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ABSTRACT

Memory access paths between a CPU core and memory are in-
creasingly complex. Data can be placed on local- or remote-socket
memory, and on local- and remote-die memory on modern multi-
die CPUs, affecting memory access performance. Cache-coherent
inter-device interconnects, such as Compute Express Link (CXL),
allow a CPU core to perform load and store instructions to memory
of a peripheral device. Such accesses incur higher access latency
than accesses to local-socket memory and increase the access path
complexity. For database system developers, it is important to un-
derstand the performance implications of these complex memory
architectures. In this work, we present CXL-Bench, a benchmark
framework for quantifying access performance for different mem-
ory access paths. CXL-Bench provides many configuration options,
such as memory access patterns, the operating system’s memory
abstraction, cache bypass options, and a distributed mode for setups
with multiple servers accessing memory of the same device. We
demonstrate the utility of CXL-Bench by quantifying memory ac-
cess characteristics of two servers accessing a shared CXL 1.1 mem-
ory device. Our results show that memory accesses of one server to
the device affect the access performance of another server accessing
the same device. On the other hand, memory (de)allocations using
CXL memory configured as a character device complete quickly,
making frequent re-allocation of CXL memory feasible.
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Figure 1: Heterogeneous memory access paths.

1 INTRODUCTION

CPUs of modern servers have increasingly heterogeneous and com-
plex memory access paths as shown in Figure 1. A CPU core’s
memory access latency and bandwidth vary significantly, depend-
ing on whether the core accesses socket-local or socket-remote
memory [26]. Memory access latency varies even within a single
socket: on modern multi-die CPUs, data that a core accesses can
be placed in the memory of a local die or an adjacent remote die,
significantly affecting access latency [15, 33]. New cache-coherent
inter-device interconnects, such as NVLink C2C [41] and Compute
Express Link (CXL) [37], allow a CPU core to perform load and
store instructions to the memory of a peripheral device. Such ac-
cesses to remote device memory incur higher access latency than
CPU-local memory accesses [27, 38, 41] and further increase the
memory access path complexity.

CXL is gaining attention in research and industry, as it enables
large memory pools physically separated from CPUs and shared
with multiple compute nodes [2, 3, 8, 10, 19]. The availability of the
CXL interconnect has opened new design space opportunities for
memory-intensive applications [10, 19, 25]. One such opportunity is
building memory-centric database architectures [10]. While a CPU’s
load and store instructions are commonly executed to memory
on the same server, CXL invalidates this assumption. With CXL,
multiple servers can be connected to the same CXL device and issue
memory accesses to it simultaneously.
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Memory access performance depends on factors such as the CPU
design, the CPU instructions used for memory access, the CPU’s
cache coherence protocol, the memory media type, the interconnect
and memory controllers, as well as the memory abstraction of the
operating system (OS). The different memory access paths and OS
abstraction of heterogeneous memory types increase the data place-
ment complexity for data processing systems. To make reasonable
decisions in terms of performance, one needs to know memory
access characteristics, such as access latency and bandwidth.
Contributions. In this work, we present CXL-Bench, a config-
urable benchmark framework for quantifying memory access per-
formance across different interconnect and memory types. The
framework contains many user-configurable options, such as mem-
ory access patterns, the OS’s memory abstraction used, access op-
erations, cache bypass options, and a distributed mode for setups
with multiple servers accessing memory of the same device. Using
CXL-Bench, we analyze memory access performance of two servers
connected to a shared CXL memory device. We study:

o the latency and throughput of loads and stores, and the latency

of atomic operations on a shared CXL memory (Section 4).

e the latency of virtual-to-physical memory mapping for CXL

shared memory (Section 5).

The rest of this paper is structured as follows: In Section 2, we
discuss relevant background information on the CXL interconnect
standard, CXL memory configuration and allocation options, and
memory access operations. Section 3 gives an overview of our
benchmarking framework. We present our load and store, as well
as atomic operation microbenchmark results in Section 4 and the
memory mapping experiments in Section 5. We survey related work
in Section 6 before concluding in Section 7.

2 BACKGROUND

We briefly introduce CXL, configuration and allocation options for
CXL memory, and memory access operations.

2.1 Compute Express Link

Compute Express Link (CXL) [37] is an open standard for intercon-
nects between machines based on PCle 5.0 and 6.0. CXL allows a
machine to access a different machine’s memory in a cache-coherent
way. The specification differentiates between hosts and devices. A
machine managing the cache coherence of attached memory lo-
cations is referred to as the host, while every other machine in
the CXL topology is a device [5]. CXL includes the three protocols
CXL.io, CXL.cache, and CXL.mem. CXL.io is the base protocol con-
taining PCle transactions. CXL . cache allows a device to access and
cache data stored in host memory. CXL . mem allows a host to access
and cache data stored in CXL device memory with load and store
semantics. A key use case is memory expansion. A memory expan-
sion device that supports CXL.io and CXL.mem is called a Type 3
device [11], which we use in our evaluation.

Three major revisions of the CXL standard exist [37]. Each higher
revision introduces additional features. CXL 1.x specifies the three
protocols, which serve as the foundation for memory expansion.
CXL 2.0 supports resource pooling, which allows dynamic alloca-
tion and deallocation of the same resource to different hosts [37].

CXL 3.x adds the dynamic capacity feature of CXL memory de-
vices [12]. This allows for dynamically changing memory capacity
without resetting the device [12]. Another key feature of CXL 3.x is
the support of hardware-based memory sharing across host bound-
aries [37]. The CXL device used in our evaluation supports CXL 1.1
connectivity. This means that memory accesses to the shared CXL
device memory do not trigger coherence management of affected
cache lines on the other server.

2.2 CXL Memory Configuration & Allocation

CXL device memory can be configured as a non-uniform memory
access (NUMA) node in system-RAM mode or as a character device
in device direct access (DAX) mode (devdax) [4, 20]. Configured
as NUMA node, an application can use CXL device memory by
first allocating an anonymous memory region (via the mmap system
call) and binding the region’s pages to the device’s NUMA node
(via the mbind system call). Configured as character device, an
application first needs to get a file descriptor by opening the device.
The application then creates a virtual memory mapping to the CXL
device’s existing physical memory via mmap with the file descriptor
as parameter. Listing 1 shows a corresponding code example.

Configured as NUMA node, CXL device memory is zero-
initialized [4]. For a shared scenario where multiple servers access
the memory of the same CXL device, configuring the memory as
NUMA node is not suitable [4]. In our evaluation, we configure the
CXL device memory as character device.

Listing 1: Character device memory mapping example.

size_t region_size = 17'179'869'184; // 16 GiB
size_t offset = 0;
int file_descriptor = open("/dev/dax2.0", O_RDWR | O_SYNC);
void* address = mmap(nullptr, region_size, PROT_READ |
< PROT_WRITE, MAP_SHARED, file_descriptor, offset);

B WD =

2.3 Memory Access Operations

Scalar load and store instructions are a common way to access
memory, each accessing a single data element (e.g., 4 B or 8 B
integers). Using vector instructions allows leveraging data-level
parallelism by performing the same operation on multiple data ele-
ments [34]. Numerous database systems utilize vector intrinsics to
increase query processing speed significantly [6, 31, 42, 43]. Vector
loads and store instructions read and write to and from memory in
vector-register-sized amounts of sequential data. On recent Intel
CPUs, vector load and store instructions perform memory trans-
actions on up to 512 bits of data (i.e., a complete cache line) using
AVX-512 [21]. A streaming (also non-temporal) vector instruction
bypasses the cache hierarchy of the CPU and directly interacts with
the memory sub-system [13]. Streaming stores come with relaxed
memory ordering rules, requiring explicit memory barriers by the
programmer [13]. Streaming instructions are useful when an algo-
rithm will not access the same data in the near future, avoiding
cache pollution [35].

Besides reads and writes, atomic CPU hardware operations, such
as compare-and-swap (CAS) and fetch-and-add (FAA), are essential
primitives for building efficient, lock-free algorithms [24, 29, 36].
Such atomic operations modify data elements (e.g., integer values).
If the CPU cache does not contain the element to be modified, the



CPU needs to fetch the corresponding cache line from memory.
The memory access path and the resulting latency to fetch the
required cache line influence the latency of an atomic operation. In
our evaluation, we quantify the latency of atomic operations with
the corresponding cache line stored in CXL memory.

3 BENCHMARK FRAMEWORK: CXL-BENCH

We introduce CXL-Bench, a highly configurable open-source frame-
work for benchmarking access to heterogeneous memory tiers. The
framework description in this section is an extended version of the
description in our recent work [40]. CXL-Bench supports bench-
marking memory access performance for any kind of memory con-
figured as NUMA node or character device. This includes memory
locally attached to a CPU via DDR, remote socket memory attached
via an inter-socket interconnect and DDR, high-bandwidth memory,
and device memory, e.g., attached via CXL or NVLink-C2C. For sce-
narios in which multiple servers are connected to the same shared
memory, e.g., in a CXL shared memory setup, CXL-Bench supports
distributed execution. This allows running multiple memory access
workloads on multiple servers simultaneously.

3.1 Benchmark Features & Configuration

CXL-Bench supports measuring read and write operations, atomic
operations, and the mapping and unmapping of memory regions.
The framework provides a variety of parameters to configure the
memory access operations to be analyzed. Table 1 shows an excerpt
of the parameters and their options.

Reads and writes include scalar, vector, and streaming vec-
tor instructions. Cache instructions like cache line write back
(clwb), flush cache line (c1flush), and flush cache line optimized
(c1flushopt) can be specified for reads and writes. For reads, the
execution of a cache instruction is used as a preparation of the
cache line to be accessed. This preparation is not part of the latency
measurement. For writes, the cache instruction is executed after
the write to ensure that a modified cache line is written back to
memory. The latency measurement includes the execution of the
cache instruction.

Atomic operations include compare-and-swap and fetch-and-
add. CXL-Bench further supports latency measurements for map-
ping and unmapping memory regions using the system calls mmap
and unmap. This is especially relevant for shared CXL memory,
where connected servers may dynamically allocate and release
memory regions. The memory mapping benchmarks quantify the
duration of allocating such memory regions. A user needs to spec-
ify the benchmark parameters in configuration (YAML) files as
illustrated in Listing 2. Users can configure multiple options per pa-
rameter as a matrix parameter. For matrix parameters, CXL-Bench
generates the Cartesian product and creates one benchmark config-
uration per combination. Users can run CXL-Bench with multiple
configuration files. The framework derives benchmark configura-
tions from each file and runs one benchmark for each generated
benchmark configuration.

3.2 Benchmark Workflow

For each benchmark task, a number of threads perform memory
accesses on a dedicated memory region based on the user-defined

Table 1: CXL-Bench configuration parameter excerpt.

Parameter

Options

Read & write operations
Cache instructions
Atomic operations
Memory mapping ops
Access pattern
Random distribution
Access size
OS memory abstraction
Memory NUMA nodes
Device path
Memory region offset
Data placement mode

Memory region size
Thread pinning

load, store (scalar, vector, and streaming vector)
clwb, c1flush, clflushopt

compare-and-swap, fetch-and-add

mmap, unmap

sequential, random

uniform, random

4 B to 64 KiB (powers of two)

NUMA (system RAM), DAX device (devdax)

list of NUMA node IDs

string

integer > 0

interleaved (NUMA), partitioned (NUMA), linear
(DAX device)

multiple of the access size

thread to core mapping, thread to NUMA node map-

ping (one core per thread), thread to NUMA node
mapping (multiple cores per thread)

Number of operations integer > 0
Latency sampling interval — number of operations > integer > 0
Run time [seconds] integer > 0

Listing 2: Example configuartion YAML file.

streaming_writes:

matrix:
number_threads: [ 1, 4, 16, 24, 48 ]
exec_mode: [sequential, random]

args:
memory_region_size: 16G
access_size: 64
cache_instruction: none
operation: stream-write
numa_task_nodes: [ 1 ]
device_path: "/dev/dax2.0"
run_time: 10
region_offset: 0

—
W= OO0~ U R W =

configuration. For each benchmark run, CXL-Bench prepares the
memory regions to be accessed by the tasks, prepares the memory
addresses to be accessed, performs the access operations, verifies
memory page locations to ensure that no pages were moved during
the access execution, and generates the results containing through-
put or latency metrics. When preparing a benchmark task’s memory
region, CXL-Bench differentiates between NUMA node memory
and character device memory.

3.2.1 NUMA Memory Preparation. The memory preparation step
for a benchmark task includes allocating virtual memory, binding
virtual memory regions to user-defined NUMA nodes, and backing
aregion’s pages by physical memory via pre-faulting. Pages can
be allocated on any kind of memory that is configured as a NUMA
node, including CXL device memory if configured as such.
CXL-Bench pins pages of a NUMA memory region either in
a interleaved or a partitioned mode. The interleaved mode uses
the entire memory region and pins its pages to the user-defined
NUMA nodes via mbind in a round-robin fashion with Linux’s
interleaved allocation policy. The partitioned mode allows users
to split the memory region into two partitions with different user-
defined sizes relative to the region’s total size. It then pins the
partitions to different NUMA nodes. In both modes, pages of a
memory (sub-)region are pinned to the corresponding NUMA nodes
via the mbind system call with Linux’s interleaved allocation policy.



The partitioned mode allows the evaluation of the memory access
performance in a tiered memory scenario where the partitions of a
memory region are located on different memory types, e.g., CPU-
local and CXL device memory. If the corresponding task’s memory
operations include read operations, the memory region is filled
with data in advance. CXL-Bench checks if the pages are located
on the correct NUMA node at the end of the memory preparation.

3.2.2  Character Device Memory Preparation. When using memory
configured as a character device, CXL-Bench first creates a file
descriptor for the device. It then creates a memory mapping with
that file descriptor as shown in Listing 1. A user-defined offset
parameter determines the start position of the memory region in
the device’s address space. Configuring the offset allows users to
run workloads simultaneously on disjoint memory regions of a
shared CXL memory device.

3.2.3 Thread Pinning. CXL-Bench pins a thread to a set of cores us-
ing the GNU C library function pthread_setaffinity_np. Users
can specify to which cores each task’s thread pool is pinned. The
user can either list the core identifiers or NUMA nodes. In the latter
case, the cores associated with the NUMA nodes will be used for
pinning the threads.

3.24 Latency Measurements. The framework differentiates be-
tween throughput and latency measurements. For latency mea-
surements, a single thread performs the respective operation n
times where n is a user-defined parameter (number of operations
in Table 1). CXL-Bench measures the latency with a user-defined
sampling interval, e.g., every 1000th executed operation. Before
each operation measurement, CXL-Bench performs a memory fence
(mfence) to ensure that previous loads and stores are completed.
Optional, configuration-dependent preparation steps are executed
before measuring the actual operation. These include pre-loading a
cache line when measuring only write latency or evicting a cache
line to ensure that the target cache line is fetched from memory.

3.25 Throughput Measurements. CXL-Bench supports throughput
measurements for reads and writes. It generates a user-defined num-
ber of worker threads executing the memory access operations. For
this set of threads, CXL-Bench creates batches of access operations.
Worker threads continuously fetch memory access batches from a
shared queue and execute the corresponding memory access oper-
ations. This represents a common execution model where workers
operate on small work packages [7]. By default, the total number of
accessed bytes per batch is 64 MiB. Such batches are short-running
and, thus, avoid the skew of large, long-running batches [7].

3.2.6  Page Verification & Result Generation. After executing the
benchmark tasks, CXL-Bench verifies that the memory regions’
pages are still located on the target NUMA nodes. Finally, CXL-
Bench generates the overall benchmark results by writing all la-
tency samples or collecting the measurements from all threads and
calculating throughput values.

3.3 Distributed Execution

Users can execute CXL-Bench in a distributed manner. The dis-
tributed execution downloads CXL-Bench’s source code, builds the
binary, and runs the user-configured workload on user-configured

servers. To do this, the user needs to configure parameters, such
as the hostnames and login methods for the target servers, and the
workload per server. The distributed execution ensures that bench-
marks start at the same time. We use the distributed execution in
our evaluation to run workloads on two servers, simultaneously
accessing memory of a shared CXL device.

4 MEMORY ACCESS MICROBENCHMARKS

Load and store instructions are commonly limited to a single server.
A CXL memory expansion device connected to multiple servers
allows the CPU cores of all connected servers to perform loads
and stores to shared CXL device memory simultaneously. In this
section, we investigate the memory access performance toa CXL 1.1
memory device connected to two servers using CXL-Bench.

4.1 Setup

Hardware Setup. Table 2 details the two servers used for our
experimental evaluation. Figure 2 shows the hardware setup, in-
cluding the CPU memory population and the CXL device setup.
Both CPUs support AVX-512 vector instructions, which are used
in this work. The CXL memory device is an FPGA-based Seagate
Composable Memory Appliance (CMA) Blade prototype [14, 30] with
four DDR4 memory channels and two DIMMs per channel (DPC).
Data stored on the device is interleaved across all eight DIMM:s.
The CMA supports the PCIe Gen5 x16 CXL 1.1 specification con-
nectivity. One CMA has two ports. Each port can be connected to
a separate server for a shared memory setup. We refer to a single
blade as CXL device in the remainder of this work.

Table 2: Specifications of the evaluation servers.

Identifier EMR GNR

Supermicro

Server SYS-741GE-TNRT

Avenue City Platform

CPUs 2X Intel Xeon Gold 6542Y 1X Intel Xeon 6 Engineer’ Sample
Cores 24 per CPU 96 per CPU
Cach L1i: 32 KiB, L1d: 48 KiB L1i: 64 KiB, L1d: 48 KiB
aches  12:2 MiB, L3: 60 MiB L2: 2 MiB, L3: 504 MiB
DDR5 8x 32 GB (1 DPC) 12X 16 GB (1 DPC)
DIMMs with 4800 MT/s with 5600 MT/s
(O Ubuntu 24.04, Kernel 6.13.0  Ubuntu 24.04, Kernel 6.13.0

= = Interconnect (UPI) [ | CPU Package [IDIMM (= Channel |

Seagate Composable

Server EMR Memory Appliance (CMA) Server GNR

= CMAblade | |=
. —
S 5
A |_[°13:)R4 w| R
B O 7 7 37 {7 2 (D
O % IR @]
2|3 | | XXX =12
2 §x128GiB | |=
cPUO cpul | [ (1866 MT/s) |

Figure 2: Hardware setup.



The CXL device is configured as character device in devdax
mode. Its physical memory is mapped into the virtual memory
address space using the mmap system call, as shown in Listing 1. In
this example code, the CXL device path is /dev/dax2. 0.
Workload Execution. In the experiments, we differentiate be-
tween the main workload and the background workload. The main
workload performs memory accesses to the CXL device, for which
we quantify either the latency or bandwidth, depending on the
experiment. A separate, simultaneous background workload gener-
ates load on the CXL device’s memory. This allows us to study how
an additional workload accessing the shared CXL device affects
the other workload’s performance. The main workload runs on
server EMR while the background workload runs on GNR. The
background workload continuously performs sequential vector
reads to a memory region of the CXL device. If not mentioned
otherwise, the memory region of both the main and background
workload has a size of 16 GiB and starts at offset 0 of the device’s
memory address space.

4.2 Latency

Memory access latency is a key performance metric for transaction
processing [26], as well as, join and aggregate operations [32]. We
investigate the memory access latency with and without running
the background workload.

Setup. We measure the latency of 64 B (temporal) vector and stream-
ing (i.e., non-temporal) vector loads and stores with a uniform ran-
dom access pattern. We measure loads followed by a memory fence
(mfence). For vector stores, we first load the target cache line into
the cache. We then measure the latency of a store instruction fol-
lowed by a cache line write back (clwb). The clwb ensures that the
corresponding cache line is written back to memory. For streaming
stores, we ensure that the cache line is written to memory with a
memory fence after the streaming store. We measure the latency of
accesses to the CXL device memory on the EMR server. We measure
the latency with and without a background workload running on
GNR, generating load on the CXL device. We perform each opera-
tion 10 M times and sample the latency of every 1000th operation,
resulting in 10 000 latency measurements per operation.

Results. Figure 3 shows the results. For individual cache line loads
and stores, the latency behaves very similarly for vector instructions
and streaming vector instructions. Without background load, the
median latencies for vector loads and streaming vector loads are
480 ns and 490 ns. The 99th percentile latencies are about 75% to 80%
higher with 860 ns. With background load, the median latencies
increase to 820 ns and 830 ns. The 99th percentile latencies are
between 50% and 55% higher with 1270 ns and 1260 ns. Compared
to the latencies without background load, the median latencies
increase by about 70%.

For vector stores and vector streaming stores, the corresponding
latencies with and without background load are almost identical.
Vector stores show median latencies of 390 ns with and without
load. 99th percentile latencies are between 33% and 36% higher (i.e.,
between 520 ns and 530 ns) with load. Streaming vector stores show
median latencies of 360 ns with and without load. 99th percentile
latencies are between 500 ns and 520 ns.

EMR w/o GNR load
— AVG EMR w/o GNR load

—=EMR w/ GNR load
-- AVG EMR w/ GNR load

Random  Random Random  Random
read stream-read stream-write write (clwb)
1400 1 b b b
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Figure 3: Random load and store latency on EMR with and
without load generated by GNR.

Running the same experiment with a larger memory region of

64 GiB yields similar results without significant differences. Chang-
ing the start offset of the background workload’s memory region (to
512 GiB) so that the regions of the main and background workload
are disjoint yields the same latencies.
Discussion. The measurements show that memory access of a
separate server to the used shared CXL device significantly affect
memory access latency. Assigning disjoint memory regions of the
device to workloads on separate compute nodes still shows the
same performance impact. This is the case as, independent of a
memory region’s position in the device’s memory address space,
data stored on the CXL device is interleaved across all DIMMs.
When using the device for data management, simply monitoring
and balancing memory accesses of a single server is insufficient for
optimizing memory access performance. A memory-centric data-
base system [10] could consist of multiple compute nodes connected
to the shared CXL device. One should be aware of the potential load
that all connected servers can generate on the device’s CXL and
memory controllers. With the current hardware trend of an increas-
ing number of cores per CPU package [9], hundreds of CPU cores
can be connected to a shared CXL memory pool (cf. [8]). The actual
number depends on the number of ports of a CXL device and the
total number of cores across the servers. To avoid oversubscription
of CXL and memory controllers, one needs to carefully distribute
data across the different memory tiers accessible to a CPU.

4.3 Throughput

Memory throughput is another key performance metric when utiliz-
ing memory. It is relevant for bandwidth-bound database operations,
such as selections, projections, and ungrouped aggregations [32].
We quantify the memory throughput achievable with vector and
streaming vector load and store instructions, with and without
running the background load.

Setup. We measure the throughput with 64 B vector and streaming
vector loads and stores with different numbers of threads. In the
latency experiment, we execute memory fences and explicit cache
line writebacks as we measure the latency of individual accesses.
In this experiment, we focus on the maximum throughput. We do



not execute memory fences and cache instructions (e.g., clwb) as
they incur additional overhead and prevent instruction reordering,
both of which can be disadvantageous for maximising memory
throughput. We perform the respective operation for 10 seconds
and report the throughput.

Results. Figure 4 shows the results. Loads with sequential accesses
achieve higher throughput than loads with random accesses. While
vector loads and streaming loads do not show significant differ-
ences for sequential access, regular vector loads perform better for
random access than streaming vector loads. With sequential read
load on the CXL device generated by the GNR server, the achieved
throughput is reduced by approximately 50%.

The latency study shows no differences for stores with and with-
out additional load on the device. Without memory fences and
cache instructions in this experiment, the throughput achieved
without load is significantly higher compared to the throughput
with additional load. The throughput differs significantly between
vector stores and streaming vector stores for both sequential and
random accesses. Vector stores achieve a maximum of 16.5 GB/s.
The throughput of streaming stores is by 2.4x higher, reaching
a plateau of approximately 40 GB/s. One possible reason for the
higher throughput is reduced cache coherence management effort:
Temporal stores write to a cache line in exclusive cache line state.
If a store causes a store miss, the core issues a read-for-ownership
(RFO) transaction to fetch the target cache line in exclusive state.
This is an additional load to the target memory. Streaming stores
write the data to a write combining buffer, where writes may be
delayed and combined [21]. This avoids the additional RFO loads,
reducing additional load on the controller so that more write re-
quests can be processed faster. Similar to the latency experiment,
running the experiment with either a larger memory region of
64 GiB or the background workload accessing a disjoint memory
region (with an offset of 512 GiB) shows similar results.
Discussion. The results confirm the findings of our latency study:
loads to the shared CXL memory device by one server significantly
impact the memory access performance of another server to the
device. The results further show that streaming vector stores can
achieve a significantly higher throughput than regular vector stores.
In our experiment, the throughput with load on the system for
streaming stores approximately matches the throughput of vector
stores without load. Database operations involving writes, where
the written data is not promptly accessed again, significantly benefit
from streaming vector stores over regular vector stores.

As CXL 1.x/2.0 does not support hardware-based memory shar-
ing across multiple hosts [37], using regular vector stores only
affects the cache coherence domain of the server that issued the
memory access. When writing large amounts of data to CXL 1.x/2.0
shared memory, streaming stores are better suited due to their
higher throughput.

4.4 Atomic Operations

Atomic operations are essential for building concurrent algorithms
and data structures. We quantify the latency of atomic operations
with values to be stored in CXL shared memory, with and without
load generated by the background workload.
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read read stream-read stream-read
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Figure 4: Load and store throughput on EMR with and with-
out load generated by GNR.

Setup. We measure the latency of CAS and FAA atomic operations
with the value to be modified stored in CXL shared memory. We first
write a 64-bit unsigned integer to each cache line of the CXL mem-
ory region. During the benchmark workload, we randomly pick
one of these 64-bit unsigned integers and perform the respective
atomic operation (using atomic_ref’s compare_exchange_weak
and fetch_add functions of the C++ standard library). We perform
each operation 10 M times and sample the latency of every 1000th
operation, resulting in 10 000 latency measurements per operation.
Results. Figure 5 shows the results. Similar to the load latencies
in Section 4.2, the latency is significantly affected by additional
background load. The latency for both operations is between 500 ns
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Figure 5: Compare-and-swap (CAS) and fetch-and-add (FAA)
atomic operation latency on EMR with and without load
generated by GNR.



and 550 ns without load and between 800 ns and 850 ns with load.
These numbers are similar but slightly higher than the load latencies
in Section 4.2. In a variation of this experiment, we first load the
cache line in which the target value is placed into the cache and
then perform the respective atomic operation. This experiment
shows a 90th percentile latency of under 50 ns for both operations.
Discussion. When performing atomic operations on values that
are not cached, the atomic operation is dominated by the memory
access latency. Atomic operations on values stored in CXL 1.x/2.0
shared memory should be used carefully, as an atomic operation
neither ensures an actual write back of the affected value to CXL
memory, nor does it trigger coherence management of the affected
cache line on the other servers connected to the same device.

5 MAPPING SHARED CXL DEVICE MEMORY

With shared CXL memory, a large memory pool can be split into
smaller memory regions, each accessible by one or more attached
servers [25]. Before an application running on an attached server
can access a CXL memory region, it needs to map the CXL device’s
memory into the application’s virtual memory address space. In
this section, we study the latency of mapping CXL memory regions
with different sizes into an application’s virtual address space.
Setup. We measure the latency of mapping and unmapping mem-
ory regions using the mmap system call. We vary the latency for
memory regions with power-of-two sizes, ranging from 16 GiB to
128 GiB. With a character device, we can only define a memory-
mapped region as shared. For comparison, we measure the latency
of mapping anonymous shared and private memory regions. We
prefault all pages of the anonymous memory regions (using the
mmap option MAP_POPULATE). We measure each mapping five times
and report the average latency.

Results. Figure 6 shows the latency of mapping and unmapping
memory regions on the EMR server. Mapping and unmapping char-
acter device memory has a significantly lower latency than mapping
and unmapping anonymous memory regions. For all options, the
latency increases linearly with the region size. For 128 GiB, map-
ping the character device takes only one second while allocating
anonymous memory regions takes 40 seconds and 26 seconds in
shared and private mode. Unmapping the memory region happens
promptly for the character device in less than a tenth of a second.
In contrast, unmapping the shared and private anonymous regions
requires eight and three seconds. For anonymous regions, we see
that memory regions declared as private exhibit lower latency for
mapping and unmapping than regions declared as shared.
Discussion. Memory mapping and unmapping on CXL memory
configured as a character device is fast compared to anonymous
memory region allocations. It does not involve expensive heap
allocations by the kernel as with allocating anonymous memory
regions. The prompt completion of character device mappings and
unmappings indicates that frequent re-mapping is feasible for data
processing systems. Unmapping and mapping the character device
do not clear the physical pages. Most recently written data still
exists in the pages. On the one hand, this allows simple resizing
of memory regions: In case a previously allocated memory region
is too small, it can simply be unmapped and mapped with a larger
region size, starting at the same offset. The data from the previous
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Figure 6: Memory map and unmap latency.

region can still be used. On the other hand, if an application requires
an erased (e.g., zeroed) memory region, the application needs to
perform manual erasure. This can be costly as erasing each page
requires many memory accesses and their associated latency.

6 RELATED WORK

Our proposed benchmark framework is highly inspired by PerMA-
Bench, a benchmark framework for persistent memory access [7].
CXL-Bench significantly extends PerMA-Bench by supporting mem-
ory configured as NUMA nodes, several thread pinning modes,
memory allocation policies, latency measurements of individual
operations, and additional operations, e.g., atomic operations and
memory mapping and unmapping. Especially the NUMA configu-
ration adds support for several types of memory, such as memory
of local and remote CPU sockets, individual CPU dies, and mem-
ory of peripheral devices (if configured as NUMA nodes). While
PerMA-Bench runs on a single server, CXL-Bench supports a dis-
tributed mode. This allows benchmarking memory access scenarios
in which separate servers access a shared memory device.

In the remainder of this section, we survey existing evaluation
studies on CXL memory access performance. Ahn et al. [1] and Lee
et al. [23] evaluate the performance impact of placing different parts
of data of the SAP HANA database system on FPGA-based CXL
memory using the TPC-C, TPC-DS, and TPC-H benchmarks. Sun
et al. [38] evaluated performance on FPGA-based and two ASIC-
based CXL memory devices using Intel Sapphire Rapids CPUs. The
authors evaluate latency and throughput with microbenchmarks
and application workloads. While the microbenchmarks are exe-
cuted on all devices, the application workloads are performed only
on the best-performing CXL memory device. The authors show
that CXL memory can expand a system’s total memory bandwidth
when a deep-learning recommendation model utilizes only two
memory DIMMs and one CXL memory compared to only using
the two memory DIMMs. Gouk et al. [18] evaluate performance
characteristics for customized FPGA-based CXL 2.0 memory cards.
The authors built and utilized a custom RISC-V ISA CPU with CXL
support and performed random memory requests with different
access sizes and several real-world workloads. Geyer et al. [17] ex-
perimentally evaluate the access performance on local memory and
remote memory attached via either Ultra Path Interconnect (UPI),
CXL, or remote direct memory access (RDMA) on a system with
Intel Sapphire Rapids CPUs. They evaluate the access performance
with aggregate, filter, and hash join database operations. Fridman



et al. [16] evaluate CXL’s potential to provide persistent memory
to a server system on an FPGA-based CXL device. They perform an
experimental evaluation with an FPGA-based CXL device using the
STREAM benchmark and provide absolute throughput numbers.
Tang et al. [39] experimentally evaluate the access performance of
an ASIC-based CXL memory expansion device with Intel Sapphire
Rapids CPUs for basic and application workloads, including Redis.
Kim et al. [22] present performance metrics for Samsung’s CXL
memory expander CXL MXP. Besides basic memory access patterns,
they evaluate the performance of applications workloads, includ-
ing Memcached and Redis. Liu et al. [28] perform an experimental
evaluation of basic access patterns as well as high-performance
computing (HPC) workloads. The authors find that HPC workloads
may not use additional theoretical bandwidth with CXL memory.

7 CONCLUSION

We introduce CXL-Bench, a benchmark framework for benchmark-
ing heterogeneous memory access paths. We demonstrate CXL-
Bench by quantifying memory access characteristics of two servers
accessing a shared CXL 1.1 memory device. For the used CXL de-
vice, we show that a workload running on one server accessing the
device significantly reduces the performance of another workload
running on a different server. We further show that the latency
of atomic operations is mainly determined by memory access la-
tency. In terms of memory management, we show that memory
re-allocations with CXL memory configured as a character device
are fast, which make frequent reallocation of CXL memory feasible.
Memory access characteristics influence the quality of memory
integration concepts for database systems. We encourage database
researchers and practitioners to use CXL-Bench to quantify mem-
ory access characteristics for upcoming CXL memory devices.
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