
Inferring Missing Data Lineage Links from Schema Metadata
Using Transformer-Based Models (Regular Paper)

Maciej Brzeski
Faculty of Mathematics and Computer Science

Jagiellonian University
Informatica

Kraków, Poland
maciej.brzeski@doctoral.uj.edu.pl

Adam Roman
Faculty of Mathematics and Computer Science

Jagiellonian University
Kraków, Poland

adam.roman@uj.edu.pl

ABSTRACT
Data lineage inference is essential for understanding and managing
data flow within complex information systems. However, existing
lineage extraction methods—often based on instrumentation, run-
time analysis, or annotated pipelines—fail to address cases where
such data is partially missing or unavailable. In this work, we in-
troduce a scalable two-step approach for inferring missing data
lineage links using only schema metadata. Inspired by techniques
from schema matching, our method combines a bi-encoder for ef-
ficient candidate filtering with a cross-encoder for high-precision
prediction. Unlike classical schema matching, which focuses on
semantic equivalence, we model directional lineage relationships,
identifying where one column is likely derived from another. This
makes our method particularly suitable for environments where
full lineage instrumentation is impractical—such as hybrid clouds,
legacy systems, or post hoc audits. We evaluate our model on large-
scale commercial datasets with millions of schema elements and
extreme class imbalance—where only one in 90,000 candidate pairs
is a valid link. In this setting, reducing false positives is crucial,
and our model demonstrates high effectiveness while remaining
computationally efficient.

VLDBWorkshop Reference Format:
Maciej Brzeski and Adam Roman. Inferring Missing Data Lineage Links
from Schema Metadata Using Transformer-Based Models (Regular Paper).
VLDB 2025 Workshop: Applied AI for Database Systems and Applications
(AIDB 2025).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/maciejbrzeski-uj/data-lineage-dataset.

1 INTRODUCTION
Data lineage is an essential concept in managing data-driven pro-
cesses, being part of the data governance aspect of general data
management. It provides a structured description of the process by
which data is traversed from its acquisition to its various applica-
tions, offering insights into its provenance, transformations, and
dependencies along the way [11, 17]. In an era of relentless data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

generation and utilization across diverse domains, understanding
data lineage has emerged as a crucial endeavor with far-reaching
implications.

At its core, data lineage embodies the principle of transparency,
showing the pathways through which data flows within complex
ecosystems of modern information architectures. By delineating
the origins of data, capturing its transformations through com-
putational and analytical processes, and tracing its lineage across
systems, data lineage facilitates critical tasks such as data quality as-
sessment, regulatory compliance, impact analysis, and identifying
the source of information, enabling trust in data [38].

The significance of data lineage extends across industries and sec-
tors, finding particular resonance in domains where data integrity,
reliability, and reproducibility are paramount [12, 13, 15, 34]. In
fields such as finance, healthcare, and scientific research, where
decisions depend on the accuracy of data-driven insights, robust
data lineage frameworks play a crucial role in establishing trust,
mitigating risks, and enhancing accountability.

However, the pursuit of comprehensive data lineage is not with-
out its challenges. The sheer volume, velocity, and variety of data
generated in contemporary environments pose formidable obsta-
cles to effectively capturing and managing lineage information.
Moreover, the distributed nature of data ecosystems, coupled with
evolving regulatory landscapes and technological complexities, fur-
ther complicate efforts to trace lineage across heterogeneous envi-
ronments.

In this article, we address the challenge of inferring missing
data lineage links in large-scale systems where complete lineage
information is unavailable or infeasible to obtain. Our approach
introduces a scalable natural language processing method based
on a two-step transformer architecture. Unlike previous methods
that rely on execution-level instrumentation or end-to-end DAG
analysis, our model is designed to infer lineage relationships based
solely on schema-level metadata, such as fully qualified column
paths (e.g., schema.table.column).

This design enables our method to operate in fragmented or
legacy environments where traditional lineage solutions break
down. It requires no runtime integration, and yet provides high
precision in identifying directional lineage links. We compare our
method with existing approaches and demonstrate its scalability
and effectiveness on real-world commercial datasets containing
millions of schema elements.

The structure of this paper is as follows. In Section 2 we intro-
duce the problem of data lineage reconstruction and motivate the
need for inference methods. Section 3 formulates the task of lineage

https://github.com/maciejbrzeski-uj/data-lineage-dataset
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

inference from schema metadata and outlines the key assumptions
and challenges. Section 4 reviews related work in schema matching,
filtering, and representation learning. Section 5 discusses how our
approach differs from prior work and introduces the constraints
and trade-offs that guide our model design. Section 6 covers meth-
ods for learning semantic similarity, from classical embeddings to
transformer-based architectures. Section 7 presents our complete
two-stage inference model. Section 8 reports on the experimental
evaluation using real-world industrial datasets. Finally, Section 9
concludes the paper and outlines directions for future work.

2 RECONSTRUCTING DATA LINEAGE
2.1 Motivation and Practical Challenges
Reconstructing data lineage—that is, recovering the provenance,
transformations, and dependencies of data assets across systems—
is a central challenge in modern data governance. According to
the 2025 Gartner Magic Quadrant for Data and Analytics Gover-
nance Platforms [43], data lineage must provide broad and deep
support for tracking how data moves and evolves. However, Gart-
ner also notes that lineage implementations are often incomplete or
fragmented, due to technical complexity, scale, and cross-platform
heterogeneity.

This difficulty is well known to practitioners. Enterprise clients
using commercial lineage platforms frequently report missing or
broken lineage segments, especially across system boundaries or
manual processes. These gaps are often caused by limitations in run-
time instrumentation, proprietary tools, or fragmented pipelines. In
consequence, organizations face tangible risks in trust, compliance,
and operational traceability—particularly when lineage is used to
support audits or automated impact analysis.

These practical constraints motivate the search for lineage infer-
ence methods: techniques that aim to reconstruct missing lineage
using metadata alone. The rest of this section reviews the technical
barriers to reconstructing lineage from code and logs, and motivates
our metadata-based approach.

Figure 1 illustrates a simplified but representative lineage graph
in a modern enterprise environment. The final SALES_PM_DEMO
dataset is derived from intermediate tables such as SALES_REP and
WEB_SALES, which in turn are produced through a combination
of ETL processes and reporting tools. These transformations span
multiple platforms—Oracle Database, Databricks, Power BI—and
often rely on domain-specific business logic, runtime parameters,
or external scripts. While the logical dependency path may be clear
to the engineers who created the flow, capturing it automatically
across these systems remains a major challenge.

Modern data lineage systems typically rely on automatic ex-
traction techniques to capture dependencies and transformations.
These include parsing SQL and notebook code, analyzing workflow
definitions from orchestrators (e.g., Airflow, dbt), and collecting ex-
ecution logs from data platforms. This scanner-based approach has
proven effective for well-structured, orchestrated pipelines where
all transformations are declarative and instrumentation is available.

Several metadata-driven lineage tools have also been proposed
to address these challenges, both in academia and industry [35].
However, practical deployments show that full lineage extraction
requires more than metadata—it often depends on runtime context,

configuration values, and execution traces. These are difficult to
obtain, especially in distributed or legacy environments. Studies
focusing on specific systems—such as Apache Spark [41] or ORM-
based Python frameworks [18]—demonstrate the feasibility of fine-
grained lineage tracking, but lack generality.

A large portion of logic in production pipelines is embedded in
general-purpose programming languages like Python, Java, or C++.
These segments are often opaque to scanners—either because they
are dynamically executed, externally managed, or not parsable by
current tools. As a result, lineage graphs are frequently incomplete,
even when state-of-the-art tooling is in place.

Most traditional approaches to lineage reconstruction fall into
three technical categories: static code analysis, metadata annota-
tions, or runtime log parsing [4, 9, 44]. Each of these faces practical
limitations. Static analysis struggles with dynamically typed or
generated code. Annotation-based systems require manual effort
and are rarely comprehensive. Runtime tracing, while powerful,
depends on full instrumentation and consistent observability across
platforms.

As a result, many lineage graphs remain incomplete—even when
advanced tooling is available. In these cases, the problem is not
theoretical ambiguity, but practical inaccessibility: the lineage exists
in principle, but cannot be recovered through traditional extraction
methods.

2.2 Data Lineage Inference
This motivates a different approach: rather than extract lineage
from code or logs, we infer it from available metadata. By analyzing
schema-level descriptors—such as table and column paths, naming
conventions, and relational structure—we aim to identify likely
lineage links using statistical modeling.

Only a few prior efforts have explored lineage inference in this
sense. In TRACER [16], the authors infer primary and foreign keys
using random forests, based on features like inclusion dependencies
and name similarity. They then use these inferred keys to suggest
lineage relationships. However, their method requires access to the
data itself and assumes a narrow transformation space, limiting its
applicability.

Another example is RELIC [39], which detects joins, groupings,
and pivots using sampled data to reconstruct dependency trees.
This approach also relies on having access to instance-level data
and becomes inefficient at scale. Moreover, it assumes consistent
naming conventions and deterministic behavior—conditions rarely
satisfied in heterogeneous, real-world pipelines.

Our work takes a different path. We propose a method that
infers lineage links purely from schema metadata, without relying
on access to runtime, code, or data. The next section defines this
task in more detail and explains howwemodel it using only schema
metadata.

This need for inference arises not only from technical limitations,
but also from the operational complexity of large organizations.
Legacy systems, undocumented data flows, and fragmented owner-
ship often prevent full lineage extraction, even when instrumenta-
tion is available. In such environments, metadata-based inference
provides a lightweight and broadly applicable complement to exist-
ing tools.

2

Figure 1: Example of data lineage

3 MODELING LINEAGE INFERENCE FROM
SCHEMA METADATA

In this section, we describe the formulation and motivation behind
our metadata-based approach to data lineage inference. Our goal
is to infer lineage links using only schema-level metadata, rather
than code, data values, or runtime traces. This reflects real-world
constraints: in many enterprise environments, direct access to data
is restricted, and lineage must be inferred across loosely connected
subsystems that follow different domain models.

Enterprise data warehouses typically integrate information from
heterogeneous sources originating from different departments and
spanning domains such as sales, logistics, or production. These ar-
eas often operate as distinct organizational domains, each with its
own semantics, naming conventions, and tools. As a result, global
or end-to-end lineage modeling is not only technically challeng-
ing, but also conceptually inconsistent. The lineage of data across
such boundaries may follow different logics and transformation
paradigms, making unified modeling infeasible or misleading.

Instead of aiming to reconstruct complete cross-domain lineage,
we focus on capturing localized, process-specific transformations
using accessible metadata. Instance-level data access may be lim-
ited due to governance or operational constraints, and even when
available, tables often contain millions of records. To ensure porta-
bility and minimal assumptions, we begin with a robust baseline:
structured column paths such as schema.table.column can en-
code sufficient regularity to support accurate lineage inference.
These paths are widely available and consistently present across
systems, even when deeper data instrumentation is lacking.

To illustrate this, consider SAP Business Warehouse, which de-
fines standard tables reused across deployments. One such table,
KNA1, contains columns like KUNNR (customer number), ORT01 (city),
and MANDT (client ID). These identifiers are stable and well-defined
in vendor documentation. However, these fields may appear under
very different names in downstream systems. A target system may
refer to customer numbers as customer_id or custnum, or may
rename cities as location or city_name.

Similar challenges of limited data access are addressed by Liu et
al. [24], who introduce GRAM, a generative retrieval augmented
matching framework that enables schema matching with minimal
access to sensitive customer data using zero-shot and few-shot
learning. In our work, we also restrict ourselves to using only
accessible metadata, which makes our approach applicable in envi-
ronments with strict data governance constraints. Moreover, our
method can be deployed in a zero-shot setting to predict lineage
links even in organizations where direct data access is not possible,
which aligns with the broader trend of balancing data accessibility
with regulatory and security concerns.

In some cases, profiling tools may be used to support lineage
inference by performing classification tasks, such as identifying data
types or semantic roles (e.g., detecting birthdates or postal codes),
and by generating summary statistics, such as value distributions
and aggregate statistics. While such signals can be valuable, they
are not always available—particularly in federated environments
or systems without integrated data catalogs. This further motivates
our reliance on schema metadata as a primary source of signal.

To support inference in such scenarios, we employ models ca-
pable of capturing the latent semantics of names. In contrast to
traditional schema matching, our goal is not to find symmetric
equivalences, but to detect directional lineage relationships—even
when names differ substantially or offer no obvious textual match.

Formally, given two datasets, source and target, each composed
of sets of tables 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑛} and𝑇 = {𝑇1,𝑇2, . . . ,𝑇𝑚}, where
each table contains multiple columns 𝑆𝑖 = {𝑠𝑖1 , 𝑠𝑖2 , . . . , 𝑠𝑖𝑘 }, the
task is to identify lineage links of the form (𝑠𝑖𝑝 , 𝑡 𝑗𝑞) indicating that
column 𝑠𝑖𝑝 ∈ 𝑆𝑖 is the source of 𝑡 𝑗𝑞 ∈ 𝑇𝑗 .

In this work, we focus on single-source lineage relationships,
where each target column is derived from exactly one source col-
umn. Although in principle some transformations may involve
multiple inputs (multi-source lineage), 95.3% of observed lineage
mappings in our real-world dataset follow a single-source pattern.
This restriction both simplifies the modeling task and reflects the
operational structure of many ETL pipelines, where columns are
often directly forwarded, renamed, or minimally transformed.

3

While our approach is inspired by schema matching techniques,
the task differs significantly in nature. Schema matching seeks sym-
metric semantic equivalence between columns or tables, often with
the goal of integration or alignment. In contrast, lineage inference
is directional and asymmetric: the question is not whether two
elements mean the same thing, but whether one is derived from
the other. For example, a column named unitsSold in one table
might correspond to a column named totalUnits in another, with
the latter derived through an aggregation operation such as sum-
mation. Such lineage relationships often exist despite differences
in naming, requiring models to infer latent semantic links that go
beyond surface-level similarity.

This challenge is further amplified by the structure of the task
itself. It is characterized by extreme class imbalance: among the
vast number of possible source-target column pairs, only a small
fraction correspond to actual lineage. At the same time, many in-
correct candidates exhibit surface-level similarity due to naming
conventions or abbreviations, making them deceptively plausible.
The core difficulty is therefore not finding connections between
dissimilar elements, but rejecting misleading matches that appear
similar on the surface.

This modeling difficulty is aligned with practical expectations. In
many enterprise applications—such as compliance reporting, data
audits, or automated documentation—users place greater value on
the reliability of inferred links than on exhaustive coverage. This
reinforces the importance of resolving the ambiguity introduced
by similar-looking but unrelated columns.

4 RELATEDWORK
4.1 Schema Matching
Schema matching is a foundational problem in data integration,
focused on identifying semantically equivalent elements across
heterogeneous schemas. Classic surveys [37, 42] classify approaches
based on the use of metadata such as column names, data types,
schema structure, and domain-specific dictionaries or ontologies.
These early methods relied heavily on rule-based heuristics and
string similarity metrics.

With the rise of machine learning, schema matching has increas-
ingly been framed as a binary classification problem over column
pairs. Approaches such as DeepMatcher [28] demonstrated that
deep neural networks, including recurrent and attention-based
architectures, can effectively match even noisy or partially format-
ted data. Subsequent work explored BiLSTM models over column
names and descriptions [27], enabling better contextual understand-
ing of naming patterns.

More recent models leverage transformer-based language rep-
resentations such as BERT. For example, Zhang et al. [50] showed
that pre-trained models can generalize well even in low-resource
settings. The SMAT architecture [49], inspired by attention-over-
attention mechanisms from question answering, enables schema
alignment using only textual features, without access to instance-
level data—making it suitable for privacy-sensitive domains such
as healthcare.

Hybrid approaches have also gained traction. Asif et al. [1] com-
bine heuristic rules with learned models to balance interpretability
and robustness in specialized domains. Industry-focused studies,

such as [29], further demonstrate the value of semantic schema
alignment in commercial applications like product lifecycle man-
agement.

Recent work has also investigated large language models (LLMs)
for schema matching [25, 31]. While these models achieve strong
performance, they remain costly to apply at scale. Moreover, adapt-
ing LLMs to specialized enterprise schemas—where column names
are often domain-specific and abbreviated—is nontrivial.

In contrast, our approach focuses on learning semantic similarity
from schema metadata using scalable, embedding-based models.
Rather than aiming for symmetric equivalence, as in most schema
matching settings, we target directional lineage inference under
class imbalance, where the goal is to detect whether one column is
derived from another.

4.2 Reducing Search Space: Blocking and
Filtering

In the context of schema matching, reducing the search space is
a fundamental step for enabling scalable processing over large
datasets. Naively comparing all possible pairs of schema elements
results in a quadratic number of comparisons, which quickly be-
comes infeasible as the number of tables or columns increases. This
brute-force approach is computationally prohibitive and unsuitable
for real-world deployments, where schema catalogs may include
thousands or even millions of elements.

To address this, modern systems incorporate candidate pruning
strategies that aim to discard clearly irrelevant pairs early in the
pipeline. These techniques are designed to retain only the most
plausible candidate matches for further processing, thereby reduc-
ing both runtime and memory requirements. Efficient search space
reduction not only enables matching to complete within practical
time bounds, but also improves overall effectiveness by focusing
model attention on meaningful comparisons.

Among the most widely used approaches are blocking and fil-
tering techniques. As early as [2], it was shown that even simple
similarity metrics, such as Jaccard or cosine similarity, are insuffi-
ciently scalable without aggressive candidate pruning. More recent
work has emphasized blocking-based strategies, which group ele-
ments into smaller buckets that can be compared more efficiently.

Blocking techniques partition the candidate space using lexical
or statistical heuristics. For example, Li et al. [22] propose simple
token-based filtering: only elements sharing a common token are
compared. Other strategies use TF-IDF to rank tokens and create
compact candidate blocks, as in Sparkly [32]. Such approaches,
while lightweight, often rely on surface-level features.

Filtering techniques use a similarity function and a threshold
to directly prune unlikely candidates. Though potentially more
accurate, they require more computation. Papadakis et al. [30]
review such methods and note that scalability remains an issue
without further optimization.

Recent work has explored the use of deep learning for pre-
filtering. Thirumuruganathan et al. [46] benchmark attention-based
and embedding-based models, demonstrating that neural networks
can be effective not only for matching, but also for filtering.

In our approach, we use a bi-encoder architecture to efficiently fil-
ter column pairs based on learned semantic similarity. This enables

4

high-throughput candidate scoring using GPUs, while preserving
precision and flexibility across datasets. Unlike traditional blocking,
our method supports fine-grained, model-driven filtering without
requiring manual token rules or thresholds.

4.3 Hard Negative Mining
Hard negative mining is a key technique in dense retrieval for
training models that can distinguish between semantically similar
but incorrect matches. Unlike easy negatives, which are clearly
unrelated to the query, hard negatives are misleadingly close in
meaning and force the model to make finer distinctions.

Dense Passage Retrieval (DPR) [19] introduced in-batch nega-
tives, treating all non-positive examples in the same mini-batch as
negatives. While efficient, many of these are too easy to be effective
training signals.

To address this, ANCE [48] proposed retrieving nearest-neighbor
negatives from the corpus using the current model, selecting only
the most semantically similar yet incorrect candidates. RocketQA
[36] refined this by filtering out false negatives—documents that
might accidentally contain the correct answer.

ColBERT [20], while not explicitly using hard negatives, relies
on token-level interactions to force more precise matching. A re-
cent survey [51] emphasizes that semantically close negatives are
essential for training accurate retrievers.

We adopt this principle by constructing training sets with hard
negatives: column pairs that are lexically or semantically similar
but do not represent true lineage. This improves the model’s ability
to filter misleading matches and focus on high-confidence links.

5 LINEAGE INFERENCE UNDER PRACTICAL
CONSTRAINTS

While our task shares surface-level similarities with schema match-
ing, the modeling requirements are substantially different. Tradi-
tional matching systems often rely on semantic similarity between
column names or descriptions to identify equivalences. In contrast,
lineage inference is an asymmetric task: the goal is to determine
whether a target column is derived from a specific source column.
This distinction shapes both how we formulate the task and how
we train models to solve it.

A key challenge is the nature of real-world schema names. Data-
base columns are frequently named using nonstandard abbrevi-
ations, inconsistent casing, and domain-specific shorthand. For
example, a column representing a customer purchase transaction
may appear as CustPurchTran, CusPurTrans, CPT, or CustPT, of-
ten without delimiters or clear token boundaries. Such naming
practices limit the effectiveness of pre-trained language models,
which are tuned to natural text with regular structure.

Fig. 2 illustrates a real-world example of source and target schemas
in column-level lineage inference, where different naming patterns
appear across systems.

To handle large-scale industrial catalogs—where a single schema
may contain tens of thousands of columns—we require a filtering
method that is both scalable and capable of learning domain-specific
patterns. Prior work on candidate pruning has largely relied on
heuristic techniques or rule-based blocking, which can struggle in

Source Tables

orderSummary
ordID
qtyOrd
custID

shipmentLog
shipCode
SHIPDT
carrierID

employeeStats
employee_id
region_code
joiningDate

Target Tables

customer_orders
order_id

QUANTITY
customerIdentifier

deliveryDetails
delivery_date
locationID
driverId

employee_id

Figure 2: Illustrative source and target tables with column
names in different naming styles (e.g., camelCase, snake_case,
uppercase, compact acronyms).

high-similarity settings where many column names appear plausi-
ble but are not actually related.

We therefore adopt a learned filtering stage based on a bi-encoder
architecture. This enables the model to capture dataset-specific
similarities while supporting highly parallelized inference on GPUs.
By encoding source and target columns independently, we achieve
efficient computation across quadratic number of candidate pairs.
Compared to heuristic filters, our bi-encoder substantially reduces
the number of pairs passed to the next stage, while preserving most
valid lineage links.

This reduction makes it feasible to apply a second-stage model
with greater expressive power. We use a cross-encoder to jointly
encode candidate pairs and classify them as lineage or not. While
slower than the bi-encoder, the cross-encoder is significantly more
precise, especially in rejecting high-similarity distractors that would
otherwise inflate false positive rates.

The two-stage architecture also offers practical modeling ad-
vantages. In particular, it allows us to control which examples are
shown to the cross-encoder, enabling targeted use of hard negative
mining. Given the extreme class imbalance in our task, where only
a small fraction of pairs represent true lineage, such negatives are
essential for training robust discriminators. Our experiments con-
firm that this setup consistently achieves strong performance while
maintaining tractability across large-scale real-world datasets.

We describe the architecture in more detail, along with a visual
summary, in Section 6.2.

6 MODELING SEMANTIC SIMILARITY
6.1 FromWord Embeddings to Transformers
Word embeddings have become a cornerstone of natural language
processing, providing powerful representations of words in con-
tinuous vector spaces. Notable methods include Word2Vec [26],
which uses shallow neural networks to learn distributed word rep-
resentations based on co-occurrence patterns, capturing semantic
relationships. GloVe [33] combines local context with global co-
occurrence statistics to create embeddings that reflect both syntactic
and semantic information. FastText [3], an extension of Word2Vec,

5

incorporates subword information, allowing for the representation
of out-of-vocabulary words and morphological variations.

Attention mechanisms represent a significant advancement in
natural language processing [10], complementing rather than re-
placing word embeddings. While embeddings likeWord2Vec, GloVe,
and FastText capture semantic relationships in a fixed-dimensional
space, attention mechanisms dynamically weigh the importance of
words in a sequence. Initially popularized in sequence-to-sequence
models for machine translation, attention allows models to focus
on relevant parts of the input, alleviating issues with fixed context
windows and improving long-range dependencies. This context
awareness enhances both language understanding and generation,
making attention mechanisms more flexible and adaptive for se-
quential data, leading to notable improvements in various NLP
tasks.

Transformers, introduced in the groundbreaking paper "Atten-
tion is All You Need" [47], rely entirely on self-attention, enabling
parallel processing of sequences and handling long-range depen-
dencies effectively. These architectures have become a foundation
for many modern NLP systems, particularly in tasks involving
sequence modeling, classification, and semantic comparison.

In our work, we leverage transformer-based encoders (specifi-
cally bi-encoder and cross-encoder variants) to capture semantic
relationships between schema elements. Unlike traditional NLP
tasks, our inputs are structured column identifiers, often composed
of domain-specific shorthand and compact naming patterns rather
than natural text, requiring models that are robust to abbreviations
and naming inconsistencies.

6.2 Semantic Feature-Comparison Model
The Semantic Feature-Comparison Model is designed to evaluate
the semantic similarity between two textual inputs. It transforms
each input into a representation that captures its underlying mean-
ing, enabling effective comparison. This model is helpful in tasks
such as textual similarity, semantic search, and understanding rela-
tionships between texts.

Bi-encoder architecture independently encodes each input, pro-
ducing two separate representations, as presented in Sentence-
BERT [40]. These representations are then compared using a dis-
tance metric (e.g., cosine similarity). The bi-encoder is computation-
ally efficient, making it ideal for large-scale tasks where speed and
scalability are crucial, such as in real-time applications or systems
handling large datasets. Since the inputs are encoded separately,
the model does not capture interdependencies between them as
effectively as other methods.

Cross-encoder architecture, on the other hand, processes both
inputs together as a pair, encoding them jointly. This allows the
model to capture more complex, context-dependent relationships
between the inputs. BERT [7] is an example of such a model, com-
monly used in a cross-encoder setup. However, this approach is
more computationally expensive, as it requires processing the en-
tire pair for each comparison. The cross-encoder is more accurate
and is particularly useful in tasks where precision is crucial, such
as question answering or tasks that involve detailed sentence pair
classification.

(a) Bi-encoder (b) Cross-encoder

Figure 3: Comparison of Bi-encoder and Cross-encoder
.

The primary difference between the two approaches lies in their
efficiency and the level of contextual understanding they offer.
While the bi-encoder is faster and more scalable, the cross-encoder
provides a more nuanced and precise evaluation of the relationship
between inputs by considering them together in context. The dif-
ferences between these architectures are illustrated in Fig. 3, which
highlights how each method processes inputs and compares their
representations.

In the next section, we show how these semantic similarity mech-
anisms are integrated into our complete two-stage inference archi-
tecture, including training procedures and data handling.

7 MODEL
7.1 General Overview
Figure 4 presents the overall architecture of our inference pipeline.
The process begins by segmenting both source and target schemas,
followed by a two-stage pipeline comprising filtering and classifi-
cation.

Figure 4: General overview of the proposed approach

Filtering is performed using a bi-encoder model, which computes
embeddings for source and target columns independently. This
allows for efficient candidate scoring across all column pairs using
GPU acceleration. The filtered pairs are then passed to a cross-
encoder, which jointly encodes each candidate pair and makes the
final prediction.

The cross-encoder architecture does not assume symmetry be-
tween inputs, making it well-suited to the directional nature of data
lineage inference. The architectural differences between bi- and
cross-encoders are discussed in Section 6.2.

A detailed explanation of the segmentation logic and training
procedure for both models follows in the subsequent sections.

6

7.2 Schema Name Segmentation
To preprocess column names for modeling, we first segment them
into interpretable subunits. Schema elements in real-world databases
often use compressed naming conventions, such as concatenated
abbreviations (e.g., CustPurchTran, CPT), camelCase, or domain-
specific acronyms. These forms can obscure semantic content, es-
pecially for pre-trained models expecting natural language input.

We apply a statistical segmentation algorithm trained on schema
labels that include natural delimiters (e.g., underscores, camelCase,
or hyphens). These serve as weak supervision to estimate 𝑛-gram
frequencies over token sequences.

Given an input character sequence, we consider all possible
segmentations into word sequences. We denote a candidate seg-
mentation as 𝑤 = (𝑤1,𝑤2, . . . ,𝑤𝑛), and our goal is to select the
most plausible one. Additionally, for notational clarity, we define
the subsequence𝑤 𝑗

𝑖
to denote (𝑤𝑖 ,𝑤𝑖+1, . . . ,𝑤 𝑗) for any 𝑖 ≤ 𝑗 .

To estimate the quality of each segmentation, we approximate
the probability of the entire sequence using an 𝑛-gram language
model:

𝑃 (𝑤1,𝑤2, . . . ,𝑤𝑛) ≈
𝑛∏
𝑖=1

𝑃 (𝑤𝑖 | 𝑤𝑖−1
𝑖−𝑘+1),

for a fixed value of 𝑘 . Here,𝑤𝑖−1
𝑖−𝑘+1 denotes the (𝑘−1)-length prefix

context preceding token𝑤𝑖 , with the convention that for positions
where 𝑖 < 𝑘 , we instead use the prefix𝑤𝑖−1

1 . This allows the model
to gracefully handle sequence boundaries without requiring explicit
start-of-sequence tokens. The conditional probabilities 𝑃 (𝑤𝑖 | ·)
are estimated from training data using observed frequencies 𝑓 (·).

We adopt the Stupid Backoff scoring scheme [5], which recur-
sively backs off to shorter contexts with a fixed decay factor 𝛼
(typically 0.4):

𝑆 (𝑤𝑖 | 𝑤𝑖−1
𝑖−𝑘+1) =


𝑓 (𝑤𝑖

𝑖−𝑘+1)
𝑓 (𝑤𝑖−1

𝑖−𝑘+1)
, if 𝑓 (𝑤𝑖

𝑖−𝑘+1) > 0

𝛼 · 𝑆 (𝑤𝑖 | 𝑤𝑖−1
𝑖−𝑘+2), otherwise

Here, 𝑓 (·) denotes the raw frequency of an𝑛-gram in the training
corpus. The total segmentation score 𝑆 (𝑤) is computed for each
candidate split, and we select the segmentation that maximizes the
sum of log scores over all segments.

To find the best segmentation, we evaluate all valid segmenta-
tions of the input sequence. Since the number of possible splits
grows exponentially with sequence length, we implement dynamic
programming with memoization to avoid redundant computation
and ensure efficient inference.

To handle unknown words not present in the training data, we
apply a fallback heuristic that penalizes longer unobserved tokens:

𝑆 (𝑤𝑖) =
𝐶

𝑇 · 𝑏 |𝑤𝑖 |
,

where 𝑇 is the total number of unigrams, 𝐶 is a smoothing con-
stant, and |𝑤𝑖 | is the token length.

The main advantage of this approach is its simplicity and speed—
the method requires no sophisticated learning or advanced machine
learning models. Despite its simplicity, it is effective in real-world
scenarios and can be easily adapted to naming conventions specific

to a given environment. Ultimately, we use only a bigram model
to evaluate segmentation quality, which is sufficient for the short
names typical of database schemas, where context beyond a single
neighboring token usually adds little additional information. More-
over, limiting the model to bigrams keeps computational complexity
very low, allowing for fast processing at scale.

7.3 Model Training
While bi-encoders and cross-encoders ultimately aim to assess se-
mantic relationships, their architectural differences lead to distinct
roles during training and inference. Prior work has explored hybrid
strategies that combine both models: in [6, 45], the more accurate
cross-encoder is used to genterprise systems. Despite its simplicity,
the segmenter is highly effective in practice and robust to the kinds
of inconsistencies commonly found in schema names. A bigram
model is sufficient for most cases, as column names tend to be short
and local context dominates. Late high-quality synthetic labels
for the bi-encoder. This is especially beneficial when the available
dataset lacks full coverage of positive examples.

In our architecture, we reverse this flow: the bi-encoder serves
as a fast, learned filter. Rather than making definitive predictions, it
eliminates clearly implausible candidates while preserving nearly
all true lineage links. This pre-filtering dramatically reduces the
number of column pairs considered by the more computationally
expensive cross-encoder. At this stage, minimitzing false negatives
is more important than maximizing precision.

An overview of the training pipeline is presented in Fig. 5.

Figure 5: Training pipeline

7.3.1 Entry Encoding. Language models operate on sequences of
tokens, so we convert column path names into token sequences to
make them suitable for processing by the network. Although the
metadata includes host, database, and schema names, we omit these
components during encoding, as they are repetitive and offer limited
discriminative value for the task. Instead, we focus on table and
column names, which carry higher informational content. These are
separated using the special [SEP] token, as shown in Equation 1,
which BERT uses in the next sentence prediction task to mark
the boundary between segments. Moreover, the values for host,
database, and schema are identical for both source and target entries,
as described in Subsection 7.4.

𝑒𝑛𝑡𝑟𝑦 (path) = <table name> [𝑆𝐸𝑃] <column name> (1)

7.3.2 Bi-encoder. The bi-encoder architecture is trained using the
Multiple Negatives Ranking (MNR) loss, which is commonly em-
ployed in retrieval and ranking tasks. This loss function encourages
the model to learn vector representations of source and target enti-
ties (i.e., table and column names) such that semantically similar

7

entities are embedded close to each other in the representation
space. During training, the bi-encoder processes a mini-batch of
size 𝑛, treating all non-matching pairs within the batch as negatives,
enabling the model to learn from multiple examples concurrently
and significantly accelerating training.

A key advantage of using MNR in this context is its scalability:
the bi-encoder computes embeddings independently for each en-
tity, enabling efficient similarity estimation at inference time. This
makes it an effective filtering mechanism, capable of narrowing
down the candidate set before passing pairs to the more precise
cross-encoder.

Furthermore, because the bi-encoder is trained to capture general
similarity patterns rather than make final matching decisions, it is
particularly well suited for hard negative mining. It helps identify
pairs that appear similar but are not actually linked, providing
challenging cases for the cross-encoder to refine its discrimination
capability.

7.3.3 Cross-encoder. The cross-encoder is trained as a classifier
designed to make final decisions about whether a given pair of
columns is semantically related. Unlike the bi-encoder, which pro-
cesses entities independently and assumes symmetry in the data, the
cross-encoder jointly encodes both elements of the pair. This allows
the model to capture full contextual interactions and token-level
dependencies, enabling it to identify subtle distinctions between
similar-looking but semantically unrelated columns. As a result,
the cross-encoder can detect more complex relationships that may
be missed by the bi-encoder.

An alternative approach to combining bi-encoder and cross-
encoder models was proposed in [23], where both components are
used concurrently at prediction time. In their method, key sentences
are first extracted based on entity presence to reduce noise and
input length. The bi-encoder computes global embeddings, while
the cross-encoder performs fine-grained token-level matching on
the pruned content. The final decision is made by fusing signals
from both models. In contrast, our approach uses the bi-encoder
strictly as a filtering and hard negative mining component, while
the cross-encoder is reserved for final classification, operating only
on the candidate pairs selected in the earlier stage.

7.3.4 Hard Negative Mining. Unlike common approaches where
hard negatives are primarily used to improve encoder performance,
in our method they serve a different purpose. The goal is not to
maximize the precision of the bi-encoder itself, but to use its similar-
ity estimates as a difficulty signal for constructing a more effective
training set for the cross-encoder.

The bi-encoder acts as a preliminary selector: it estimates the
similarity between source and target columns and identify negative
examples that are deceptively plausible. As a result, the training
set for the cross-encoder includes a higher proportion of such chal-
lenging cases, which would be rare under uniform sampling. This
enables the model to learn from more realistic and demanding
scenarios—ones that even strong semantic encoders may struggle
with.

An alternative strategy was proposed in [8], where hard nega-
tives for bi-encoder training were selected using a cross-encoder.
While this approach yields highly precise training examples, it re-
quires prior access to a well-tuned reference model, which may

not always be feasible. In contrast, our pipeline is stage-based: the
bi-encoder is trained independently, and only then used to estimate
difficulty and construct training batches for the cross-encoder.

A key advantage of this strategy is that all training examples, pos-
itive and negative, come from the same organization. This mirrors
the actual use case, where the model must discriminate between
valid and invalid lineage links within a single enterprise schema.
Consequently, it is forced to learn domain-specific patterns, nam-
ing conventions, and abbreviations that are consistent across all
examples. The model cannot rely on stylistic cues but must learn
the underlying semantic distinctions.

This strategy is simple to implement and integrates seamlessly
into the pipeline. Since the bi-encoder already computes embed-
dings during inference, it can be reused for difficulty estimation
without introducing new models or requiring manual labeling.

The effectiveness of cross-encoder training also depends on the
composition of the training set, particularly the balance between
positive, easy negative, and hard negative examples. In our setup,
we adopt a 1:1:1 ratio, providing the model with an equal number
of positives, hard negatives, and easy negatives. This balanced sam-
pling improves the model’s robustness and generalization, exposing
it to a diverse range of decision boundaries.

A similar observation was made in [6], which systematically
studied the effect of sampling strategies on downstream classifica-
tion performance. Further details about dataset construction and
schema organization are provided in subsection 7.4.

7.4 Evaluation
In this study, we work with multiple schema pairs, each consisting
of a source and a target schema, often containing several thou-
sand columns. Unlike traditional schema matching, which typically
compares complete schemas or databases, our approach operates
over a large number of such pairs, with each pair treated indepen-
dently. This setup reflects real-world scenarios in which lineage
must be reconstructed between two provided schemas, without
global visibility.

Given the scale of the dataset, we follow established practices
to split it into training and test sets (90/10) in a way that supports
reliable evaluation. However, due to the presence of structural and
organizational dependencies between some schemas, care must be
taken to avoid data leakage. Even minimal overlap between training
and test data can lead to an unrealistic assessment of performance.

To prevent this, we enforce a strict separation policy: all schema
pairs associated with a given company are assigned exclusively to
either the training or the test set, but never both. This ensures that
the model is not indirectly exposed to test-time patterns during
training.

This strategy guarantees that the test set represents entirely un-
seen data, enabling an unbiased evaluation of the model’s ability
to generalize to new organizational domains and naming conven-
tions. This split strategy forms the foundation for the experiments
described in Section 8.

8

8 EXPERIMENTS
8.1 Dataset
Our experiments are grounded in a diverse collection of datasets
sourced from thousands of real-world enterprise projects, including
data from large, reputable organizations such as banks, insurance
providers, and industrial companies. These datasets encompass
internal repositories and databases that reflect authentic production
systems. In total, the data originates from 5,673 distinct sources
and includes 77,237 schemas. Each schema represents a logical unit
that groups tables and columns for matching purposes.

The dataset comprises over 47million columns, with each schema
containing an average of 609 columns. However, the distribution
varies considerably, with a standard deviation of 4,360 columns per
schema, and some of the largest schemas containing more than
680,000 columns.

Our experimental setup involves 57,546 schema pairs for which
we predict lineage connections. On average, each schema pair yields
nearly 26 million possible column pairs, with some pairs generating
over 460 billion. Across the entire dataset, there are approximately
16 million validated lineage links, which translates to an average
of 284 links per schema pair. Consequently, there is roughly one
positive link for every 90,000 possible pairs, highlighting the highly
imbalanced nature of the problem and underscoring the critical
importance of effectively rejecting false positives to achieve strong
overall performance.

8.1.1 Limitations. Our study focuses on data lineage inference in
real-world production environments. The original datasets used in
our experiments are derived from enterprise systems and contain
sensitive structural metadata that reflects internal data flows and
business logic. Releasing such information would pose significant
confidentiality and security risks, as it could expose core elements
of organizational operations, system design, and data governance
practices.

To support transparency and understanding of our approach,
we release a synthetic dataset that mirrors the structure, scale,
and statistical properties of the original data while ensuring no
sensitive information is included. This synthetic data allows readers
to examine the model input format and evaluation protocol, though
it does not support full reproducibility. We believe this compromise
strikes an appropriate balance between methodological clarity and
the obligation to protect confidential infrastructure.

To illustrate the structure of the dataset used in our experi-
ments, we include two supplementary files: one listing all tables
and columns, and another containing all lineage links, where both
the source and target columns originate from the same schema.

8.2 Compared Algorithms
For comparison, we implemented two recently published algorithms
designed for schema or entity matching:

• DITTO [21] — An entity matching model that differs from
our approach by employing blocking, which requires match-
ing entries to share at least one word in common. Addition-
ally, it uses a different method for generating hard examples.

• AI Match [14] — A model that first performs indirect fil-
tering by matching tables and then predicts column-level
matches within those tables.

To ensure a fair comparison, we evaluated all methods on seg-
mented data, thereby standardizing the experimental conditions
and eliminating discrepancies in data preprocessing that could oth-
erwise influence performance outcomes.

8.3 Experiment Setup
In this study, we trained our model on a machine equipped with
two NVIDIA A100 GPUs, providing the necessary computational
power to handle large-scale datasets and complex tasks efficiently.

We evaluated the model using two main approaches: within-
project and cross-project. In thewithin-project approach, we trained
the model on a subset of data from a single company and evaluated
it on the remaining data from the same company. In contrast, the
cross-project approach involved training the model on data from
multiple companies and testing it on data from a completely dif-
ferent company. Since the cross-project setting more accurately
reflects real-world scenarios, we prioritized it in our evaluations
and in our comparisons with other methods (see subsection 8.2).

To better understand the differences between these approaches,
we compared the performance of models trained in both within-
project and cross-project settings for the three largest companies in
our dataset. We ensured that each company’s data was organized
into distinct schemas to facilitate experiments closely resembling
real-world conditions. Additionally, we conducted an ablation study
to assess the impact of segmentation and hard negative mining on
model performance.

For our task, a single example corresponds to a pair of schemas
(see subsection 7.4). For each schema pair, we inferred the data
lineage links predicted by our model and compared them with the
ground-truth links. Since a single example can involve an enormous
number of potential links—sometimes requiring tens of thousands
of network queries—we alsomeasured the time taken for each query
to provide a comprehensive evaluation of the model’s efficiency.

To accelerate training and enhance model performance, we fine-
tuned our model using pre-trained language models based on the
BERT architecture.

8.4 Results
To evaluate model performance, we employed four widely recog-
nized classification metrics: precision, recall, F1 score, and PR-AUC
(Precision-Recall Area Under Curve). The use of PR-AUC instead of
ROC-AUC was motivated by the highly imbalanced nature of the
dataset, which favors precision-recall analysis. For each model, we
selected the classification threshold that maximizes the F1 score.

A single training session lasted 10 hours for the bi-encoder and
4 hours for the cross-encoder. Notably, a significant portion of the
overall pipeline runtime—approximately 40 hours—was dedicated to
hard negative mining. This process involved generating all possible
source-target pairs for each set of schemas and evaluating their
difficulty using the bi-encoder model.

8.4.1 Main results. We conducted experiments in a manner that
better reflects real-world scenarios: training the model on data
from parts of the companies and testing it on different ones. We

9

Table 1: Performance measures for all models

Model Precision Recall F1 AUC time
Bi+Cross-Encoder 0.73 0.81 0.77 0.80 7.5s

DITTO 0.66 0.77 0.71 0.70 503s
AI Match 0.75 0.33 0.46 0.27 1.6s

then compared the performance of our approach with the models
presented in subsection 8.2. Precision-recall curves are shown in Fig.
6, and the numerical values of the evaluated metrics are provided
in Table 1.

Figure 6: Precision-Recall curves for all models (AP = average
precision = PR-AUC)

Our approach outperformed the DITTOmodel in terms of F1 and
AUC while being significantly faster due to its effective candidate
filtering. Our filter reduces the number of candidates by approxi-
mately a thousandfold, discarding only about 2% of true links. By
comparison, token-sharing filters reduce candidates by only ten-
fold, with a similar number of true links rejected. Additionally, the
bi-encoder enables more effective hard negative mining, leading to
better overall performance.

The AI Match model achieved lower scores, mainly because it
uses a pre-trained model that is not well-suited to this specific prob-
lem. As illustrated in Fig. 6, achieving a recall higher than 0.33 with
AI Match requires substantially reducing precision. Consequently,
its maximum F1 score is reached at a threshold close to 1, meaning
when the source and target names are nearly identical.

Based on the results, it is clear that in the case of such a heav-
ily imbalanced problem, the key to success lies in the effective
reduction of false positives. Without this, achieving a satisfactory

Table 2: Ablation study

Model Precision Recall F1 AUC
Full Model 0.73 0.81 0.77 0.80

w/o Segmentation 0.56 0.76 0.65 0.65
w/o Hard Negatives 0.65 0.79 0.71 0.61

precision—and thus a comprehensive performance—is very chal-
lenging. Our model, by directly optimizing the filtering step based
on the data, clearly outperforms the alternatives.

8.4.2 Role of bi- and cross-encoders in the architecture. To com-
plement the main results, we compared the performance of the
cross-encoder and bi-encoder. Most studies in this area rely on
heuristic filters and a single machine learning model (typically sim-
ilar to a bi-encoder) to determine matching. This raises a natural
question: what is the benefit of using two models, and did they
actually learn something different, with each fulfilling its own role?

Figure 7 shows the distribution of model predictions from both of
our trained models. For non-link examples, we included only those
with a bi-encoder similarity of at least 0.5 to improve readability,
since values below this threshold are much more numerous and
would otherwise dominate the distribution, obscuring meaningful
comparisons.

Their prediction distributions differ substantially. The cross-
encoder is significantly better at rejecting false positives—which, as
previously discussed, is crucial for this problem—while only slightly
increasing the number of rejected true links (false negatives).

The distribution for true links is also interesting: the cross-
encodermore often returns boundary values, whereas the bi-encoder
more frequently assigns intermediate values. Ultimately, both mod-
els effectively fulfill their roles, demonstrating that the bi-encoder
+ cross-encoder architecture is well-justified and difficult to replace
with a single model.

8.4.3 Ablation study. We compared our complete model with a
version where two key components were removed. The first com-
ponent is segmentation, as described in Subsection 7.2. In the alter-
native approach, we trained both models directly on the column
names appearing in the tables. The second component is the gener-
ation of hard examples: instead, we trained a model using randomly
selected negative examples, maintaining a 1:1 ratio of negatives to
positives. The results of this comparison are presented in Fig. 8 and
Table 2.

The results demonstrate that both components have a significant
impact on overall performance. Both ablated models exhibited an
optimal threshold above 0.99, indicating difficulty in distinguishing
hard negatives. The model trained without hard negative mining
struggled even with examples it was most confident about, leading
to a steep drop in performance in Fig. 8. Interestingly, despite its
considerably worse overall performance, the model without seg-
mentation identified more positive examples at the same threshold
as the model with segmentation. This suggests that the way source
and target column names are written might itself serve as a useful
indicator.

10

(a) Prediction distribution for true links (b) Prediction distribution for non-links

Figure 7: Comparison of bi- and cross-encoder prediction distributions for true links and non-links

Figure 8: Impact of different model components (ablation
study)

8.4.4 Cross/within-project comparison. We conducted additional
experiments by training models on subsets of schema pairs from the
three largest companies (anonymized as A, B, and C). Additionally,
we retrained our model after removing all data from these three
datasets to compare performance. The results are presented in
Table 3 and Figure 9.

The cross-project approach consistently outperformed thewithin-
project approach in all three datasets. At first glance, this might
seem surprising. However, the within-project scenario involves

Figure 9: Comparison of cross-project and within-project
evaluation

predicting data lineage within a schema using information from
different parts of the same organization. This allows us to capture
conventions specific to that company, although these conventions
may vary considerably across departments in large organizations.
On the other hand, different companies often use similar tools and
follow comparable practices when designing their schemas. By
leveraging data from other companies, the cross-project model can
learn a broader range of patterns that characterize how schemas

11

Table 3: Comparison cross/within-project approaches

Dataset Method Precision Recall F1 AUC

A
Cross-project 0.62 0.87 0.72 0.82
Within-project 0.52 0.82 0.63 0.54

B
Cross-project 0.99 0.95 0.97 0.99
Within-project 0.76 0.92 0.83 0.79

C
Cross-project 0.77 0.64 0.70 0.63
Within-project 0.71 0.49 0.58 0.52

typically evolve, which ultimately leads to significantly better re-
sults.

8.5 Threats to validity
8.5.1 Internal validity. The model relies on the path of data arti-
facts, using only the names of tables and columns as input. While
this approach limits the data to easily accessible database features, it
is important to note that restricting the model to this form of input
can impact its performance. Expanding the input to include addi-
tional metadata or other data sources might improve the model’s
effectiveness. However, as highlighted in Section 1, the core idea
is to work with minimal, readily available information related to
the “linguistic” aspects of schema matching, especially when direct
access to production data may not be feasible.

Despite careful dataset preparation, there is always a possibility
that the available data does not fully reflect real-world conditions.
In some cases, access to procedures or other relevant database
elements may be limited, which could result in incomplete lineage
information. Moreover, databases change over time—schemas are
modified, tables are added or removed, and naming conventions
evolve. As a result, the reconstructed lineage may not accurately
reflect the historical state of the database at the time the processes
were originally implemented.

8.5.2 External validity. Although we used a relatively large dataset
for this study, it primarily consists of data from the ETL processes
of financial institutions. This could introduce biases in the naming
conventions for databases, tables, and columns. As a result, the
model’s effectiveness may not be fully transferable to other business
domains or specific datasets.

9 CONCLUSIONS AND FUTUREWORK
Data lineage has demonstrated its essential role in ensuring the
quality, transparency, and reliability of data within modern infor-
mation systems. By systematically documenting the flow of data
from its sources through various transformations to its final out-
puts, organizations can gain invaluable insights into the origins,
dependencies, and implications of their data assets. However, the
tracking of data origins can sometimes be prevented or severely
hampered by various circumstances.

In this work, we presented an approach to data lineage inference
inspired by methods used in schema matching. While traditional
schema matching often relies on heuristics such as the presence of
commonwords or measures like TF/IDF, our approach distinguishes
itself by utilizing a bi-encoder to estimate initial similarity. This

network acts as a filter, enabling the generation of hard examples
for further processing by a cross-encoder. The bi-encoder facili-
tates more targeted matching of data artifacts, thereby improving
the overall performance of the inference process. Additionally, by
focusing solely on the schema metadata for prediction, the model
enhances its adaptability to different ecosystems.

The results from a real-world dataset demonstrate that this
method, which combines a bi-encoder and cross-encoder, achieves
promising accuracy using only the paths of the artifacts. However,
restricting the approach to database metadata limits its potential.
Previous studies on schema matching have shown that instance-
based methods can outperform schema-based approaches in many
cases. Given that direct access to data is often restricted due to
sensitivity concerns in real-world applications of data lineage, fu-
ture work could explore integrating data statistics—such as data
profiling, already mentioned in Section 5—to further improve the
model’s performance.

Furthermore, although the cross-company training generally
yielded stronger results overall, it remains important to consider
company-specific characteristics. In practice, organizations often
adopt not only distinct naming conventions but also unique ways of
organizing data flows—such as the size and complexity of schemas,
the number and nature of inter-table connections, and typical trans-
formation patterns. These differences can lead to substantial varia-
tion in schema structures, as illustrated in Fig. 9. To address this,
future research could explore incorporating organization-specific
metadata or fine-tuning hyperparameters (such as similarity thresh-
olds) to align the model more closely with the unique characteristics
of how a particular enterprise manages its data flows.

ACKNOWLEDGMENTS
This work is the result of Research Project No. DWD/4/66/2020
supported and funded by the Ministry of Education and Science in
Poland.

REFERENCES
[1] Md Asif-Ur-Rahman, Bayzid Ashik Hossain, Michael Bewong, Md Zahidul Islam,

Yanchang Zhao, Jeremy Groves, and Rory Judith. 2023. A semi-automated hybrid
schema matching framework for vegetation data integration. Expert Systems
with Applications 229 (2023), 120405.

[2] Roberto J Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up
all pairs similarity search. In Proceedings of the 16th international conference on
World Wide Web. 131–140.

[3] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017.
Enriching word vectors with subword information. Transactions of the association
for computational linguistics 5 (2017), 135–146.

[4] Shawn Bowers, Timothy McPhillips, and Bertram Ludäscher. 2012. Declarative
rules for inferring fine-grained data provenance from scientific workflow execu-
tion traces. In Provenance and Annotation of Data and Processes: 4th International
Provenance and Annotation Workshop, IPAW 2012, Santa Barbara, CA, USA, June
19-21, 2012, Revised Selected Papers 4. Springer, 82–96.

[5] Thorsten Brants, Ashok Popat, Peng Xu, Franz Josef Och, and Jeffrey Dean.
2007. Large language models in machine translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL). 858–867.

[6] Yuxin Chen, Zongyang Ma, Ziqi Zhang, Zhongang Qi, Chunfeng Yuan, Bing Li,
Junfu Pu, Ying Shan, Xiaojuan Qi, and Weiming Hu. 2024. How to Make Cross
Encoder a Good Teacher for Efficient Image-Text Retrieval?. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 26994–27003.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill

12

Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186.

[8] Hande Dong, Jiayi Lin, Yanlin Wang, Yichong Leng, Jiawei Chen, and Yutao
Xie. 2024. Improving Code Search with Hard Negative Sampling Based on Fine-
tuning. In 2024 31st Asia-Pacific Software Engineering Conference (APSEC). IEEE,
221–230.

[9] Hao Fan. 2002. Tracing data lineage using automed schema transformation
pathways. In British National Conference on Databases. Springer, 50–53.

[10] Andrea Galassi, Marco Lippi, and Paolo Torroni. 2020. Attention in natural
language processing. IEEE transactions on neural networks and learning systems
32, 10 (2020), 4291–4308.

[11] Eduardo González López de Murillas, Hajo A Reijers, and Wil MP van der Aalst.
2017. Everything you always wanted to know about your process, but did
not know how to ask. In Business Process Management Workshops: BPM 2016
International Workshops, Rio de Janeiro, Brazil, September 19, 2016, Revised Papers
14. Springer, 296–309.

[12] Philip J. Guo and Margo I. Seltzer. 2012. BURRITO: Wrapping Your Lab Notebook
in Computational Infrastructure. In 4th Workshop on the Theory and Practice of
Provenance, TaPP’12, Boston, MA, USA, June 14-15, 2012, Umut A. Acar and Todd J.
Green (Eds.). USENIX Association.

[13] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis,
Sudip Roy, and Steven EuijongWhang. 2016. Goods: Organizing google’s datasets.
In Proceedings of the 2016 International Conference on Management of Data. 795–
806.

[14] Benjamin Hättasch, Michael Truong-Ngoc, Andreas Schmidt, and Carsten Bin-
nig. 2020. It’s AI Match: A Two-Step Approach for Schema Matching Using
Embeddings. In AIDB@VLDB 2020, 2nd International Workshop on Applied AI
for Database Systems and Applications, Held with VLDB 2020, Monday, August
31, 2020, Online Event / Tokyo, Japan, Bingsheng He, Berthold Reinwald, and
Yingjun Wu (Eds.).

[15] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. 2017. A survey
on provenance: What for? What form? What from? The VLDB Journal 26 (2017),
881–906.

[16] Felipe Alex Hofmann. 2020. Tracer: a machine learning approach to data lineage.
Ph.D. Dissertation. Massachusetts Institute of Technology.

[17] Robert Ikeda and Jennifer Widom. 2009. Data lineage: A survey. Stanford
University Publications. http://ilpubs. stanford. edu 8090, 918 (2009), 1.

[18] Andrej Jurčo. 2023. Data Lineage Analysis for PySpark and Python ORM Libraries.
Master’s thesis. Univerzita Karlova, Matematicko-fyzikální fakulta.

[19] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu,
Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval
for Open-Domain Question Answering.. In EMNLP (1). 6769–6781.

[20] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval. 39–48.

[21] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. Proc. VLDB
Endow. 14, 1 (sep 2020), 50–60.

[22] Yuliang Li, Jinfeng Li, Yoshi Suhara, AnHai Doan, and Wang-Chiew Tan. 2023.
Effective entity matching with transformers. The VLDB Journal 32, 6 (2023),
1215–1235.

[23] Jianbo Liao, Mingyi Jia, Junwen Duan, and Jianxin Wang. 2023. FBC: fusing
bi-encoder and cross-encoder for long-form text matching. In ECAI 2023. IOS
Press, 1473–1480.

[24] Xuanqing Liu, Runhui Wang, Yang Song, and Luyang Kong. 2024. GRAM:
Generative Retrieval Augmented Matching of Data Schemas in the Context of
Data Security. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 5476–5486.

[25] Yurong Liu, Eduardo Pena, Aecio Santos, Eden Wu, and Juliana Freire. 2024.
Magneto: Combining Small and Large Language Models for Schema Matching.
arXiv preprint arXiv:2412.08194 (2024).

[26] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[27] Amnai Mohamed, Choukri Ali, Youssef Fakhri, Gherabi Noreddine, et al. 2022.
Schema Matching Based On Deep Learning Using LSTM Model. In 2022 IEEE
3rd International Conference on Electronics, Control, Optimization and Computer
Science (ICECOCS). IEEE, 1–5.

[28] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data. 19–34.

[29] Hakju Oh, Albert Jones, Tim Finin, et al. 2023. Employing Word-Embedding
for Schema Matching in Standard Lifecycle Management. Journal of Industrial
Information Integration (2023), 100547.

[30] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and filtering techniques for entity resolution: A survey. ACM

Computing Surveys (CSUR) 53, 2 (2020), 1–42.
[31] Marcel Parciak, Brecht Vandevoort, Frank Neven, Liesbet M Peeters, and Stijn

Vansummeren. 2024. Schema Matching with Large Language Models: an Experi-
mental Study. arXiv preprint arXiv:2407.11852 (2024).

[32] Derek Paulsen, Yash Govind, and AnHai Doan. 2023. Sparkly: A simple yet
surprisingly strong TF/IDF blocker for entity matching. Proceedings of the VLDB
Endowment 16, 6 (2023), 1507–1519.

[33] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[34] Fotis Psallidas and Eugene Wu. 2018. Smoke: Fine-grained lineage at interactive
speed. arXiv preprint arXiv:1801.07237 (2018).

[35] Egor Pushkin. 2020. Theoretical Model and Practical Considerations for Data
Lineage Reconstruction. arXiv preprint arXiv:2001.11506 (2020).

[36] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2020. RocketQA: An optimized training
approach to dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2010.08191 (2020).

[37] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic
schema matching. the VLDB Journal 10 (2001), 334–350.

[38] Christopher Ré and Dan Suciu. 2008. Approximate lineage for probabilistic
databases. Proceedings of the VLDB Endowment 1, 1 (2008), 797–808.

[39] Mohammed Suhail Rehman. 2023. Reconstructing the Lineage of Artifacts in Data
Lakes. Ph.D. Dissertation. The University of Chicago.

[40] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[41] Alexander Schoenenwald, Simon Kern, Josef Viehhauser, and Johannes Schildgen.
2021. Collecting and visualizing data lineage of Spark jobs: Digesting Spark
execution plans to surface lineage graphs via a full-stack application. Datenbank-
Spektrum 21 (2021), 179–189.

[42] Pavel Shvaiko and Jérôme Euzenat. 2005. A Survey of Schema-Based Matching
Approaches. J. Data Semant. (2005), 146–171.

[43] Guido De Simoni, Anurag Raj, Melody Chien, and Stephen Kennedy. 2025. Magic
Quadrant for Data and Analytics Governance Platforms. Technical Report ID
G00807073. Gartner.

[44] Edwin Soedarmadji, Helge S Stein, Santosh K Suram, Dan Guevarra, and John M
Gregoire. 2019. Tracking materials science data lineage to manage millions of
materials experiments and analyses. npj Computational Materials 5, 1 (2019), 79.

[45] Nandan Thakur, Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. 2020.
Augmented SBERT: Data augmentation method for improving bi-encoders for
pairwise sentence scoring tasks. arXiv preprint arXiv:2010.08240 (2020).

[46] Saravanan Thirumuruganathan, Han Li, Nan Tang, Mourad Ouzzani, Yash
Govind, Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep learning
for blocking in entity matching: a design space exploration. Proceedings of the
VLDB Endowment 14, 11 (2021), 2459–2472.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[48] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-
tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

[49] Jing Zhang, Bonggun Shin, Jinho D Choi, and Joyce C Ho. 2021. SMAT: An
attention-based deep learning solution to the automation of schema matching.
In Advances in Databases and Information Systems: 25th European Conference,
ADBIS 2021, Tartu, Estonia, August 24–26, 2021, Proceedings 25. Springer, 260–274.

[50] Yunjia Zhang, Avrilia Floratou, Joyce Cahoon, Subru Krishnan, Andreas CMüller,
Dalitso Banda, Fotis Psallidas, and Jignesh M Patel. 2023. Schema matching using
pre-trained language models. In 2023 IEEE 39th International Conference on Data
Engineering (ICDE). IEEE, 1558–1571.

[51] Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. 2024. Dense text
retrieval based on pretrained language models: A survey. ACM Transactions on
Information Systems 42, 4 (2024), 1–60.

13

	Abstract
	1 Introduction
	2 Reconstructing Data Lineage
	2.1 Motivation and Practical Challenges
	2.2 Data Lineage Inference

	3 Modeling Lineage Inference from Schema Metadata
	4 Related Work
	4.1 Schema Matching
	4.2 Reducing Search Space: Blocking and Filtering
	4.3 Hard Negative Mining

	5 Lineage Inference Under Practical Constraints
	6 Modeling Semantic Similarity
	6.1 From Word Embeddings to Transformers
	6.2 Semantic Feature-Comparison Model

	7 Model
	7.1 General Overview
	7.2 Schema Name Segmentation
	7.3 Model Training
	7.4 Evaluation

	8 Experiments
	8.1 Dataset
	8.2 Compared Algorithms
	8.3 Experiment Setup
	8.4 Results
	8.5 Threats to validity

	9 Conclusions and Future Work
	Acknowledgments
	References

