

Scan
Reviews

Scan
Movies

Query 1

Projection

Filter
(llm_filter)

Hash Join

Scan
Reviews

Scan
Movies

Query 2

Projection
(llm_complete)

Filter
(llm_filter)

Hash Join

Scan
Reviews

Scan
Movies

Query 3

Aggregate

llm_reduce (per group)

Hash Group By

Hash Join

Scan
Reviews

Scan
Movies

Query 4

Projection
(llm_complete)

Similarity Search

Filter

Scan
SQuAD

Query 5

Figure 10: Query plans for relational-LLM queries

4.3 Query Plans
There are two main strategies in integrating LLM functions in the
query planning stage. Databricks [2], Amazon Redshift [3], and
pgAI use UDFs to call LLMs, while FlockMTL uses custom C++
functions that make LLM calls.

Having UDFs allows LLM queries to run directly through SQL
statements without the need to integrate external tools into existing
workflows. However, these UDFs are treated as "blackboxes" by the
query planner and no optimization rules are applied when making
the LLM inference call. Figure 10 shows the query plans for the
relational LLM queries, and they are similar across all the systems
we tested. While certain optimizations such as filter pushdowns
are observed for queries 2 and 4 (Figure 10), optimizations within
the LLM function call such as reordering of the column attributes
being referenced based on cardinality estimates are not considered.

Current relational DBMS optimizers leave a lot of performance
on the table by ignoring the cost of LLM invocations. The planner
can recover that performance by factoring in the LLM prompts
embedded in UDFs and other custom functions. To minimize la-
tency and cost, the optimizer should consider CPU-GPU resource
allocation and execution ordering, batching, KV-cache reuse, and
prompt overlap as first-class objectives. Guided by these insights,
such as prefix-cache sharing across low cardinality columns [29],
the planner can reorder input rows so tuples with similar attribute
values appear together. Thus, prompt prefixes can be shared, over-
lapping text can be batched, attention states can be reused, and
pre-fill overhead can be reduced. Incorporating the true cost of LLM
calls can close a gap in current relational optimizers and unlock
substantial untapped performance.

5 RELATEDWORK
As LLMs are increasingly being applied in different areas, a grow-
ing research community is addressing challenges to apply LLMs to
structured tabular data tasks [21]. This community tackles prob-
lems such as generating new table columns or features [35], data
cleaning [34], table understanding through representation learning
[14], and semantically enriching table content [20]. Even though
this community’s work is highly relevant, we are not concerned
with such tasks, instead, we aim to explore how LLM-enhanced

workloads can be accommodated within DBMSs as we conduct
an early exploration for the open-source systems that enable the
execution of SQL queries that invoke LLMs.

To efficiently process AI-powered analytical queries, LLMs are
used for unstructured (text-centric) [13, 27, 43] and structured
(relational) [29] workloads, both separately and in combination
[30, 38, 45]. Researchers introduce optimizations like prompt prefix-
sharing and row-reordering [29], designing declarative querying
primitives [38, 45] and physical operators [41] to process data ef-
ficiently with LLMs. What we do in our work complements these
systems to efficiently support their workloads as it is orthogonal to
these solutions, and can be adopted with such frameworks.

RAG enhances retrieval by fetching only the most relevant data
from large datasets, keeping LLM prompts within length limits
while grounding themodel’s output in essential information [24, 26].
We are not concerned with using LLMs for RAG operations. Instead,
we aim to optimize the DBMS+LLM interaction by enabling LLM-
powered SQL queries to be performed efficiently.

6 CONCLUSION
Running LLM queries is attractive because they extend traditional
SQL and can greatly enrich analytics in relational DBMSs. Yet ex-
ecuting these queries efficiently and practically is difficult, espe-
cially when the model must run locally to avoid exposing sensitive
data and maintain privacy. Our early exploration reveals key func-
tionality and performance challenges, as well as the trade-offs of
executing LLM queries inside relational DBMSs.

Key challenges are enforcing structured outputs, optimizing
batching, and improving query planning. We highlight trade-offs
among structured output techniques, show how insufficient batch-
ing decreases the GPU utilization, and demonstrate that planner-
execution mismatches can harm functionality and performance.
We also highlight the need for incorporating LLM costs into query
planning to maximize resource utilization. Our initial solutions
demonstrate measurable improvements in LLM+DBMS integration.
We believe that LLM queries might benefit from adopting different
approaches, such as approximate query processing techniques, and
may require rethinking relational DBMS query execution strategies
to maximize GPU and model efficiency.

6



REFERENCES
[1] [n.d.]. "https://motherduck.com/docs/sql-reference/motherduck-sql-reference/

ai-functions/prompt"
[2] 2025. AI Functions on Databricks. https://docs.databricks.com/aws/en/large-

language-models/ai-functions. Databricks Documentation. Last updated Feb 10,
2025.

[3] 2025. Large Language Models for Sentiment Analysis with Amazon Redshift ML
Preview. https://aws.amazon.com/blogs/big-data/large-language-models-for-
sentiment-analysis-with-amazon-redshift-ml-preview/. AWS Big Data Blog.

[4] 2025. LLM with Vertex AI: Only Using SQL Queries in BigQuery.
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-
vertex-ai-only-using-sql-queries-in-bigquery. Google Cloud Blog.

[5] 2025. Snowflake Cortex: LLM Functions. https://docs.snowflake.com/en/user-
guide/snowflake-cortex/llm-functions. Snowflake Documentation.

[6] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[7] Anyscale. 2025. Constrained generation with JSON mode. https://docs.anyscale.
com/llms/serving/guides/json_mode/. Accessed: 17 March 2025.

[8] RJ Atwal, Peter Boncz, Ryan Boyd, Antony Courtney, Till Döhmen, Florian
Gerlinghoff, Jeff Huang, Joseph Hwang, Raphael Hyde, Elena Felder, Jacob La-
couture, Yves Le Maout, Boaz Leskes, Yao Liu, Alex Monahan, Dan Perkins, Tino
Tereshko, Jordan Tigani, Nick Ursa, Stephanie Wang, and Yannick Welsch. 2024.
MotherDuck: DuckDB in the Cloud and in the Client. In Proceedings of the 14th
Conference on Innovative Data Systems Research (CIDR 2024). Chaminade, CA,
USA.

[9] BentoML and Red Hat. 2025. Structured Decoding in vLLM: A Gentle Introduc-
tion. https://www.bentoml.com/blog/structured-decoding-in-vllm-a-gentle-
introduction Accessed: 15 March 2025.

[10] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2023. Prompting is
programming: A query language for large language models. Proceedings of the
ACM on Programming Languages 7, PLDI (2023), 1946–1969.

[11] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. 2024. Guiding LLMs The
RightWay: Fast, Non-Invasive Constrained Generation. arXiv:2403.06988 [cs.LG]
https://arxiv.org/abs/2403.06988

[12] Bowen Cao, Deng Cai, Zhisong Zhang, Yuexian Zou, and Wai Lam. 2024. On
the Worst Prompt Performance of Large Language Models. In Advances in
Neural Information Processing Systems, A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37. Curran Associates,
Inc., 69022–69042. https://proceedings.neurips.cc/paper_files/paper/2024/file/
7fa5a377b7ffabcce43cd00231bb3f9c-Paper-Conference.pdf

[13] Hanjun Dai, Bethany Yixin Wang, Xingchen Wan, Bo Dai, Sherry Yang, Azade
Nova, Pengcheng Yin, Phitchaya Mangpo Phothilimthana, Charles Sutton, and
Dale Schuurmans. 2024. UQE: A Query Engine for Unstructured Databases. In
Advances in Neural Information Processing Systems (NeurIPS 2024).

[14] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: table
understanding through representation learning. Proc. VLDB Endow. 14, 3 (Nov.
2020), 307–319. https://doi.org/10.14778/3430915.3430921

[15] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023.
QLORA: efficient finetuning of quantized LLMs. In Proceedings of the 37th In-
ternational Conference on Neural Information Processing Systems (New Orleans,
LA, USA) (NIPS ’23). Curran Associates Inc., Red Hook, NY, USA, Article 441,
28 pages.

[16] Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and
Tianqi Chen. 2024. XGrammar: Flexible and Efficient Structured Generation
Engine for Large Language Models. arXiv:2411.15100 [cs.CL] https://arxiv.org/
abs/2411.15100

[17] Anas Dorbani, Sunny Yasser, Jimmy Lin, and Amine Mhedhbi. 2025. Be-
yond Quacking: Deep Integration of Language Models and RAG into DuckDB.
arXiv:2504.01157 [cs.DB] https://arxiv.org/abs/2504.01157

[18] dottxt ai. 2025. Outlines: Structured Text Generation. https://github.com/dottxt-
ai/outlines. Accessed: 15 March 2025.

[19] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Yang, A. Fan, and et al. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[20] Yael Einy, Tova Milo, and Slava Novgorodov. 2024. Cost-Effective LLMUtilization
for Machine Learning Tasks over Tabular Data. In Proceedings of the Conference
on Governance, Understanding and Integration of Data for Effective and Responsible
AI (Santiago, AA, Chile) (GUIDE-AI ’24). Association for Computing Machinery,
New York, NY, USA, 45–49. https://doi.org/10.1145/3665601.3669848

[21] Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun (Jane) Qi,
Scott Nickleach, Diego Socolinsky, "SHS" Srinivasan Sengamedu, and Christos
Faloutsos. 2024. Large language models (LLMs) on tabular data: Prediction, gener-
ation, and understanding — a survey. Transactions on Machine Learning Research
(2024). https://www.amazon.science/publications/large-language-models-llms-
on-tabular-data-prediction-generation-and-understanding-a-survey

[22] FlockMTL. 2024. FlockMTL. http://github.com/dsg-polymtl/flockmtl/releases.
[23] guidance ai. 2025. Guidance: A Guidance Language for Controlling Large Lan-

guage Models. https://github.com/guidance-ai/guidance. Accessed: 5 June
2025.

[24] Xingyu Ji, Aditya Parameswaran, andMadelon Hulsebos. [n.d.]. TARGET: Bench-
marking Table Retrieval for Generative Tasks. In NeurIPS 2024 Third Table Repre-
sentation Learning Workshop.

[25] Mosh Levy, Alon Jacoby, and Yoav Goldberg. 2024. Same Task, More Tokens: the
Impact of Input Length on the Reasoning Performance of Large LanguageModels.
In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (Eds.). Association for Computational Linguistics, Bangkok, Thailand,
15339–15353. https://doi.org/10.18653/v1/2024.acl-long.818

[26] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim
Rocktäschel, Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-augmented
generation for knowledge-intensive NLP tasks. In Proceedings of the 34th Inter-
national Conference on Neural Information Processing Systems (Vancouver, BC,
Canada) (NIPS ’20). Curran Associates Inc., Red Hook, NY, USA, Article 793,
16 pages.

[27] Chunwei Liu, Matthew Russo, Michael Cafarella, Lei Cao, Peter Baille Chen,
Zui Chen, Michael Franklin, Tim Kraska, Samuel Madden, and Gerardo
Vitagliano. 2024. A Declarative System for Optimizing AI Workloads.
arXiv:2405.14696 [cs.CL]

[28] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157–173. https://doi.org/10.1162/tacl_a_00638

[29] Shu Liu, Asim Biswal, Audrey Cheng, Xiangxi Mo, Shiyi Cao, Joseph E Gonza-
lez, Ion Stoica, and Matei Zaharia. 2024. Optimizing llm queries in relational
workloads. arXiv preprint arXiv:2403.05821 (2024).

[30] Shicheng Liu, Jialiang Xu, Wesley Tjangnaka, Sina J Semnani, Chen Jie Yu,
and Monica S Lam. 2023. SUQL: Conversational Search over Structured and
Unstructured Data with Large Language Models. arXiv preprint arXiv:2311.09818
(2023).

[31] MotherDuck. [n.d.]. "https://motherduck.com/blog/sql-llm-prompt-function-
gpt-models/"

[32] MotherDuck. 2025. Introducing the embedding() function: Semantic search made
easy with SQL. https://motherduck.com/blog/sql-embeddings-for-semantic-
meaning-in-text-and-rag/.

[33] Norman Mu, Jonathan Lu, Michael Lavery, and David Wagner. 2025. A Closer
Look at System Prompt Robustness. arXiv preprint arXiv:2502.12197 (2025).

[34] Zan Ahmad Naeem, Mohammad Shahmeer Ahmad, Mohamed Eltabakh, Mourad
Ouzzani, and Nan Tang. 2024. RetClean: Retrieval-Based Data Cleaning Using
LLMs and Data Lakes. Proc. VLDB Endow. 17, 12 (Aug. 2024), 4421–4424. https:
//doi.org/10.14778/3685800.3685890

[35] Jaehyun Nam, Kyuyoung Kim, Seunghyuk Oh, Jihoon Tack, Jaehyung Kim, and
Jinwoo Shin. 2024. Optimized Feature Generation for Tabular Data via LLMs
with Decision Tree Reasoning. arXiv:2406.08527 [cs.LG] https://arxiv.org/abs/
2406.08527

[36] OpenAI. 2023. Introducing Structured Outputs in the API. https://openai.com/
index/introducing-structured-outputs-in-the-api/ Accessed: 15 March 2025.

[37] Bo Pang and Lillian Lee. 2005. Seeing Stars: Exploiting Class Relationships for
Sentiment Categorization with Respect to Rating Scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL‘05), Kevin
Knight, Hwee Tou Ng, and Kemal Oflazer (Eds.). Association for Computational
Linguistics, Ann Arbor, Michigan, 115–124. https://doi.org/10.3115/1219840.
1219855

[38] Liana Patel, Siddharth Jha, Carlos Guestrin, and Matei Zaharia. 2024. LOTUS: En-
abling Semantic Queries with LLMs Over Tables of Unstructured and Structured
Data. arXiv:2407.11418 [cs.DB]

[39] pgAI. 2024. pgAI. https://github.com/timescale/pgai.
[40] Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don’t know:

Unanswerable questions for SQuAD. arXiv preprint arXiv:1806.03822 (2018).
[41] Dario Satriani, Enzo Veltri, Donatello Santoro, Sara Rosato, Simone Varriale,

and Paolo Papotti. 2025. Logical and Physical Optimizations for SQL Query
Execution over Large Language Models.

[42] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
Scott Wen-tau Yih (Eds.). Association for Computational Linguistics, Online and
Punta Cana, Dominican Republic, 9895–9901. https://doi.org/10.18653/v1/2021.
emnlp-main.779

[43] Shreya Shankar, Tristan Chambers, Tarak Shah, Aditya G. Parameswaran, and
EugeneWu. 2025. DocETL: Agentic Query Rewriting and Evaluation for Complex
Document Processing. arXiv:2410.12189 [cs.DB] https://arxiv.org/abs/2410.12189

7

"https://motherduck.com/docs/sql-reference/motherduck-sql-reference/ai-functions/prompt"
"https://motherduck.com/docs/sql-reference/motherduck-sql-reference/ai-functions/prompt"
https://docs.databricks.com/aws/en/large-language-models/ai-functions
https://docs.databricks.com/aws/en/large-language-models/ai-functions
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://aws.amazon.com/blogs/big-data/large-language-models-for-sentiment-analysis-with-amazon-redshift-ml-preview/
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://cloud.google.com/blog/products/ai-machine-learning/llm-with-vertex-ai-only-using-sql-queries-in-bigquery
https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions
https://docs.snowflake.com/en/user-guide/snowflake-cortex/llm-functions
https://docs.anyscale.com/llms/serving/guides/json_mode/
https://docs.anyscale.com/llms/serving/guides/json_mode/
https://www.bentoml.com/blog/structured-decoding-in-vllm-a-gentle-introduction
https://www.bentoml.com/blog/structured-decoding-in-vllm-a-gentle-introduction
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://proceedings.neurips.cc/paper_files/paper/2024/file/7fa5a377b7ffabcce43cd00231bb3f9c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7fa5a377b7ffabcce43cd00231bb3f9c-Paper-Conference.pdf
https://doi.org/10.14778/3430915.3430921
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2504.01157
https://arxiv.org/abs/2504.01157
https://github.com/dottxt-ai/outlines
https://github.com/dottxt-ai/outlines
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/3665601.3669848
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
http://github.com/dsg-polymtl/flockmtl/releases
https://github.com/guidance-ai/guidance
https://doi.org/10.18653/v1/2024.acl-long.818
https://arxiv.org/abs/2405.14696
https://doi.org/10.1162/tacl_a_00638
"https://motherduck.com/blog/sql-llm-prompt-function-gpt-models/"
"https://motherduck.com/blog/sql-llm-prompt-function-gpt-models/"
https://motherduck.com/blog/sql-embeddings-for-semantic-meaning-in-text-and-rag/
https://motherduck.com/blog/sql-embeddings-for-semantic-meaning-in-text-and-rag/
https://doi.org/10.14778/3685800.3685890
https://doi.org/10.14778/3685800.3685890
https://arxiv.org/abs/2406.08527
https://arxiv.org/abs/2406.08527
https://arxiv.org/abs/2406.08527
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://arxiv.org/abs/2407.11418
https://github.com/timescale/pgai
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://arxiv.org/abs/2410.12189
https://arxiv.org/abs/2410.12189


[44] Mohammed Alkhudhayri Catherine Cao Samuel Guo Nicholas Roberts Fred-
eric Sala Sonia Cromp, Satya Sai Srinath Namburi GNVV. 2025. Tabby: Tabular
Data Synthesis with Language Models. arXiv preprint arXiv:2405.01147 (2025).
https://arxiv.org/abs/2405.01147

[45] Matthias Urban and Carsten Binnig. 2024. ELEET: Efficient Learned Query
Execution over Text and Tables. Proc. VLDB Endow. 17, 13 (Sept. 2024), 4867–4880.
https://doi.org/10.14778/3704965.3704989

[46] Yuxin Wang, Duanyu Feng, Yongfu Dai, Zhengyu Chen, Jimin Huang,
Sophia Ananiadou, Qianqian Xie, and Hao Wang. 2024. HARMONIC:
Harnessing LLMs for Tabular Data Synthesis and Privacy Protection. In
Advances in Neural Information Processing Systems, A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (Eds.), Vol. 37.
Curran Associates, Inc., 100196–100212. https://proceedings.neurips.cc/
paper_files/paper/2024/file/b5aebe9a48398525a9da27a1df827d60-Paper-
Datasets_and_Benchmarks_Track.pdf

[47] Yu Wang, Luyao Zhou, Yuan Wang, Zhenwan Peng, and Surya Prakash. 2024.
Leveraging Pretrained Language Models for Enhanced Entity Matching: A Com-
prehensive Study of Fine-Tuning and Prompt Learning Paradigms. Int. J. Intell.

Syst. 2024 (Jan. 2024), 14. https://doi.org/10.1155/2024/1941221
[48] Brandon T Willard and Rémi Louf. 2023. Efficient guided generation for large

language models. arXiv preprint arXiv:2307.09702 (2023).
[49] Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. 2024. Prompt

Engineering a Prompt Engineer. In Findings of the Association for Computational
Linguistics: ACL 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, Bangkok, Thailand, 355–385. https:
//doi.org/10.18653/v1/2024.findings-acl.21

[50] Dun Zhang, Jiacheng Li, Ziyang Zeng, and Fulong Wang. 2025. Jasper and
Stella: distillation of SOTA embedding models. arXiv:2412.19048 [cs.IR] https:
//arxiv.org/abs/2412.19048

[51] Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru Krishnan, Andreas C.Müller,
Dalitso Banda, Fotis Psallidas, and JigneshM. Patel. 2023. SchemaMatching using
Pre-Trained Language Models. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). 1558–1571. https://doi.org/10.1109/ICDE55515.2023.00123

8

https://arxiv.org/abs/2405.01147
https://doi.org/10.14778/3704965.3704989
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5aebe9a48398525a9da27a1df827d60-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5aebe9a48398525a9da27a1df827d60-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5aebe9a48398525a9da27a1df827d60-Paper-Datasets_and_Benchmarks_Track.pdf
https://doi.org/10.1155/2024/1941221
https://doi.org/10.18653/v1/2024.findings-acl.21
https://doi.org/10.18653/v1/2024.findings-acl.21
https://arxiv.org/abs/2412.19048
https://arxiv.org/abs/2412.19048
https://arxiv.org/abs/2412.19048
https://doi.org/10.1109/ICDE55515.2023.00123

	Abstract
	1 Introduction
	2 Relational LLM Queries
	3 Systems Testing
	3.1 Testing Setup
	3.2 Functional Testing
	3.3 Performance Testing

	4 Research Challenges
	4.1 Structured Outputs
	4.2 Resource Utilization
	4.3 Query Plans

	5 Related Work
	6 Conclusion
	References

