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ABSTRACT

Efficient data transfer is crucial for modern distributed systems, but
performance depends heavily on well-tuned transfer parameters.
Optimizing these parameters is challenging due to the large search
space and dynamic system conditions. Manual tuning is imprac-
tical, and existing heuristic methods lack sufficient adaptability.
Suboptimal configurations can significantly degrade performance
in data-intensive applications, highlighting the need for tuning
strategies that adapt to their environment. In this paper, we intro-
duce Adapt as a data-driven approach for automatically tuning
data transfer parameters. Our framework employs an ensemble cost
model with dynamic weights that combine prior knowledge and
online observations, as well as an efficient two-phase exploration
strategy for finding high-performing configurations. Our experi-
ments show that Adapt outperforms both the existing heuristic
optimizer and standard black-box baselines, achieving up to 34%
higher throughput in 42% less time. Adapt also robustly adapts
to changing environments, demonstrating the effectiveness of ML-
based tuning in real-world data transfer scenarios.
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1 INTRODUCTION

Modern data-driven applications depend on fast and scalable data
movement. For example, ETL workflows, machine learning (ML)
pipelines and federated query plans require moving data between
OLTP and OLAP databases, data lakes, and data science runtimes
[10, 18]. These transfers are executed across heterogeneous infras-
tructures and systems under different environmental conditions,
e.g., fluctuating network bandwidth or competing CPU workloads.
To address these challenges, we recently introduced XDBC [9, 11],
a modular and scalable framework for efficient data transfer. XDBC
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exposes several tuning knobs such as parallelization strategies,
memory configurations, and compressors, which can be configured
for specific source and target systems as well as environments.

A Need for Data Transfer Optimization. Good configura-
tions are important for efficient data transfers. Poor configurations
can lead to slow runtime performance, underutilized CPU and net-
work resources, or increased cloud costs due to excessive bandwidth
usage. For example, employing compression may pay off in sce-
narios where sufficient CPU resources are available on source and
target system and network bandwidth is limited. However, under
sudden CPU spikes, the compression operation may degrade the
overall throughput, in which case compression may be disabled.
Overall, optimizing data transfer configurations and adjusting to
environment changes is crucial for achieving both high throughput
and resource efficiency across systems and environments.

Data Transfer Tuning Challenges. Optimizing data transfer
is challenging due to the large and complex configuration space.
In particular, XDBC exposes 12 parameters related to parallelism,
buffer sizes, compression algorithms and serialization formats. Those
parameters interact in non-trivial ways and their impact depends
heavily on source and target systems, data, and environment char-
acteristics. Transfers may occur between arbitrary systems, e.g.,
a cloud-hosted DBMS and a local Python pandas runtime. Addi-
tionally, topologies are dynamic, i.e., network bandwidth and CPU
availability may change during execution. Moreover, evaluating
a single configuration requires executing a full transfer, limiting
the number of configurations that can be explored. As a result,
an effective tuner must explore the configuration space efficiently,
i.e., balance exploration and exploitation, while also adapting to
changing system and network environments.

A Case for Adaptive Tuning. Most existing ODBC/JDBC-
based data transfer frameworks rely on manual tuning and expose
only a small set of configuration knobs, i.e., batch (or fetch) size
and read parallelism, which limits their ability for fully utilizing
available resources and adapting to changing environments. Our
existing XDBC framework comprises multiple tuning knobs and
a practical heuristic optimizer. The existing optimizer relies on a
small number of profiling runs and greedily assigns worker threads
based on an analytical cost model, and selects compression, mem-
ory, and format choices based on the characteristics of participating
systems. However, this heuristic optimizer makes simplifying as-
sumptions about the environment and workload, and lacks the
ability to generalize across data transfers and to adapt to changing
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Figure 1: Distribution of Throughput of different configura-

tions for Environments (2,2,50), (8,8,150) and (16,16,1000).

workloads dynamically. While data-driven auto-tuning methods
have shown promising results in other domains, such as DBMS
configuration tuning or index selection, data transfer is a special
case that requires an tailor-made solution.

Contributions. To address the limitations of manual tuning and
the heuristic optimizer, we introduce Adapt, an adaptive data trans-
fer parameter tuner for the XDBC framework. Adapt learns from
prior transfers and runtime profiling for quickly finding good (high
throughput) data transfer configurations. We propose a dynamic
ensemble of XGBoost regression models that uses weights that
combine prior environment knowledge and live feedback, enabling
fast performance prediction across different transfer environments.
Unlike the previous heuristic optimizer, Adapt generalizes across
source-target system pairs and adapts to changing environment
characteristics such as CPU load or network fluctuations. In detail,
our technical contributions are:

• Adaptive Tuning Framework: A modular tuner that sup-
ports cold-start optimization, transfer learning, and online
adaptation across dynamic data transfer environments.

• Ensemble Cost Model: A dynamic ensemble of XGBoost
models that combine prior environment knowledge and
live feedback for fast performance prediction.

• Exploration Strategy: An efficient two-phase exploration
of the parameter search space using batch prediction and
dedicated search space pruning techniques.

• Experiments: We evaluate Adapt against other optimiza-
tion algorithms, including the XDBC heuristic optimizer,
and show improved transfer throughput and adaptability.

The rest of this paper is structured as follows: In Section 2, we
motivate the need for data transfer optimization and introduce our
XDBC framework. Then, in Section 3, we introduce our approach
for a data and machine learning (ML) driven parameter tuner, and
describe our cost model and exploration strategy. In Section 4,
we share and discuss our experimental evaluation, which shows
that Adapt achieves higher throughput and better robustness than
baselines, especially in dynamic environments. Finally, we discuss
related work in Section 5 and conclude in Section 6.

2 MOTIVATION AND BACKGROUND

In this section, we first motivate the need for adaptive parameter
tuning in the context of data transfer across heterogeneous sys-
tems and environments. Subsequently, we provide an overview of
our XDBC framework for modular and scalable data transfer, and
motivate the need for adaptive, data-driven tuning.

2.1 Motivation

Data transfer is a common task in data-driven applications, but
different use cases require different configurations depending on
system properties and runtime environments. Transfers may occur
between cloud databases, local runtimes, data lakes, and analytics
engines, often across changing and heterogeneous infrastructure.
We illustrate this challenge with a running example.

Example 1 (Feature Engineering Pipeline). A data scientist

periodically extracts training data from a cloud-hosted PostgreSQL

DBMS into a Python pandas runtime for feature engineering and

model training. Depending on the execution setup, the pandas envi-

ronment may run on the user’s local laptop with limited resources and

slower wide-area-network (WAN) connection, or on a cloud-hosted

notebook with better hardware and network throughput.

Impact of Configurations. Even for this simple workflow, data
transfer performance can vary drastically depending on the envi-
ronment. Large batch sizes, and highly-parallelized operations may
benefit data transfers in cloud-hosted environments, but become
counterproductive in resource-constrained local setups. Therefore,
selecting effective transfer parameters is crucial for runtime per-
formance, but non-trivial given the variety of execution contexts.
Figure 1 shows the distribution of observed throughput values for
1,000 randomly sampled parameter configurations in three distinct
transfer environments. Only a small subset of configurations reach
high throughput values, with the true optima being up to 20% higher
then the maximum values shown in the plots, highlighting the im-
portance of selecting an effective configuration instead of relying
on default configurations. To support tuning for such scenarios,
the XDBC framework exposes fine-grained control over key data
transfer parameters, including compression settings, parallelism,
buffer sizes, and serialization formats. XDBC further includes a
heuristic optimizer that uses a small number of profiling runs and
an analytical cost model to find configurations tailored to a given
source-target pair as well as data and system characteristics.

Example 2 (Recurring Transfers in Volatile Topologies).
The same pipeline may be scheduled to run daily on cloud infrastruc-

ture with elastic compute and shared network links. Depending on

external factors, such as concurrent jobs, resource scaling events, or

background traffic, the available CPU or bandwidth may fluctuate

substantially between and during runs.

Limitations of Heuristic Optimization. In such volatile en-
vironments, static configurations quickly become suboptimal. The
heuristic optimizer in XDBC provides a good starting point, but
this optimizer relies on simplifying assumptions and cannot adapt
to dynamic changes in real time. As a result, transfer performance
may degrade under changing conditions, leading to slower pipeline
execution or inefficient resource usage. The above examples moti-
vate the need for a system that not only exposes rich tuning knobs,
but also adapts its configuration based on prior knowledge and live
system feedback. These limitations and goals directly motivate the
design of our data-driven tuner Adapt.
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Figure 2: XDBC’s Configurable Component Architecture.

2.2 The XDBC Data Transfer Framework

XDBC is a holistic framework for fast and scalable data transfer
across heterogeneous systems, such as from relational databases
(e.g., PostgreSQL) to pandas, or from Parquet to CSV files. This
framework addresses the limitations of generic JDBC/ODBC-like
connectors—which offer limited tuning capabilities—by achieving
performance competitive with specialized solutions such as Con-
nectorX [27], while also providing good generality.

XDBC Overview. As shown in Figure 2, XDBC models the
data transfer pipeline as a modular pipeline of decoupled logical
components, including read, serialize, compress, send, receive, decom-

press, deserialize, and write. Each component has different physical
implementations and can be individually tuned. The framework
operates in a client-server model, using a ring-buffer mechanism for
memory management, where components communicate through
in-memory queues and pass fixed-size buffers through the pipeline
stages. Key strengths of XDBC are its flexibility and configurability.
For each pipeline component, we can tune the degree of parallelism
independently to match the available compute resources on the
source and target systems. The size of the buffers in flight and the to-
tal buffer pool on both client and server sides can also be controlled
to fit memory constraints. In addition, the system supports multiple
intermediate transfer formats and compression algorithms, which
can be selected to optimize for CPU, I/O, or network bandwidth.
Table 1 summarizes the main configuration parameters of XDBC.
The combination of parallelism, memory management, format, and
compression options results in a large and high-dimensional search
space with complex parameter interactions. This complexity makes
manual tuning difficult and motivates automated optimization.

The Heuristic Optimizer. To improve out-of-the-box per-
formance, XDBC includes a rule-based heuristic optimizer that
automatically selects data transfer configurations. The optimizer
controls the following four key parameter groups:

• Parallelism: Configures the number of worker threads
assigned to each component in the pipeline.

• Compression: Configures the choice of compression algo-
rithm (or none)—and thus, also the implied decompression
algorithm—to balance CPU cost and data reduction.

• Memory Management: Configures the size of in-flight
buffers and the size of the buffer pool (i.e., number of buffers
in the pool) on both client and server sides.

• Component Skipping: Applies rules for bypassing op-
tional pipeline components depending on system compati-
bility and efficiency (e.g., serialization formats).

Table 1: Configuration Search Space C.
Name Type Domain

Compression Library categorical {nocomp, zstd, lz4, lzo, snappy}
Intermediate Format categorical {1, 2}
Buffer Size discrete {64, 256, 512, 1024}
Client Bufferpool Size integer [1, . . . , 8]
Server Bufferpool Size integer [1, . . . , 8]
∗ Parallelism integer [1, . . . , 16]

The heuristic optimizer begins with a short sampling phase to
profile the throughput of individual pipeline stages, or utilizes pre-
materialized offline profiling information. Based on these profiles,
the optimizer constructs a simple analytical cost model and iter-
atively assigns worker threads to the slowest stages to mitigate
bottlenecks. If the network is identified as a limiting factor, the
optimizer enables compression and rebalances the parallelism con-
figuration. Format selection and component-skipping decisions are
made based on characteristics of the source and target systems.
Finally, the buffer sizes are selected based on available memory and
CPU cache sizes, conditioned on the configured parallelism.

Towards Data-driven Tuning. While this heuristic is capa-
ble of producing better-than-default configurations quickly, it has
limitations due to its static and rule-based design. First, the embed-
ded rules rely on expert knowledge and are difficult to generalize
across new systems or workloads. Second, the optimizer assumes
a fixed execution environment and depends on an initial profiling
phase, which can be expensive or infeasible in some deployments.
Third, the pre-defined scaling assumptions used by the cost model
can break down in volatile environments with fluctuating resource
availability. Most importantly, the heuristic optimizer does neither
learn from past transfers nor adjust its configuration over time.
Once selected, the configuration remains fixed, making it unsuit-
able for transfers that experience dynamic runtime conditions such
as CPU contention or variable network throughput.

3 ADAPTIVE PARAMETER TUNING

XDBC [9, 11] exposes a rich set of configurations that control par-
allelism, memory management, and compression. Finding high-
throughput configurations is difficult though due to the exponential
search space of configurations and sensitivity to system conditions
such as CPU, memory, and network bandwidth. This challenge rep-
resents a broader class of tuning problems in distributed systems,
where static heuristics often fall short under dynamic workloads. In
this section, we introduce Adapt, a data-driven tuner designed to
automatically optimize XDBC parameters using machine learning,
transfer learning, and runtime feedback. Our tuning framework is
designed for fast convergence, strong generalization across envi-
ronments, and adaptability to real-time changes.

3.1 Adapt Overview

Adapt is designed to efficiently—with minimal tuning overhead
and few transfer attempts—identify effective parameter configura-
tions with high throughput. We leverage a set of predictive models
that are trained offline to generalize across a wide range of envi-
ronments. Adapt is fully integrate in the XDBC system to guide
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Figure 3: ADAPT Tuning Components.

configuration selection during cross-environment transfers. Fig-
ure 3 shows the overall tuning process. When XDBC initiates a
transfer, Adapt selects a promising configuration based on his-
torical data and recently observed performance. After execution,
the transfer outcome is logged and fed back to Adapt in order to
update its internal predictive models. This feedback loop enables
increasingly accurate tuning over time1. To realize this functional-
ity, Adapt operates in three conceptual phases, each supported by
a corresponding system component:

• Training Phase (offline): Implemented by the Data Gener-
ator, this phase generates synthetic configuration- environ-
ment performance data. We cluster similar environments
and train a separate regression model for each cluster.

• Ensemble Prediction Phase (offline): Implemented by
the Cost Model, this phase constructs a weighted ensemble
over the trained models. We assign weights based on prior
environment knowledge and historical predictive accuracy.

• Tuning Phase (online): Handled by the Tuner, this phase
uses the ensemble to suggest configurations and updates
model weights based on observed transfer performance.

Algorithm 1 summarizes the full Adapt workflow across these
phases, including model training, ensemble prediction, and online
adaptation. In the following, we first formalize the problem set-
ting (Section 3.2), then describe our approach to synthetic data
generation and model training (Section 3.3), followed by our ensem-
ble prediction method (Section 3.4), and finally present the online
adaptation mechanism used during tuning (Section 3.5).

3.2 Problem Definition

Our problem consists of selecting the optimal system configuration
for a data transfer in a specific computing environment.

Optimization Objective. Let C denote the configuration space,
and let 𝐸 represent the data transfer environment. Our optimization
objective is to find the optimal configuration𝐶∗ ∈ C that maximizes
the data transfer throughput 𝑇 (𝐶, 𝐸):

𝐶∗ = argmax
𝐶∈C

𝑇 (𝐶, 𝐸) (1)

Notation. The transfer environment 𝐸 is defined as a tuple
(𝑆𝐸 ,𝐶𝐸 , 𝑁𝐸 ), where 𝑆𝐸 and𝐶𝐸 denote the number of available CPU

1We also support a lightweight online mechanism for intra-transfer reconfiguration but
this fine-grained adaptation is limited to a subset of reconfigurable XDBC parameters.
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Figure 4: Similarities Between Environments.

cores on the server and client, respectively, and 𝑁𝐸 denotes the net-
work bandwidth in megabits per second. The configuration space
C consists of 12 tunable parameters, including numerical (e.g., par-
allelism, buffer size) and categorical (e.g., compression) parameters.
A detailed description of these parameters is provided in Table 1.
In practice, the target environment 𝐸 is often unknown at predic-
tion time. Accordingly, our method must address the optimization
problem in (1) without always assuming knowledge of 𝐸.

3.3 Training Phase

To train accurate cost models for evaluating transfer configurations,
we need a large and diverse set of labeled performance data. How-
ever, collecting such data through real-world transfers is expensive
and time-consuming. Accordingly, it is impractical to exhaustively
run transfers for every combination of configuration parameters
and deployment environments. To overcome this challenge, we
generate training data in a controlled setting of simulated docker
environments but real performance measurements.

Environment Simulation. We emulate deployment environ-
ments using Docker-based container virtualization. Our goal is to
create synthetic topologies with controlled variations in compute
and network characteristics. We use the docker-tc utility to em-
ulate a range of bandwidth conditions by applying traffic control
rules inside containers. In addition, we use CPU quotas to constrain
the compute resources on both the server and client sides. This
setup allows us to run XDBC transfers under realistic resource
limitations, while maintaining reproducibility and low overhead.

Environment Sampling. Evaluating the full cross-product of
potential (𝑆𝐸 ,𝐶𝐸 , 𝑁𝐸 ) values (introduced in Section 3.2) would be
prohibitively expensive. Instead, we identify a compact set of repre-
sentative environments that induce distinct performance behaviors.
To this end, we run a fixed set of configurations across candidate
environments, ranking them by throughput, and measuring simi-
larity using Spearman’s rank correlation. Figures 4a and 4b show
the similarity patterns across compute and network dimensions,
respectively. Based on these results and insights, we select a mini-
mal yet diverse set of values that yield environments with different
optimal parameter configurations (Table 2).

Configuration Sampling. The XDBC framework exposes a
rich set of tunable parameters, including per-component paral-
lelism, compression algorithms, intermediate formats, and buffer



Table 2: Sample Environments.

Server CPU Client CPU Network Speed

{2, 8, 16} × {2, 8, 16} × {50, 150, 1000, 100000}

management. We defined value ranges for each parameter, such as
setting parallelism between 1 and 16, and constraining buffer pool
sizes as a multiple of thread counts. The resulting configuration
space comprises 6.87×1011 distinct configurations (Table 1). To sam-
ple from this space efficiently, we used Latin Hypercube Sampling
(LHS), which ensures uniform coverage across parameter values
while minimizing the number of samples. LHS allows us to generate
well-distributed points that cover the full parameter space, includ-
ing boundary values and rare combinations. We generate such a
minimal set of configurations (i.e., 400) for each of the representa-
tive environments. For each configuration, we evaluate an XDBC
data transfer in the corresponding environment, and record the
resulting throughput. These data form the labeled dataset for train-
ing our ensemble cost model, enabling both environment-specific
predictions and transfer learning across workloads.

Environment Clustering and Model Training. Using the
collected throughput data for each configuration-environment pair,
we represent every environment by a performance signature vector.
To enable consistent comparison, we apply the same normalization
used later in the ensemble weighting mechanism, transforming all
signatures into a shared representation. We compute normalized
pairwise Euclidean distances between transformed environment sig-
natures, yielding a similarity matrix. This similarity matrix serves
as input to hierarchical agglomerative clustering, where we ap-
ply a distance threshold of 0.15 to form environment clusters. Let
{K1, . . . ,K𝐾 } denote the resulting set of 𝐾 clusters. Each cluster
K𝑘 groups environments with similar responses to configuration
changes. We also compute a signature per cluster as a weighted
average of its assigned environment signatures. For each clusterK𝑘 ,
we train a separate predictive model𝑚𝑘 : C → R that estimates the
transfer throughput𝑇 (𝐶, 𝐸) for any configuration𝐶 ∈ C, assuming
the environment 𝐸 belongs to that cluster. We use XGBoost [6]
as the predictive model due to its robustness as well as ability to
handle high-dimensional, mixed-type feature spaces, and missing
values. As shown in Lines 1–8 of Algorithm 1, the training pro-
cess involves clustering the environments, computing signatures,
and fitting one model per cluster. This approach reduces model
complexity, lowers compute costs, and improves the convergence
of our ensemble weighting mechanism, as the clusters are more
homogeneous and less noisy than individual environments.

Trained Model. The result of the training phase is a set of en-
vironment clusters, each associated with a labeled training dataset
and a corresponding XGBoost regression model. These models spe-
cialize in predicting transfer performance for configurations within
their respective environment groups. Together, these models form
the basis of our ensemble prediction model, which combines their
outputs to guide configuration selection in new environments.

3.4 Ensemble Prediction Phase

After the training phase, we have a set of clusters {K1, . . . ,K𝐾 },
each associated with a predictive model 𝑚𝑘 : C → R trained
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Figure 5: Cost model architecture used in ADAPT. Each base

model is trained for a cluster of environments and dynami-

cally weighted during inference.

as described in Section 3.3. These models form the basis for our
ensemble prediction mechanism.

Ensemble Model. The ensemble prediction phase construct
a single cost model𝑚 : C → R that will be later used to find the
optimal configuration 𝐶∗. To this end, we combine the predictions
of all base models𝑚1, . . . ,𝑚𝐾 into an ensemble model. Each base
model contributes in a weighted manner to the final prediction:

𝑚(𝐶) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑚𝑘 (𝐶), where |𝑤 | = 1 (2)

with𝑤𝑘 denoting the weight assigned to the 𝑘-th model, and𝑚𝑘 (𝑐)
its throughput prediction. Figure 5 illustrates this ensemble ar-
chitecture, including clustering, per-cluster model training, and
inference-time weight combination.

Ensemble Weights. The weights𝑤 = (𝑤1, . . . ,𝑤𝐾 ) reflect con-
fidence in each model’s ability to accurately predict throughput in
the current (possibly unknown) environment. We compute them
by combining two complementary criteria. The first is a similarity-
based vector, denoted 𝑤𝐸 = (𝑤𝐸1 , . . . ,𝑤

𝐸
𝐾
), which captures how

closely the current environment signature 𝐸′ (if available) resem-
bles each cluster. This is computed using a distance metric between
𝐸′ and the centroid of each cluster. If 𝐸′ is not known, a uniform
vector is used instead. The second is a performance-based score,
𝑤𝑢 = (𝑤𝑢1 , . . . ,𝑤

𝑢
𝐾
), derived from historical observations of each

model performance. Model with lower prediction errors on histori-
cal data receive a higher weight. The final ensemble weights are
then obtained by combining𝑤𝑒 and𝑤𝑢 via a linear combination:

𝑤𝑘 = 𝛼 ·𝑤𝐸
𝑘
+ (1 − 𝛼) ·𝑤𝑢

𝑘
(3)

where 𝛼 ∈ [0, 1] is a balancing parameter that evolves over time,
gradually shifting emphasis from prior similarity to empirical accu-
racy as more observations become available. As shown in Lines 10–
21 of Algorithm 1, we compute similarity weights based on envi-
ronment distance, combine them with update weights using a time-
dependent interpolation factor 𝛼 (𝑡), and form a weighted ensemble
prediction. Initially, when no or little prediction history is available,
the ensemble relies more on the similarity-based weights𝑤𝐸 . As
more data transfers are observed and model performance can be
assessed, the influence gradually shifts toward the accuracy-based
weights𝑤𝑢 . This interpolation is controlled by a time-dependent
parameter 𝛼 (𝑡) ∈ [0, 1], where 𝑡 denotes the number of data trans-
fers. The function 𝛼 (𝑡) uses an exponential decay, ensuring that
the ensemble becomes increasingly guided by empirical evidence.



Algorithm 1 Dynamic Regression Environment Adaptive Model
1: // Initialize:
2: Input: Labeled data (𝐶, 𝐸,𝑇 (𝐶, 𝐸)), decay factor 𝜆
3: Initialize:𝑈 ← 1/𝐾 ,𝑚𝑜𝑑𝑒𝑙𝑠 ← {}, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑠 ← {}
4: Cluster environments {𝐸} into K1, . . . ,K𝐾
5: for each cluster K𝑘 do

6: Train model𝑚𝑘 on cluster data
7: Store cluster centroid signature 𝑠𝑘
8: end for

9: // Prediction Phase:
10: Input: Configuration 𝐶 , Target environment 𝐸′
11: Normalize 𝐸′ to obtain signature 𝑠′
12: for each model𝑚𝑘 do

13: Predict 𝑝𝑘 ←𝑚𝑘 (𝐶)
14: Compute similarity𝑤𝐸

𝑘
← 1/𝑑 (𝑠′, 𝑠𝑘 )

15: end for

16: Normalize𝑤𝐸
17: Compute 𝛼 (𝑡) ← 1/(1 + 𝛽 · 𝑡) {𝛽 controls weight shift rate}
18: Combine weights:𝑤𝑘 ← 𝛼 (𝑡) ·𝑤𝐸

𝑘
+ (1 − 𝛼 (𝑡)) ·𝑤𝑢

𝑘
19: Normalize𝑤
20: Predict:𝑚(𝐶) ← ∑

𝑘 𝑤𝑘 · 𝑝𝑘
21: return𝑚(𝐶)
22: // Update Phase:
23: Input: Executed config 𝐶∗, observed throughput 𝑇 (𝐶∗, 𝐸′)
24: for each model𝑚𝑘 do

25: Compute error: 𝑒𝑘 ← (𝑚𝑘 (𝐶∗) −𝑇 (𝐶∗, 𝐸′))2
26: 𝑤new

𝑘
← 1/𝑒𝑘

27: end for

28: Normalize𝑤new

29: Update:𝑤𝑢 ← 𝜆 ·𝑤𝑢 + (1 − 𝜆) ·𝑤new

3.5 Tuning Phase

In order to find the optimal (or at least good) configurations for a
new data transfer efficiently, we use the ensemble cost model

𝑚(𝐶) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑚𝑘 (𝐶)

defined in Section 3.4 to guide exploration of the configuration space
C. Since executing data transfers is costly, we aim to minimize the
number of real-world trials required to find an effective configu-
ration. Rather than relying on iterative black-box optimizers such
as Bayesian Optimization—which incur overhead per evaluation—
we adopt a batch-oriented exploration strategy that enables fast,
parallelizable decision-making.

Two-Phase Sampling Strategy. To balance efficiency and
prediction quality, we employ a two-phase exploration approach
based on Latin Hypercube Sampling (LHS) [14]. In the first phase,
we generate an initial candidate set Cinit ⊂ C using LHS, ensuring
uniform coverage of the full configuration space. We evaluate each
candidate 𝐶 ∈ Cinit using the ensemble model𝑚(𝐶), and retain the
top 20% of configurations based on predicted throughput.

Search Space Pruning. We then construct a reduced search
space Csub ⊂ C, which bounds the parameter ranges observed

among the top configurations from before. This pruned space fo-
cuses the search on high-potential regions while discarding areas
unlikely to yield strong performance. Subsequently, we generate
a second set of candidates Crefined via LHS within Csub, and again
score each configuration using the ensemble model. The optimal
configuration is selected as

𝐶∗ = arg max
𝐶∈Crefined

𝑚(𝐶)

for execution on the target environment.
Feedback and Adaptation. Once the selected configuration

𝐶∗ is executed, we observe the actual throughput 𝑇 (𝐶∗, 𝐸′). This
measurement is used to update the model’s internal accuracy-based
weight vector𝑤𝑢 , as described in Section 3.4. Specifically, models
that yield lower prediction error for𝐶∗ are rewarded with increased
future weights. As more feedback becomes available, the weighting
mechanism gradually shifts from relying on prior similarity (𝑤𝐸 )
to observed performance (𝑤𝑢 ), according to the dynamic mixing
parameter 𝛼 (𝑡) (Algorithm 1, Lines 23–29).

Summary. Each tuning iteration (i.e., the tuning of a new data
transfer) begins by generating candidate configurations, scoring
them using the ensemble cost model, and selecting a configuration
for execution. The observed throughput is then incorporated as
feedback, allowing the model to adapt and improve over time. By
combining structure-aware sampling, efficient batch prediction,
and adaptive weight adjustment, this tuning loop supports effective
configuration selection with low overhead.

4 EXPERIMENTAL EVALUATION

Our experiments study the effectiveness and efficiency of our tuning
approach in different data transfer scenarios. We first describe our
experimental setup, and then present our end-to-end evaluation
comparing our approach to baseline algorithms, and finally explore
specific aspects through micro-benchmarks.

4.1 Experimental Setup

In the following, we describe the used hard- and software environ-
ments, baselines, metrics, as well as the used transfer environments.

Hardware/Software. We perform our transfers on compute
nodes with 2 Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz each
having 16 cores and 32 threads, 512GB of main memory and a
2 TB SSD disk drive. The tuning algorithms run on a machine with
an Intel(R) Core(TM) i5-12600K @ 3.70GHz with 10 cores and 16
threads, 32 GB of main memory and a 2 TB SSD disk drive. We run
XDBC on Ubuntu v20.04.2 LTS with Docker v27.1.1 and use Python
v3.8 on Windows 11 v23H2 to run our data generation and tuning
algorithms. For the implementation of Bayesian Optimization and
RGPE we use openbox v0.8.4 [13], and Syne Tune v0.13.0 [19] for
the implementation of Quantile and Random Search. We use scikit-
learn v1.3.2 [17] for the RandomForestRegressor and Hierarchical
Clustering, scipy v1.10.1 [26] for Latin Hypercube Sampling and
xgboost v2.1.1 [6] for the implementation of XGBRegressor.

Baselines. As baselines, we use the existing Heuristic Opti-
mizer, Random Search and Bayesian Optimization. Random search
is a simple but effective approach for finding optimal parameter
configurations, which makes it a common baseline for comparing



Table 3: Evaluation Environments (𝑆𝐸 ,𝐶𝐸 , 𝑁𝐸 ).

Server

Client

Edge Fog Cloud

Edge (2, 2, 50) (2, 8, 50) (2, 16, 50)
Fog (8, 2, 150) (8, 8, 150) (8, 16, 150)
Cloud (16, 2, 1000) (16, 8, 1000) (16, 16, 1000)

different optimization algorithms [5]. We use Random Search to
show the relative improvement of our approach compared to ran-
domly picking parameter configurations. Bayesian Optimization
is regarded as the go-to algorithm for tuning expensive black-box
functions such as complex data systems [22, 24]. Including Bayesian
Optimization gives us a strong, sample-efficient baseline that re-
flects current optimization practices. Additionally, we evaluated
two transfer learning optimization algorithms: Ranking Gaussian
Process Ensemble (RGPE) [8] and Quantile [20]. RGPE builds a
single surrogate model per previous task, and then tries to match
these previous tasks to the current one based on rank correlation.
Quantile maps the performance data of each individual tasks into
normalized distributions to find similarities in high performing
configurations across tasks.

Metrics. To measure the effectiveness, we use the Best Found
Throughput. This metric shows the best throughput achieved so far,
rewarding good exploration of the search space. Since the absolute
scale of the achieved throughput varies across environments, we
normalized the throughput with respect to the optimum. To this
end, we divided all throughputs by the optimal throughput for the
specific environment before averaging across environments. We
determined this optimal throughput by running Bayesian Optimiza-
tion for 2000 iterations, with convergence typically observed after
1000 iterations. The result is a normalized throughput value in per-
cent of the optimum. In the following sections, we refer to the best
found throughput as the performance of a tuning algorithm.

Data Transfer Setup. We evaluate each tuning algorithm by
executing data transfers on the simulated topology. Each transfer in-
volved transferring a 7.7 GB CSV file of the TPC-H lineitem table [3]
(scale factor 10). We observed similar throughput performance for
larger datasets, which is why our trained model and evaluation
can be generalized for data transfers of larger size. A tuning run
consisted of 25 transfer executions. Unless stated otherwise, each
algorithm is evaluated three times per environment, and we report
the mean. For methods using historical training data, all environ-
ments except the current one were included to simulate transfer
to an unseen setting. We supplied no data of previous transfers
to Bayesian Optimization’s surrogate model as we operate under
the assumption of having no data for the current environment. Al-
ternatively combining data of multiple environments in a single
surrogate model showed very poor performance due to similar
parameter choices having conflicting performance impacts.

Transfer Environments. To evaluate our algorithms, we
choose a subset of the sampling environments which we intro-
duced in Table 2. We characterize these environments as edge, fog
and cloud connections, and select one environment per connection
pair, which we show in Table 3. This way our evaluation covers
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a broad range of transfer environments, similar to CPU charac-
teristics on general-purpose aws-ec2 instances [1], enabling the
ability to generalize our experimental results. We simulate these
environments by restricting docker CPU usage and using docker
traffic control [2].

4.2 End-to-End Tuning Performance

Best Found Throughput. The primary goal of our tuning ap-
proach is to identify high-throughput configurations efficiently. To
measure this aspect, we evaluate the Best Found Throughput, the
highest throughput observed during a tuning run of 25 iterations.
This metric is relevant in practical scenarios where tuning is per-
formed before exploiting the best configuration for many future
data transfers. The faster a method finds a good configuration, the
earlier data transfers can start. Figure 6 shows the performance
curves for all tuning algorithms over the 25 iterations. Adapt con-
sistently outperforms all other algorithms throughout the entire
tuning run. After just 5 iterations, we achieve 90.9% of the op-
timum, while RGPE reaches 76.5% and Quantile 71.3%. Bayesian
Optimization and Random Search lag behind at 65% and 65.0% re-
spectively, and the Heuristic Optimizer reaches 67.5%. By the end
of the 25-iteration tuning run, Adapt achieves 94.7% of the opti-
mal throughput. This result is higher than RGPE (89.5%), Quantile
(85.8%), Bayesian Optimization (75.9%), and Random Search (73.0%).
The Heuristic Optimizer remains static at 67.5%, as it does not adapt
to feedback. These results highlight the value of transfer learning
and adaptive tuning. Adapt identifies effective configurations—by
leveraging historic knowledge and runtime feedback—faster than
algorithms that start from scratch.

Key Insight 1. History-aware and adaptive algorithms, such as

Adapt, are substantially more effective than static or uninformed

strategies for quickly finding high-throughput configurations in high-

dimensional search spaces.

Accumulated Time. Beyond finding high-performing configu-
rations, a tuning algorithm must do so efficiently in terms of overall
time. To evaluate this aspect, we measure the Accumulated Time as
the cumulative wall-clock time taken across 25 iterations, includ-
ing initialization, finding new configurations, executing transfers,
and updating models. As shown in Figure 7, Adapt yields the low-
est overall accumulated time. The next best baselines are RGPE
and Quantile. Initially, Quantile performs slightly better, but is
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overtaken by the Heuristic Optimizer in the second half of the tun-
ing runs. Random Search has the highest accumulated time, with
Bayesian Optimization only marginally ahead. This behavior re-
flects the trade-off between exploration and exploitation inherent in
all algorithms. Since Adapt incorporates environment knowledge,
it can immediately exploit prior knowledge, reducing both search
overhead and data transfer runtime. RGPE and Quantile also benefit
from historical data, but must first assess the similarity between the
current environment and past tuning tasks. RGPE is particularly
effective in this regard, maintaining strong overall performance
with moderate overhead, while Quantile spends more time on ex-
ploration. The Heuristic Optimizer follows a fixed strategy: after
an initial exploration phase of 5 iterations, it switches to exploiting
a single static configuration. This approach leads to relatively low
accumulated time despite poor throughput performance. Bayesian
Optimization is able to exploit to a limited extent, but its iterative
search and model update steps introduce non-trivial computational
costs, resulting in accumulated time only slightly better than Ran-
dom Search (which continues with pure exploration without any
exploitation).

Key Insight 2. Adapt finds high performance configurations, and

does so with the lowest runtime overhead. Its ability to immediately

exploit prior knowledge and efficiently adapt sets it apart from both

static and black-box tuning approaches.

4.3 Adapting to Environments and Systems

Robust tuning methods must remain effective despite two chal-
lenges of real-world deployment: dynamically changing environ-
ments and heterogeneous system architectures. Transfer conditions
can fluctuate at runtime due to network congestion or variable
compute availability, requiring models to adapt quickly. Similarly,
tuning must generalize across systems with different data sources,
formats, or physical operator implementations. We evaluate both as-
pects: adaptation to shifting runtime conditions, as well as transfer
performance across distinct system backends.

Adapting to Dynamic Environments. To test adaptability
during runtime changes, we evaluate Adapt and RGPE under dy-
namic conditions. We choose RGPE as baseline because it is the
closest in performance. We construct a three-phase environment
schedule, beginning with a high-bandwidth setting (16, 16, 1000),
simulating a bottleneck by reducing bandwidth to 50 MBit/s, and
then partially recovering to 150 MBit/s. We execute each algorithm
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for 25 iterations in each environment before transitioning to the
next, without prior notice. Importantly, Adapt is run without any
prior knowledge of the target environment. It had to infer changes
solely based on observed transfer results, similar to how other
transfer-learning algorithms like RGPE operate. To avoid informa-
tion leakage, we excluded the three tested environments from the
training data (instead of just one), ensuring that the evaluation
was performed on entirely unseen conditions. Figure 8 shows the
throughput achieved in each phase. Adapt quickly adapts after each
environment change, recovering performance within a few itera-
tions and consistently suggesting high-performing configurations.
In contrast, RGPE fails to adapt effectively: it underperforms in the
initial environment, struggles severely in the bottleneck phase, and
only partially recovers in the final setting. This strong adaptability
is driven by Adapt’s dynamic weighting mechanism. We monitor
the prediction accuracy of each base model and updates its weights
based on recent feedback. As the environment shifts, outdated
models receive lower weight, allowing the ensemble to quickly
focus on more relevant behavior. While RGPE does incorporate
performance feedback, it struggles to adapt effectively to changing
environments, suggesting its mechanism is less responsive and less
capable of discarding outdated knowledge.

Key Insight 3. Adapt is able to adapt to changing conditions

substantially faster and more reliably than RGPE. The ability to rec-

ognize environment shifts from performance feedback and update the

weighting strategy accordingly enables Adapt to effectively handle

real-world, non-stationary workloads.

Robustness Across Data Systems. We evaluate the gener-
alization of our tuning approach across different data systems by
applying it to PostgreSQL-to-CSV transfers. This setup reflects prac-
tical use cases such as data lake ingestion or backups. PostgreSQL
has distinct performance characteristics due to query execution,
disk I/O, transactions, and resource contention within the data-
base. XDBC also uses a different physical implementation for the
PostgreSQL connector, particularly for how data is read and dese-
rialized, leading to different throughput patterns. These changes
are a representative test for generalization across systems with
different physical operators. To evaluate this setup, we generate
a training dataset using 50% random samples and 50% simulated
optimization runs. We determine the optimal throughput per en-
vironment using the same Bayesian Optimization procedure as
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before. Figure 9 shows the Best Found Throughput across algo-
rithms for PostgreSQL-to-CSV transfers. The relative performance
of the algorithms are consistent with our results in Figure 6.

Key Insight 4. Despite major system-level differences, Adapt

generalizes well when provided with representative training data,

maintaining strong relative performance compared to the baselines

across heterogeneous systems.

4.4 Micro-Benchmarks

To understand the behavior and design trade-offs of our tuning
approach, we present a series of targeted micro-benchmarks. These
benchmarks evaluate key properties of Adapt, including prediction
performance, efficiency, and generalizability.

Prediction Quality. As a first micro-benchmark, we evaluate
Adapt’s cost model’s predictive behavior by comparing predicted
and observed throughput values across environments. Figure 11
shows a scatter plot where each point corresponds to a single trans-
fer configuration. Colors represent different environments, and
X markers indicate the per-environment optimal throughput. Ide-
ally, accurate predictions should fall along the diagonal (perfect
prediction) and close to the corresponding X marker (high-quality
configuration for that environment).We observe both patterns: later
predictions (darker points) tend to align more closely with the diag-
onal, indicating improved accuracy as the model incorporates more
feedback. Many points also lie near their environment’s X, showing
that the model can effectively identify strong-performing configu-
rations across a range of conditions. Despite initially conservative
estimations, the model improves rapidly after a few iterations and
consistently converges toward optimal configurations. This bias is
favorable in practice, as it avoids overconfident predictions while
still discovering and evaluating high-performing configurations.

Key Insight 5. The cost model produces conservative and in-

creasingly accurate predictions that reliably guide the search toward

high-throughput configurations.

Figure 12: Algorithms Computation Times

Weighting Strategies. We further compare three different
weighting strategies in our ensemble cost model:

• Environment-basedWeights, which favor models of sim-
ilar environments and enable strong zero-shot performance;

• Update-based Weights, which adapt to recent prediction
errors and enable responsiveness to new conditions; and

• Dynamic Weighting as a combination of environment-
and update-based weights, which gradually shifts from en-
vironment similarity to feedback-driven reliability.

Figure 10 shows that environment-based weights perform best
initially, providing strong early configuration candidates. Update-
based weights improve steadily over time as feedback frommeasure-
ments accumulate. The dynamic strategy combines both behaviors,
starting with good performance and adapting quickly, and achieves
the highest overall performance.

Key Insight 6. The dynamic weighting strategy offers the best of

both worlds: reliable zero-shot performance in early iterations and

robust adaptation as tuning progresses.

Tuning Trade-offs. During tuning, algorithms incur computa-
tional overhead at three key stages: initialization, configuration sug-
gestion, and result update. Initialization can be costly for methods
that rely on historical data, as they must ingest and train surrogate
models. Suggesting a new configuration involves search and infer-
ence, where the runtime mostly depends on the model complexity.
Finally, updating the model with new results adds additional over-
head, which is typically very small though. Figure 12 reports the
mean time of the individual phases of different baselines. Adapt
is quick at initialization (under 1s on average), achieving a 10×
speedup over RGPE and Quantile. Furthermore, Adapt also offers
fast configuration suggestions (0.08s), which is close to Quantile
(0.003s) and faster than Bayesian Optimization (0.17s) and RGPE
(1.4s). Model update times are low across all methods, with negligi-
ble impact on overall overheads, especially compared to executing
data transfers with the selected configurations.

Key Insight 7. Adapt has low overhead across all tuning phases,

making it a versatile method and efficient enough for time-constrained

tuning algorithms and deployments.

Data Efficiency. Since executing real data transfers is costly,
it is important to understand how much training data is needed
for Adapt to perform well. We evaluate this aspect by varying
the number of training samples per environment: 100, 200, 400,
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and 600. Figure 13 illustrates the resulting performance. These
results show that more training data improves initial performance,
with noticeable gains up to around 400 samples. Beyond that point,
improvements are minimal, indicating diminishing returns. Notably,
even with only 100 samples, the model quickly recovers after a few
iterations as it incorporates online feedback.

Key Insight 8. Adapt is data-efficient, achieving strong perfor-

mance with moderate sizes of the training dataset, and quickly adapt-

ing when initial data is limited.

4.5 Online Tuning

The previous experiments focused on inter-transfer optimization,
where configurations are selected before a transfer begins. How-
ever, real-world scenarios such as streaming pipelines or large file
transfers often benefit from adapting parameters during execution
in response to fluctuating resources. This characteristic motivates
intra-transfer (online) tuning, where parameter adjustments are
made dynamically while the transfer is in progress. XDBC currently
supports online reconfiguration for a limited set of parameters, in-
cluding component parallelism and compression. Although work
to support other parameters (e.g., network parallelism, buffer sizes)
is ongoing, we evaluate our method in this constrained setting.

Intra-transfer Progress. For this experiment, we modified our
tuning loop to initialize the transfer with a starting configuration,
then update it every 3 seconds based on recent performance. Each
update involves passing the latest metrics to the tuning algorithm,
which updates its model and selects a new configuration within
the restricted search space. We used the TPC-H lineitem table at
scale factor 100 (77 GB) to ensure transfers were long enough for
multiple updates, and averaged the results over threes transfers
per environment across 9 environments. Figure 14 shows transfer
progress over time, where steeper curves indicate faster comple-
tion. Adapt consistently outperforms both Bayesian Optimization
and Random Search, completing transfers in less time across all
environments. While the performance gap is smaller than in the
inter-transfer setting (cf. Figure 6), our method remains the most
effective overall, even with limited reconfiguration support.

Key Insight 9. Adapt effectively adapts during transfer execution,
making it suitable for online, intra-transfer tuning scenarios, even

with limited reconfigurability.

5 RELATEDWORK

Our Adapt is related to general data transfer optimizations, ML-
based knob tuning in databases, as well as learned cost models.

Data Transfer Optimization. Prior work has explored meth-
ods to automate data transfer parameter configurations in various
settings. HARP [4] combines historic data analysis with real-time
probing, using polynomial regression to predict throughput for
application-layer parameters and their iterative refinement. Nine et
al. [15] similarly separate the process into offline and online phases:
the offline stage clusters historic data using K-means++ and fits
polynomial surfaces, while the online stage leverages these surfaces
for guided sampling and prediction. Both approaches focus on a
narrow set of network-level parameters and use simple models, in
contrast to Adapt’s broader scope and learned ensemble model.
Moreover, these existing approaches are not integrated into data
connectors, preventing them from optimizing data loading or trans-
formation stages. Sapkota et al. [21] propose a real-time genetic
optimization algorithm across a broader parameter space, including
read, write, and network threads—similar to our setting. However,
the reliance of this approach on live exploration with small config-
uration populations limits the initial performance because strong
starting configurations (informed by prior data) are lacking.

Machine Learning for Data Systems. The complexity and
high dimensionality of modern data systems have motivated ML-
based tuning approaches to replace the tedious manual knob config-
uration and tuning. OtterTune [25] uses runtime metrics to charac-
terize workloads, applies lasso regression to rank impactful knobs,
and leverages Gaussian processes to recommend DBMS configura-
tions based on historical data from similar workloads. Peloton [16]
proposes a broader autonomous DBMS architecture, using DB-
SCAN for workload classification and recurrent neural networks
for workload forecasting, which feed into a planning component for
optimizing system performance. Both systems use machine learn-
ing to automate DBMS tuning, relying either on workload similarity
or internal feedback loops, but do not target the transfer-specific
optimization problem Adapt addresses. ProteusTM [7] frames the
problem of choosing a transactional-memory algorithm as a recom-
mendation task to improve application performance. They create
a workload-configuration utility matrix in offline training using
collaborative filtering, and use it to guide the online search of a
Bayesian Optimizer. While this approach allow to quickly arrive
at high performing configurations with few online iterations, it is
missing the cross-environment transfer-learning ability which is a
crucial component of our Adapt approach.

Learned Cost Models. As more accurate and adaptive alterna-
tives to traditional analytical cost models, existing work introduced
learned cost models, particularly in query optimization. CLEO [23]
uses an ensemble of Elastic Net regressors—some specialized for
operator subgraphs, others generalized by operator type—and com-
bines them using a FastTree Regression meta-model trained to
choose the best predictor per case. CLEO continuously retrains its
models on observed plan execution logs to remain adaptive. Hil-
precht et al.’s Zero-Shot approach [12] tackles generalization to
unseen databases using a GNN-based cost model trained across di-
verse databases. Their model takes database features and query plan
encodings as input, with optional fine-tuning for specific deploy-
ment targets. Both works demonstrate the effectiveness of ensemble
learning and feedback-driven adaptation, which we extend to the
domain of transfer parameter tuning in Adapt.



6 CONCLUSIONS

Optimizing data transfer parameters in dynamic, distributed sys-
tems remains a major challenge, with a direct impact on the perfor-
mance of data-intensive applications. The large configuration space
and fluctuating system conditions render manual tuning infeasi-
ble, and existing heuristic methods lack the adaptability needed
in practice. In this paper, we presented Adapt, a data- and ML-
driven approach for automatically tuning transfer parameters in
the XDBC framework. Our contributions include an environment-
aware ensemble cost model that combines prior knowledge and live
observations through a dynamic weighting mechanism. To select
the next configuration, we proposed an efficient two-phase search
strategy that leverages Latin Hypercube Sampling, batch predic-
tion, and search space pruning. Through extensive experiments, we
showed that Adapt consistently outperforms the existing heuris-
tic optimizer, as well as standard black-box optimization methods
like Bayesian Optimization, and transfer learning baselines such
as RGPE. Adapt achieves higher data transfer throughput and
adapts substantially faster to environmental changes, including
sudden bandwidth bottlenecks. We also analyzed the training run-
time and data efficiency, demonstrating low overhead and strong
performance even with limited training data. Future work includes
extending the full support for online tuning of live transfers, which
would further enhance responsiveness. Incorporating richer envi-
ronment and data characteristics into the weighting mechanism
may also improve adaptation. Overall, Adapt offers a practical and
effective solution for tuning data transfer parameters, demonstrat-
ing strong performance across diverse conditions and workloads.
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