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ABSTRACT
Learned indexes are strong competitors to classical indexes like
B+-trees due to efficient query performance and low space utiliza-
tion. They operate by replacing the internal nodes of the index
with a hierarchy of machine learning models that capture the data
distribution. However, to achieve high accuracy, learned indexes
store a copy of the underlying data in sorted order. This restricts
their space efficiency to the internal nodes of the index, that occupy
only a minor fraction of the index’s overall memory footprint.

In this work, we explore space-efficient mappings between the
sorted and the physical order of the data usingWavelet Trees (a suc-
cinct data structure to represent permutations of symbols). We first
evaluate the Integer Wavelet Tree (IWT), a Wavelet Tree adapted
to the integer domain (to capture physical-to-sorted order permuta-
tions). While IWT drastically reduces the memory footprint of the
mapping, it incurs a high access cost due to increased cache-misses
as a result of its two-branched design. We then design and evaluate
a Wavelet Tree with increased fanout, termed T-way IWT, and dis-
cuss its tradeoffs. Our analysis shows that although Wavelet Trees
fall short as permutation mappings, they help identify the proper-
ties needed to balance fast lookups with low memory footprint in
structures that map permutations for learned indexes.
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1 INTRODUCTION
Indexing data structures are widely used in data systems due to their
ability to offer fast access to the underlying data [6, 11]. Classical
indexes like B+-trees offer efficient point and range lookups by
maintaining data in sorted order within their leaf nodes. However,
B+-trees do not account for inherent data distribution, resulting in
redundant effort and sub-optimal space utilization [25, 26].
Learned Indexes [17] replace traditional index nodes with a hierar-
chy of machine learning models. They capture the underlying data
distribution through lightweight functions – for example, linear
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Figure 1: Representation of the model for sorted-to-physical
mapping. A learned index predicts the sorted position of a
query key 𝑘 , which a sorted-to-physical mapping (tradition-
ally a vector [15]) translates into a physical disk position.

regression [17] – and allow constant-time lookups when compared
to logarithmic access cost in B+-trees. However, learned indexes
require data to be stored in a sorted order, or to store a mapping
between the sorted data and its physical order. As a result, learned
indexes were originally proposed as read-only structures [9, 17].
Storing a copy of the data also limits the advantages in space-
efficiency to only the internal nodes, which often occupy only < 1%
of the overall index footprint [22].
Challenge: Large Size of the Sorted-to-Physical Mapping.
Achieving high space-efficiency while supporting efficient lookups
as envisioned by learned indexes requires either the data to be
always in sorted-order on base storage, which is not practical,
or a compressible mapping – a permutation between the sorted
and physical order of the data – that can be used to build the
learned index. Learned Secondary Index (LSI) explores this set-
ting with a simple approach by storing the permutation as an ar-
ray - however, this can get prohibitively large as data grows [15].
While theoretically, storing a permutation of 𝑛 entries requires
log2(𝑛! ) ≈ 𝑛 log2 𝑛 − 1.44𝑛 bits to uniquely identify any permu-
tation, prior work that come close to achieving these bounds are
not practically constructable [20]. Ideally, we would like to build a
mapping that preserves space efficiency of the learned index, while
offering comparable lookup performance to the state-of-the-art.
For example, to be comparable to B+-trees, the lookup cost of the
learned index (LI in the equation) combined with that of the map-
ping structure bounded by the error from the hierarchical learned
models must not exceed the cost of probing the B+-tree.

(1)LI_probe + 𝑙𝑜𝑔2(error) ·mapping_access ≤ B+-tree_probe

Assuming error to be 32 positions (𝑙𝑜𝑔2(32) = 5), a high-level per-
formance goal is: mapping_access ≤ B+-tree_probe/5.
Leveraging Data Sortedness to Reduce Mapping Size. Real-
world datasets like time series, logs, and spatial records often exhibit
partial order or near-sortedness within the data [3, 23, 26]. Prior
work proposes sortedness-aware alternatives to classical indexes
that in addition to improving ingestion performance, also improve
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space efficiency in the index by tightly packing entries that arrive
sorted during ingestion [25, 26]. The recent interest in exploiting
data sortedness in indexing, combined with our need to produce a
compressible mapping for a permutation of the data order leads us
to explore the following question:
Can we exploit sortedness in the underlying permutation to build a
mapping structure that improves both space and access efficiency?

For instance, sorted and near-sorted data exhibits predictable pat-
terns that enable better compression [27]. Bitmaps exploit this order,
to store data in compact representations [18], using techniques like
Run Length Encoding (RLE) to compress long sequences of 0s or
1s by storing just the symbol and its count. Modern bitmap en-
codings [5, 8, 13, 14, 18, 19, 29] use these patterns to compress
data efficiently [28], but they do not capture entire permutations.
Wavelet Tree is a succinct data structure that is designed to rep-
resent permutations with a small memory footprint [10, 12, 21].
They hierarchically decompose permutations into multiple levels
of bitmaps, which can be effectively compressed, especially for
ordered and partially ordered data [21].
Evaluating Wavelet Trees as Permutation Representation. In
this paper, we first study the performance of the Integer Wavelet
Tree (IWT) - a Wavelet Tree adapted for collections of unique inte-
gers, similar to what is needed for representing permutations. Our
analysis shows that IWT is highly compressible for high degrees of
sortedness and significantly reduces the space occupied. Yet, the
tree has more levels when compared to a B+-tree as a result of
its binary branching factor, leading to high access costs. We then
evaluate T-way IWTs that increase the fanout. T-way IWTs when
combined with a learned index like RadixSpline [16] consume 46%
lower memory on average than B+-trees while improving lookup
performance by 12%. We explore the space-time tradeoff between
2-way IWT and 𝑇 -way IWT and highlight that as we increase the
fanout, we improve access latency but fail to optimize the memory
footprint in the presence of near-sortedness. Our study lays the
groundwork for space-efficient mappings for learned indexes, and
concludes with an initial design termed constellation maps.
Contributions. Our work offers the following contributions:
• We identify data sortedness as a resource that we can exploit

when mapping the input data to its sorted order.
• We identify Wavelet Tree as a potential candidate for the sorted-

to-physical order mapping with learned indexes.
• We propose Integer Wavelet Trees (IWTs) and study their

lookup performance and size when varying data sortedness.
• We show that IWT uses 84% less space than B+-trees and 38%

less than LSI, but is several orders of magnitude slower.
• We extend IWTs to the T-way IWT by increasing the branching

factor, improving lookup performance at the expense of space.
• We show that the T-way IWT combined with RadixSpline offers

12% faster lookup at 46% smaller footprint than a B+-tree.
• We identify inherent performance challenges in the design of

the T-way IWT and introduce an initial design of constellation
maps as an alternative succinct mapping.

2 BACKGROUND
Learned Indexes use a collection of machine learning models to
capture the data distribution of the underlying data and efficiently
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Figure 2: The permutation vector maps the sorted keys to
their actual physical positions in the base data.

predict the position of a given key. To do so, learned indexes often
impose an underlying restriction for the data to be sorted, which can
be addressed by mapping the sorted to the physical data positions.
Learned Secondary Indexes overcome the limitation of main-
taining the underlying data in sorted order by applying learned
indexes in a secondary index setting for unsorted in-memory in-
teger data [15]. LSI uses a Hist-Tree [7] with the RadixSpline [16]
to provide a search range in sorted keys for a given access key. An
array maps the sorted range to the unsorted base data, forming a
key part of LSI - the permutation vector, as shown in Figure 2. While
LSI achieves fast query performance, the permutation vector grows
quite large in size, becoming proportional to the original data.
Wavelet Trees [21] can alternatively substitute the permutation
vector from LSI, offering equivalent operations with a lower mem-
ory footprint. Wavelet Trees are binary tree structures that com-
pactly represent a sequence of symbols over a range of alphabets,
supporting efficient queries. It recursively divides the input domain
into two subsets at each internal node, with entries mapped to the
left child (represented by 0) or to the right child (represented by
1). This process is repeated until each leaf corresponds to a unique
symbol, while maintaining the original order within the sequence.
Wavelet Trees support queries through two operations: (i) 𝑟𝑎𝑛𝑘𝑥 𝑖 ,
that calculates the count of x’s till position 𝑖; and (ii) access(i), that
determines what value lies in the tree at position 𝑖 .
Sortedness-Aware Indexing exploits inherent data near-sortedness
to accelerate ingestion and reduce memory footprint [25, 26]. Our
work is inspired by sortedness-awareness in terms of reducing
memory footprint without sacrificing performance.

3 THE 2-WAY INTEGERWAVELET TREE
We now present the 2-way IWT architecture. We first extend the
Wavelet Tree to the integer domain as the Integer Wavelet Tree,
then show how to exploit its structure to reduce memory footprint.
Wavelet Trees for Unique Integers.We extend Wavelet Trees
to the unique integer context by treating our permutation space as
the alphabet range. Since the Wavelet Tree is built directly over the
permutation vector holding entries from 0 to 𝑁 − 1 (Figure 2), there
are no repeated symbols, and we never store the actual integer keys
at the leaves as the permutation already creates a fixed ordering
of all 𝑁 entries. Each subtree within a level of the IWT works
on a known, contiguous range of integers. We partition the range
using a pivot value, which is usually the middle element of the
range. Recursive partitioning of the permutation creates a natural
hierarchical structure in the IWT that can be exploited to improve
both compression and query performance.
Removing Redundant Leaf Levels. Since the Integer Wavelet
Tree is built over the permutation (𝑝) of 𝑁 distinct entries, the
leaf level is always a sorted sequence from 0 to 𝑁 − 1, and can
be removed; we use the bit pattern at the penultimate level to
determine directly the position at which the value 𝑝[𝑖] (the value
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Figure 3: In the Integer Wavelet Tree, built on a permutation
of 6 entries, the last level is a sorted sequence of these entries
and can be implicitly determined.

at index 𝑖) would appear at the leaf. A simple left-to-right traversal
at the leaf level till this position retrieves the desired value. For
example, in Figure 3, consider the highlighted subtree at level 2.
Here, since the bit 0 occurs after the bit 1, we know their
relative positions will be swapped at the next level. Therefore, the
entry initially at index 4 moves to its correct position at index 3 in
the implicit leaf level, which matches its left-to-right ordering.
Level-wise Flattened Representation. Next, we store the 2-way
IWT in a flattened structure, inspired by theWavelet Matrix [4, 21].
A key difference in our design is that each level stores 𝑇 partitions
(not only two), and there is no need for extra array metadata. In this
form, the nodes of a level are concatenated into a level-wise vector
(a bitvector when𝑇 = 2 and a collection of bitvectors representing a
bit-packed integer vector as several bit-sliced bitvectors for 𝑇 > 2)
that can be compressed, reducing pointer overhead and improving
cache locality, while supporting constant-time queries.
Limitations of the 2-way IWT. The above optimizations, com-
bined with efficient bitmap encoding, result in a small memory
footprint in 2-way IWT, however, they are inefficient during access
operations, as shown in Table 1. While 2-way IWT occupies a sig-
nificantly smaller memory footprint (up to 11×), we observe that
its average access latency is at least 14× slower when compared
to a sortedness-adaptive B+-tree-based index (QuIT) [25]. A major
reason for this difference is poor cache behavior. In a B+-tree with
fanout 𝐵, each node fits into a cache line or page, so a lookup incurs
only 𝑂(log𝐵 𝑁 ) cache misses. However, IWT splits the domain in
two at every level, spreading lookups across separate bit-vectors,
and causes ≈ log2 𝑁 cache misses. Our goal in Eq. (1) is that the
mapping access cost should be a fraction of the B+-tree’s access cost:
mapping_access ≤ B+-tree_probe/𝑙𝑜𝑔2(error). To achieve this, we
propose a higher-fanout IWT design in the next section.

𝐾
Integer Wavelet Tree B+-tree-variant (QuIT)

Access (ns) Size (MB) Access (ns) Size (MB)

0 14× 0.09× 442 138
3 34× 0.11× 443 188
5 43× 0.13× 435 201
25 43× 0.21× 432 211
50 45× 0.22× 446 223

Table 1: Comparative analysis of access speed and cost as the
degree of sortedness is varied for the IWT and QuIT.
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Figure 4: A 4-way IWT, is represented using 4 symbols. The
leaf level is implicitly determined, using the order of the
symbols from the penultimate level.

4 THE T-WAY INTEGERWAVELET TREE
We now improve lookup efficiency by increasing the IWT fanout
to 𝑇 > 2, resulting in fewer levels and, thus, fewer cache accesses
per lookup. We call this the T-way IWT.
Design Challenges. Increasing the fanout to 𝑇 , eliminates the
simplicity of binary encodings at each level (i.e., unable to use
bitvectors anymore). For a T-way IWT, there are 𝑇 representative
symbols at each level. We divide the input at each level into 𝑇
percentile-based ranges, assigning one range to each of the 𝑇 sub-
trees corresponding to the symbol at that level. To access a value,
we need to scan each level to calculate the rank of any of the 𝑇
symbols, resulting in increased access cost. We next present an
example T-way IWT and discuss methods to improve its efficiency.
Example of a 4-way IWT. Figure 4 demonstrates an example
T-way IWT with 𝑇 = 4 and 16 entries ranging from 0 to 15. Entries
at each level are represented with symbols 0–3, for four percentile-
based partitions. At level one, entries [0 . . . 3] map to symbol 0,
[4 . . . 7] to symbol 1, [8 . . . 11] to symbol 2, and [12 . . . 15] to symbol
3. These symbols represent relative positions, determining precise
positions of the entry in the next level. At the second level, each
subtree from the first level maintains the original relative order of
entries. For example, since entry 14 precedes entry 12 originally,
this order is maintained in the rightmost subtree. Subtrees at this
level are again partitioned into four percentile groups. Following
Section 3, the T-way IWT does not explicitly store leaf-level entries.
Optimizing Access by Caching the Ranks. To improve perfor-
mance during access, calculating the rank should be fast - ideally
a constant time (𝑂(1)) operation. One way to do this is to precom-
pute and store rank values so that, during access, we can directly
retrieve the required rank without scanning. However, storing the
rank for all symbols at every position in each level incurs a high
space overhead. Instead, we only store the rank of the observed
symbol at each position. For example, while building the data array
for level 𝑙 , if the symbol at position 𝑖 is 𝑠 , we store the cumulative
count of 𝑠 at position 𝑖 in the corresponding rank array for level
𝑙 . Count of all 𝑇 symbols are reset at the start of each subtree. In
this approach, each index 𝑖 in the data and rank arrays remains
synchronized, while significantly reducing the memory footprint.
Optimizing Cache Misses Through Word Alignment. To im-
prove lookups, we leverage CPU word alignment that takes advan-
tage of how modern CPUs fetch and process memory in fixed-size
word units. Aligning data structures to CPUwords reduces the num-
ber of memory accesses (cachemisses) and exploits faster cache-line
reads, improving performance [1, 19]. We explore two techniques -
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the first approach bitpacks the data at position 𝑖 and its correspond-
ing rank into a single 32-bit word, allowing both data and rank to
be fetched together in a single memory access. However, it results
in wasted space if the combined data and rank do not consume
all 32 bits, or worse, split the data in cases where the combined
size exceeds 32 bits. For example, in a 256-way IWT, with each
data symbol requires 8 bits. With approximately 16 million entries,
the maximum cumulative count in any sub-tree is approximately
16M/256 = 65000, and fits within 16 bits. Packing both values into
a single word requires only 24 bits, leaving 8 unused bits per entry.
Reducing Unused Space through Tight Bitpacking. To circum-
vent unused space, we pack the data and rank arrays separately
into 32-bit words. While this may increase CPU cache misses, we
address it by pre-fetching the rank for position 𝑖 before computing
the position at the next level. With this approach, for the same
example, we pack four data symbols per 32-bit word, and two rank
values (each 16 bits) in another word, as the maximum cumulative
count is around 65K. At deeper rank levels, the data is further sub-
divided, so rank values become smaller (65K is further divided into
256 divisions requiring only 8 bits), which can be more efficiently
packed. Our experiments show that this method performs as well
as the first method, while providing better space utilization.
Optimizing Space by Filtering Rank Storage. Although the
optimization techniques, alongwith higher branching factors, prove
to be almost two orders of magnitude faster in terms of query latency
than the Integer Wavelet Tree (10𝜇s versus 100ns as shown in
Table 1 and Figure 5), the 256-way IWT occupies more than 2×
space compared to the binary variant, primarily due to the extra
rank matrix and extension to integer values. In our design, we
store a rank value for every entry in the data matrix. An effective
optimization is to remove the rank matrix for the last level, since
each partition at that level corresponds to a unique symbol. This
implies that the rank matrix for Figure 4, only holds one level
corresponding to level 0, and no ranks for level 1.

We further reduce the cost by selective rank storage at regular
intervals - e.g., for every 𝑥 entries. To practically implement this,
there are two key changes required: (i) selecting an appropriate
value of 𝑥 , and (ii) storing the cumulative counts for all 𝑇 symbols
at each sampled position 𝑥 , since the rank and data arrays are no
longer aligned at every position. To make this structure space effi-
cient,𝑇 must be significantly larger than 𝑥 . For example, with𝑇 = 4,
if we store rank values every four entries, then at each sampled
point we must store counts for all four symbols, providing no space
benefit over the original design. Next, we study the implications of
each design decision.

5 EVALUATING T-WAYWAVELET TREE
Now, we analyze the performance of the T-way IWT when varying
data sortedness and compare its lookup performance and space-
efficiency against the B+-tree, aswell as the state-of-the-art sortedness-
adaptive B+-tree variant in QuIT [25]. Our code is available at
https://github.com/BU-DiSC/wavelet-tree-mapping.
Experimental Setup. We run experiments in our in-house server
equipped with two Intel Xeon Gold 6230 processors with 40 cores
and 375 GiB of RAM, running Rocky Linux 8.10. All implementa-
tions are written in C++20 and compiled with𝑚𝑎𝑟𝑐ℎ = 𝑛𝑎𝑡𝑖𝑣𝑒 .
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Figure 5: Increasing the branching factor in Wavelet Tree
allows faster access operations. Further, lookups are faster
when data exhibits inherent sortedness. Overall, Wavelet
Trees offer faster access compared to a B+-tree.

Data Setup. We benchmark our designs using the data generator
from BoDS to produce integer keys with varying sortedness [24].
BoDS parameterizes sortedness through a combination of two pa-
rameters - 𝐾 captures the number of unordered entries and 𝐿 the
maximum displacement of the unordered entries. We generate ap-
proximately 16 million integer keys with the following degrees of
sortedness: fully sorted (𝐾 = 0, 𝐿 = 0) , near-sorted (𝐾 = 3, 𝐿 = 3),
less sorted (𝐾 = 25, 𝐿 = 25), and scrambled (𝐾 = 100, 𝐿 = 100).
Index Setup. We compare our designs of the T-way IWT against
the B+-tree used in prior work [25] with a block size of 4 KB and
each leaf node holding 510 entries. For the learned index, we use
a modified version of RadixSpline [16]. The 2-way IWT employs
Roaring Bitmaps that intelligently optimize storage by analyzing
block-level data patterns, and improve access performance due to
their cache-friendly layout and optimized encoding [19]. For𝑇 > 2,
we leverage CPU word alignment as discussed in Section 4. Only
the 256-way IWT stores data and rank separately. We use 8 bits
per key and 16 bits for rank at the first level. The number of bits
required decrease by powers of two at subsequent levels for the
rank as the levels are recursively partitioned.
Integration with Learned Indexes. The overall solution works as fol-
lows: every query key 𝑘 first probes the learned index (i.e., Radix-
Spline) that predicts a range of positions in the permutation, within
reasonable error bounds. We follow up with a binary search on the
predicted positions to return the physical position of the entry. Each
binary search uses the T-way IWT that maps the sorted-to-physical
positions of the data by performing an access operation.
Increasing the Branching Factor Reduces Access Cost. First,
we observe in Figure 5 that as we increase 𝑇 for the T-way IWT,
the access latency decreases, irrespective of data sortedness. For
example, the 16-way IWT performs ≈ 2× better than the 4-way
IWT, the 64-way IWT ≈ 1.6× better than the 16-way IWT, and
then 256-way IWT ≈ 2× better than the 64-way IWT. All T-way
IWTs with 𝑇 ≥ 4 significantly outperform the B+-tree, with the
256-way IWT having at least 4.4× faster access latency, inline with
our initial goal from Eq. (1). Storing ranks for every element in the
T-way IWT allows direct access without a linear scan, but increases
memory footprint significantly. Particularly, a bit-packed 256-way
IWT for 16M entries occupies 100.66MB without any compression.
Storing Rank at Intervals Reduces Space. Next, we explore the
space-time tradeoff when storing ranks at specific intervals rather
than for every entry in Figure 6. We test the performance of the
256-way IWT when storing the rank at intervals of 512, 1024, and
2048 entries in the first level, where the cumulative counts of each
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Figure 6: Access latency and size of the 256-way IWT with
selective rank storage. (a): Bars 1–3: only first-level ranks
stored every 𝑥 entries, while we fully store the second level;
Bars 4–5: stores at intervals (𝑥1×𝑥2) for first and second levels.
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selective rank storage versions. On the x-axis, first we denote
the selectivity at the first level, followed by the selectivity at
the second level below.
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Figure 7: Access latency and size of theHRLE enabled 256-way
IWT with varying degrees of sortedness. HRLE effectively
reduces the size of the structure, but induces a trade-off by
increasing latency during lookup operations.

symbol in the tree are highest. That is, for 16M entries, the first
level is partitioned into 256 subtrees, each holding a maximum of
𝑁 /𝑇 = 16𝑀/256 = 65𝐾 entries (requiring 16 bits to store the rank).
Subsequent levels partition each subtree in 256 ways recursively;
so, each subtree in the second level holds 65𝐾/256 = 256 entries
(requiring only 8 bits). We observe that storing ranks every 1024
entries reduces space requirements with a modest increase in access
cost, since we now need additional rank calculations within each
interval. This overhead is beneficial at the first level of the T-way
IWT but extending it deeper is counterproductive, since rank sizes
shrink with each level (shown through bars 4-5 in Figure 6a since
number of bits required to store the rank decreases as the tree is
recursively partitioned by a factor of 𝑇 . Figure 6b illustrates the
effect of this selective rank strategy on space. Storing ranks every
512 entries in just the first level results in ∼ 20% reduction in overall
tree size. For ranks stored every 1024 entries, we observe nearly
∼ 25% space savings with only a modest performance impact, and
this trend follows to rank storage for every 2048 entries. However,
storing ranks sparsely at deeper levels is not beneficial. Figure 6b
shows when ranks are stored every 1024 entries at level 0 and every
512 entries at level 1, there is almost no gain in space, compared
to storing selective ranks only at level 0. Storing ranks every 1024
entries for both levels, saves ≈ 10MB in space, at almost double the
access cost compared to the baseline 256-way IWT. We selectively
evaluate deeper-level rank sparsity for the case where level 0 uses
a 1024-interval as this strikes a practical space-time balance for
our experiments. When the interval is too large, access latency in-
creases significantly due to the need for in-block rank computation;
when the interval is too small, the benefits of selective rank storage
are offset by increased overhead. From our experiments, we ob-
serve that rank sparsity is only effective when applied judiciously
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Figure 8:Wavelet Trees navigate a space-time tradeoff.While
the 2-way IWT achieves good memory efficiency, it leads to
more cache misses, whereas modifying the design to the
256-way Wavelet Tree implies increasing storage overhead to
handle efficient accesses in a more complex structure.

to higher levels of the tree, where storing rank values occupies
substantial space.
Compression Trades Memory Footprint for Lookup Latency.
Since each level of the 256-way IWT is stored as a collection of
bitvectors, there is an opportunity to exploit bitvector compression
schemes. We implement a Roaring bitmap-inspired approach that
divides data into 128-element blocks, applying Run Length Encod-
ing (RLE) where beneficial. If the overhead of using compression
is higher, we fall back to bit-packed storage. Figure 7 compares
the access cost and size of the Hybrid RLE based approach with
the bit-packed 256-way IWT. We observe that while employing
compression induces an overhead in access latency of almost 35%
on average, it achieves roughly 30% reduction in memory foot-
print for sorted and near-sorted data. This level of space savings is
significant, especially given that storage-efficient encodings often
come at the cost of much higher access latency. The average access
operation adds approximately 20ns per access, which appears mod-
est; however, this cost becomes more pronounced when executing
multiple lookups for a range that is provided by a learned index,
where one index lookup involves multiple access operations in the
T-way IWT. In these cases, the cumulative delay adds up to several
hundred nanoseconds, impacting overall query latency in practice.
Designing T-way IWT Involves a Space-Time Tradeoff. Fig-
ure 8 compares the access latency and memory footprint of 256-way
IWT employing each of its optimizations, when compared to the 2-
way IWT, the B+-tree and QuIT. The 256-way IWT outperforms the

Sortedness
LSI 256-way IWT 2-way IWT

Size Access Size Access Size Access
MB ns vs. LSI vs. LSI

Scrambled 51 79 1.96× 4.6× 0.98× 1696×
Less Sorted 51 74 1.96× 4.2× 0.88× 1486×
Near Sorted 51 64 1.96× 4.8× 0.25× 1266×
Sorted 51 65 1.96× 4.9× 0.24× 1769×

Table 2: 2-way IWTs have a smaller memory footprint than
LSI, being up 0.24× smaller in the presence of sortedness,
however, access latency is several orders ofmagnitude higher.
256-way IWTs improve access latency by three orders of mag-
nitude, but they cannot outperform LSI and they are always
2× larger than LSI, losing also the space benefits of IWTs.
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Figure 9: A visual representation of Constellationmap where
the points 𝑝0 to 𝑝4 are mapped to two lines 𝑙1 and 𝑙2.

2-way IWT as a result of its larger fanout, while being 1.17× on av-
erage faster during lookups when compared to B+-trees and 1.14×
faster than QuIT. The 256-way IWT uses on average 2.36× and 2×
less memory than the B+-tree and QuIT, respectively. However, the
2-way IWT remains the most space-efficient. The 256-way IWT’s
footprint grows because it stores ranks for faster access. Ideally, we
want our structure to dominate in both size and access latency —
i.e., to be in the bottom left of the figure (marked in green).
Wavelet Trees are not Enough. In our last experiment, we com-
pare 2-way IWTs, 256-way IWTs, and LSI, as show in Table 2. We
observe that, while Wavelet Trees can, in principle, reduce the
memory footprint of the permutation mapping – especially in the
presence of some degree of data sortedness – they fall short in terms
of access efficiency. Despite optimizing access latency by three or-
ders of magnitude with the 256-way IWTs, they cannot outperform
LSI, while also losing the edge in terms of memory footprint. In
practice, designing a permutation data structure with a low number
of cache misses per access and a small memory footprint remains
an open problem. Our analysis with Wavelet Trees motivates our
exploration of alternative approaches, which we discuss next.

6 DISCUSSION AND FUTUREWORK
Handling Updates. Although the IWTs provide significant space
savings for static mappings, updates can be expensive. An update
operation requires inserting the new entry and rebalancing or re-
building the tree. Hence, we introduce an alternative approach to
permutation mapping that aims to handle data changes more effi-
ciently while maintaining access performance and compactness.
Constellation Maps. We outline an alternative design that rep-
resents the permutation as points on a 2-D plane. We term this
design constellation maps. Given a permutation vector 𝑝 , we can
represent each element at index 𝑖 as a set of the form (𝑖 , 𝑝[𝑖]). To
achieve compact representation, we map multiple points to a line
if the point either lies exactly on that line or at a distance 𝜀 from
it. In our current implementation, 𝜀 is within 256 positions (from
-127 to +128), so the error fits within a byte. We store each line
using a set of slope-intercept pairs and for each point, we store
its corresponding line index, as well as its deviation (i.e., its er-
ror) from the line. We represent a basic structure of the idea in
Figure 9. Suppose our line generation algorithm produces 𝐿 lines
in total. We store these 𝐿 lines in a line_array as slope-intercept
pairs (𝑚, 𝑐), where each pair is a set of two 32-bit floats (one for
slope𝑚, one for intercept 𝑐), for a total of 64 bits per line. In the

example, 𝐿 = 2, so line_array occupies 128 bits. The point-to-line
mapping is a set of two values (idx, err) - the first is the index to
the line_array where the point is mapped to, and the second is the
deviation. To encode each 𝑖𝑑𝑥 , we need ⌈log2 𝐿⌉ bits and ⌈log2 𝜀⌉
bits to encode the error. For 𝑁 points, when 𝐿 = 2 and 𝜀 = 256, we
use 64𝐿 + 𝑁 (⌈log2 𝐿⌉ + ⌈log2 𝜀⌉) = 128 + 9𝑁 bits.

This structure, while being comparable in size to the most space-
efficient Wavelet Tree, can achieve extremely low latency lookups
in the secondary index setting. A key challenge is finding an optimal
set of lines to cover all points — which is harder than a traditional
set cover since the lines are not known in advance and must be gen-
erated on the fly. This imposes significant theoretical and practical
complexity, which we leave for future work.

7 RELATEDWORK
Prior work on space-efficient representations of permutations and
sequences has explored trade-offs between compressibility and
access efficiency. The Wavelet Tree was originally designed for
compressed text indexes and later adapted for compact sequence
storage. Subsequent variants extended these ideas to propose fully-
compressed sequence representations, which achieve better com-
pression by exploiting monotonic subsequences, but are not opti-
mized for permutation access [12]. Variants like Benes networks
achieve space-optimal permutation representations with 𝑂(log𝑛)
inference time, but their construction is impractical due to expo-
nential cost. While this study focuses on computing powers of per-
mutations, our work focuses on efficient single-pass evaluation [2].
Munro et al. [20] build succinct representations of permutations
that support both forward and inverse queries using near-optimal
space. However, these methods either do not compress well, do not
adapt to data sortedness, or are impractical to construct for large
real-world permutations. We bridge this gap by evaluating practical
wavelet trees as permutation mappings for learned indexes with
varying data sortedness.

8 CONCLUSION
Learned Indexes envision efficient lookups supported by high space
efficiency, in addition to adapting to data distribution to replace
traditional indexes. However, achieving this requires a mapping
between the sorted and physical order of the indexed data. We
explore Wavelet Trees as a potential candidate for this mapping, as
they can adapt to data sortedness to achieve high compression and
low memory footprint. Our study on Wavelet Trees in the integer
domain through IntegerWavelet Tree, as well as an improved design
through the T-way IWT show that the structure when combined
with a learned index like RadixSpline achieves comparable lookup
performance to state-of-the-art B+-trees with a significantly lower
memory footprint. Yet, there exist performance challenges when
navigating the space-time tradeoff in these designs. Our study lays
the groundwork for further research on space-efficient mappings
that can be combined with learned indexes to achieve fast lookups.
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