
RISC-V Meets RDBMS: An Experimental Study of Database
Performance on an Open Instruction Set Architecture

Yizhe Zhang
University of New South

Wales
Sydney, Australia

yizhe.zhang1@unsw.edu.au

Zhengyi Yang
University of New South

Wales
Sydney, Australia

zhengyi.yang@unsw.edu.au

Bocheng Han
University of New South

Wales
Sydney, Australia

bocheng.han@unsw.edu.au

Haoran Ning
Macquarie University
Sydney, Australia

haoran.ning@students.mq.edu.au

Xin Cao
University of New South

Wales
Sydney, Australia

xin.cao@unsw.edu.au

John Shepherd
University of New South

Wales
Sydney, Australia

j.a.shepherd@unsw.edu.au

Guanfeng Liu
Macquarie University
Sydney, Australia

guanfeng.liu@mq.edu.au

ABSTRACT
RISC-V, an open and extensible instruction set architecture, has
gained significant attention in both academia and industry for its
potential to reshape processor design. Among its numerous instruc-
tion set architecture (ISA) extensions, RISC-V Vector Extension
(RVV) Version 1.0 introduces a novel approach to scalable and
flexible vector computation, which holds particular promise for
data-intensive workloads such as those found in modern database
systems. In this paper, we systematically explore the implications
of RISC-V architectural features, especially RVV 1.0, for database
execution engines. We begin with an overview of the RISC-V ISA
and its vector and scalar extensions relevant to data processing,
then evaluate open source database systems compiled and executed
on RISC-V platforms using industry-standard benchmarks such
as TPC-H to measure performance and identify bottlenecks. Our
experiments span various RISC-V ISA extensions, including the
V, Zfh, Zknd, and compressed instruction sets, and assess their
impact on execution speed, memory usage, and binary size. Our
results demonstrate that mature existing database systems do not
effectively leverage RISC-V ISA capabilities, with most extensions
providing minimal performance improvements through change of
database compilation parameters: the Vector Extension yields a
performance improvement of less than 5%, while some extensions
like Zknd can reduce performance by up to 32%. However, manually
optimized RVV implementations achieve up to 10× speedups for spe-
cific query types, indicating substantial untapped potential. These
findings reveal both the current limitations and future opportunities
of RISC-V for database workloads, demonstrating that realizing the
architecture’s full potential requires hardware-aware optimization
beyond current compiler capabilities and providing guidance for
future system designs and hardware-software co-optimization.

VLDBWorkshop Reference Format:
Yizhe Zhang, Zhengyi Yang, Bocheng Han, Haoran Ning, Xin Cao, John
Shepherd, and Guanfeng Liu. RISC-V Meets RDBMS: An Experimental
Study of Database Performance on an Open Instruction Set Architecture.
VLDB 2025 Workshop: 16th International Workshop on Accelerating
Analytics and Data Management Systems Using Modern Processor and
Storage Architectures (ADMS25).

Zhengyi Yang is the corresponding author.

PVLDB Artifact Availability:
The code used in the case study "Manual RVV-Aware Query Optimization"
is available at: https://github.com/mocusez/RVV-Parquet-Test

1 INTRODUCTION
RISC-V, an open and extensible instruction set architecture (ISA),
has attracted substantial interest from both academia and industry
due to its potential to fundamentally reshape modern processor de-
sign. Originally introduced in 2010 as a clean-slate ISA for research
and industrial applications, RISC-V has evolved from a minimalist
base integer ISA into a rich and modular architecture that includes
a wide range of standardized extensions [32]. These include sup-
port for atomic operations (A), compressed instructions (C), single-
and double-precision floating-point (F/D), half-precision arithmetic
(Zfh), vector processing (V ), virtual memory management (Sv),
and various cryptographic primitives (Zk*). The modular design
allows hardware vendors to selectively incorporate extensions tai-
lored to specific application domains, while the open governance
model, led by RISC-V International, fosters broad collaboration and
transparency across the ecosystem.

A major milestone was reached in 2024 with the commercial
release of processors implementing the RVA22 profile, which stan-
dardizes a suite of base and extension features for Linux-capable
RISC-V systems. These processors also support the ratified Vector
Extension Version 1.0 (RVV 1.0) [32], the first stable vector stan-
dard in the RISC-V ecosystem. Unlike traditional Single Instruction
Multiple Data (SIMD) architectures found in other modern CPUs,
RVV 1.0 adopts a dynamic vector length model that enables bi-
nary portability between hardware with variable vector register
widths. Processors conforming to the RVA22 profile have achieved
performance milestones as clock speeds exceeded 3GHz and 14 nm
process nodes [41]. Looking ahead, industry roadmaps suggest that

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

https://github.com/mocusez/RVV-Parquet-Test
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org


2025 may mark a pivotal moment for RISC-V, with the expected ar-
rival of server-class processors designed for ultrascale data centers
and high-performance computing (HPC) workloads [26].

Relational Database Management Systems (RDBMS) form the
foundation of modern data management and have been exten-
sively studied for their performance, robustness, and scalability.
Although well-established in design, RDBMS are increasingly being
re-examined in light of emerging hardware platforms and system-
level primitives. Recent research has used heterogeneous compute
accelerators (e.g. GPUs [20], FPGAs [15]), low-level networking
frameworks (e.g. DPDK) and architectural innovations such as
SIMD and Just-in-Time (JIT) compilation [21, 24] to accelerate
query processing. These developments reflect a broader shift to-
ward hardware-conscious database design, where tight integration
with underlying architectural features can deliver significant per-
formance benefits.

In this context, RISC-V has emerged as a promising open in-
struction set architecture (ISA) with growing hardware availability
and ecosystem maturity. However, despite its rapid progress, the
compatibility and performance of modern RDBMS on RISC-V re-
main relatively underexplored. Historically, practical deployment
was hindered by limited compiler support and incomplete RISC-
V integration in mainstream Linux distributions. These obstacles
are now steadily being overcome, with toolchains reaching suffi-
cient stability to support reliable experimentation. In particular,
widely adopted Linux distributions, such as Debian and CentOS,
have introduced increasingly stable RISC-V support [5, 31], and
compiler toolchains for key system programming languages, in-
cluding GCC, LLVM, Rust and Go, have made substantial strides
toward production readiness [11, 18, 36].

These developments indicate that the RISC-V software ecosystem
has become sufficiently robust to support systematic evaluation of
database management systems on this architecture. In particular,
ISA-level features such as vector processing (RVV), virtual memory,
timestamp counters, and cryptographic extensions (e.g., Zknd) are
expected to have measurable effects on the behavior of the database
engine.

Building on this foundation, we present a practical investigation
of the execution of database systems on RISC-V hardware, with
a particular focus on evaluating the impact of ISA-level features
on data analytic performance. Specifically, we conducted experi-
ments using the TPC-H benchmark to assess how key architectural
components, such as the Vector Extension (RVV), compressed in-
structions, floating-point support (Zfh and D), virtual memory,
and cryptographic extensions (Zknd), influence query execution
efficiency. This study provides concrete evidence of how design
decisions at the ISA level affect the performance of real-world data-
base on RISC-V platforms. Our key contributions are summarized
as follows.

• We provide a review of the support for RDBMS in RISC-V, sur-
veying a wide range of systems including PostgreSQL, MySQL,
DuckDB, and commercial engines like Mimer SQL. Our study
categorizes these systems based on their level of integration (e.g.,
official, community-maintained, patched) and identifies practical
challenges such as dependency mismatches, compiler limitations,

and missing architectural support that hinder smooth deploy-
ment on RISC-V platforms.

• We perform a detailed experimental analysis of several represen-
tative RISC-V ISA extensions: vector extension (V), floating-point
support (Zfh, D), compressed instructions (C), and virtual memory
support (Sv)—to evaluate their individual effects on OLAP query
execution using TPC-H workloads. By isolating each extension,
we quantify its performance impact and identify non-obvious
trends, such as the limited effectiveness of compiler-driven vec-
torization and the minimal runtime influence of compressed
instructions. To the best of our knowledge, previous work has
not systematically evaluated these ISA components in the con-
text of database query performance on RISC-V platforms.

• We demonstrate the performance potential of RVV 1.0 in accel-
erating relational workloads by manually optimizing vectorized
query operators. Our hand-tuned implementations yield up to
10× speedups on scan, filter, and aggregation-heavy queries,
highlighting the substantial performance gains achievable when
explicit vectorization is employed in cases where compiler auto-
vectorization falls short.
Paper Organization. The remainder of the paper is organized as

follows. Section 2 provides a primer on the RISC-V features relevant
to database execution. Section 3 surveys the support for RDBMS in
RISC-V. Section 4 presents performance evaluations using TPC-H
benchmarks.

2 RISC-V ARCHITECTURE PRIMER
To contextualize our study, we first outline RISC-V’s core attributes
and then examine its implications for database workloads through
two lenses: the base ISA’s modularity and the vector extension’s
potential for data process.

2.1 What is RISC-V?
RISC-V is an open standard instruction set architecture (ISA) de-
signed with an emphasis on simplicity, modularity, and extensi-
bility. Unlike proprietary ISAs such as x86 and ARM, RISC-V is
publicly available and does not require licensing, enabling broad
participation from academia, industry, and open-source communi-
ties. Its open nature supports various hardware implementations
and facilitates research and development across a range of plat-
forms—from embedded devices to high-performance computing
systems. The ISA’s modular structure also promotes hardware-
software co-design, where system software and hardware architec-
tures can be jointly optimized to meet domain-specific performance
and functionality requirements such as database and AI [39].

2.2 Overview of RISC-V ISA
RISC-V is designed to be modular, extensible, and royalty-free,
enabling academic research and industrial deployment across a
wide range of platforms, from embedded microcontrollers to high-
performance servers [3]. Its modular nature allows implementers to
select instruction set extensions that meet their specific application
requirements and to optionally define custom extensions when
needed. This flexibility makes RISC-V particularly attractive for
both cost-sensitive embedded systems and performance-critical
domains.

2



The base ISA defines aminimal integer instruction set (RV32I/RV64I),
which can be extended with standard extensions such as:

• M: Integer multiplication and division
• A: Atomic instructions for synchronization and concur-

rency
• F/D: Single and double-precision floating-point support
• C: Compressed 16-bit instructions for improved code den-

sity
• V: The vector extension for data-parallel workloads, critical

for query processing and machine learning
• Zicsr/Zifencei: Control and status register access and in-

struction fence, respectively, both are essential for low-level
system programming.

RISC-V’s modularity also allows the inclusion of emerging ex-
tensions like Zfinx, which enables floating-point operations using
integer registers, particularly useful for systems without dedicated
floating-point units (FPUs). Other relevant extensions in database
contexts include Zba/Zbb for bit manipulation and Zk* for crypto-
graphic primitives.

For vectorized and parallel data processing, the V extension (RVV)
introduces scalable vector registers and operations, which make
RISC-V especially promising for accelerating scan, join, and aggre-
gation operations in analytical workloads.

Its openness and growing ecosystem, including upstream support
in compilers (e.g., GCC, LLVM), operating systems (e.g., Linux), and
hardware simulators (e.g., QEMU), make RISC-V an increasingly
attractive target for database system research and deployment.

We noticed that RISC-V ISA has proposals related to JIT and
Transaction Memory [3], but unfortunately there is no progress in
these areas.

2.3 Vector Extension (RVV 1.0)
The RISC-V Vector Extension Version 1.0 (RVV 1.0) represents a
significant milestone as the first frozen vector instruction standard
in the RISC-V ecosystem, establishing a stable ABI for vectorized
computation. Unlike its provisional predecessors, RVV 1.0 intro-
duces a production-ready, scalable vector ISA model that decouples
the hardware vector length from the instruction semantics while
maintaining binary compatibility. This design enables portable high
performance execution of data-parallel workloads across heteroge-
neous hardware, which is a critical advantage for modern database
engines [32].
Scalable Vector Lengths. RVV adopts a dynamic vector lengthmodel,
where themaximumvector length (VLEN) is implementation-defined,
and the active vector length (VL) is determined at runtime by vsetvl
instruction. This allows a single binary to adapt to a wide vari-
ety of hardware configurations, from low-power edge devices to
high-throughput server-class processors. For database systems with
vectorized execution engines, this facilitates query plan portability
without sacrificing hardware efficiency.
Vector Registers and Element Types. The architecture provides 32
vector registers (v0–v31), each capable of holding up to VLEN bits.
These registers operate on configurable element types (standard
element widths, SEW), which range from 8 to 64 bits for integers
and floating point values. This flexibility is beneficial for processing

columnar data formats (e.g., Arrow, Parquet), especially when deal-
ing with compressed or dictionary-encoded columns that require
type reinterpretation or width conversion.
Masking and Predicated Execution. RVV includes implicit predica-
tion using a dedicated vector mask register (v0). This supports
masked operations that enable conditional execution on a per-
element basis. For database queries, this allows selection predicates
and null filtering to be vectorized efficiently without introducing
control flow divergence, preserving SIMD lane utilization even
under sparse filtering conditions.
Flexible Memory Access. The extension supports multiple memory
access patterns, including unit-stride, strided, indexed, and seg-
mented loads and stores. These are especially useful in scan and
join operations where attribute data are often accessed in non-
contiguous layouts due to projection or cache-optimized storage
formats. Combined with the loop-stripmining behavior inherent
in RVV, this enables efficient traversal over large datasets with
minimal control overhead.
Theoretical Implications for Database Execution Engines. The vec-
torized execution paradigm of modern analytical databases aligns
naturally with the capabilities of RVV. For example, tight loops
over columnar buffers, used in filter, projection, and aggregation
operators, can be directly mapped to RVV instructions, reducing
interpretation overhead and improving throughput. Unlike fixed-
length SIMD where compile-time vector width limits performance
portability, RVV enables database engines to generate vectorized
code that adapts to the available hardware, either via JIT or in-
terpreter specialization. This makes RVV particularly suitable for
execution engines targeting RISC-V backends in cloud or edge de-
ployments.

3 DATABASE ECOSYSTEM ON RISC-V
Running relational database systems on RISC-V platforms intro-
duces a multifaceted set of challenges, ranging from early-stage
ecosystem maturity to architectural compatibility and ISA-specific
performance tuning. In this section, we analyze the current state
of the RISC-V database software stack, with a focus on toolchain
availability, OS support, and compatibility of mainstream RDBMS
engines.

3.1 Toolchain & OS Support
Before relational database systems can be effectively run on RISC-
V platforms, a robust and well-developed software ecosystem is
essential. One of the most critical milestones was the integration
of RISC-V support into the mainline Linux kernel on 4.15, com-
pleted in 2017 [33]. This achievement, driven by the collaborative
efforts of the open-source community, laid the foundation for op-
erating system compatibility and hardware abstraction on RISC-V
processors.

Building on this, major Linux distributions, including Debian [6],
Fedora, Arch Linux, and Gentoo, have gradually incorporated RISC-
V ports into their official repositories, enabling package manage-
ment, system tooling, and essential libraries to function seamlessly
on RISC-V systems. These distributions have not only provided base

3



Table 1: Milestones of RISC-V support across major
toolchains

Year Toolchain Milestone

2017 GCC RISC-V support introduced in GCC 7.2
2018 LLVM Stable RISC-V backend in LLVM 9.0
2020 Rust RISC-V promoted to Tier 2 support
2021 GDB V extension debug supported in GDB 11.1
2023 Go Official 64-bit RISC-V binary released
2024 GCC/LLVM Full RVV1.0 support in both compilers

system compatibility, but have also actively maintained patches
and build pipelines for RISC-V support.

Furthermore, the readiness of modern programming languages
has played a key role in enabling the development of a database
system on RISC-V. The Rust, Go, and C++ toolchains(GCC, GDB [4],
LLVM) have all introduced stable support for RISC-V targets under
Linux, as illustrated in Table 1, allowing developers to build and
optimize systems-level software, including databases, without re-
quiring platform-specific rewrites. The cross-language toolchain
support simplifies the process of porting and optimizing database
engines such as PostgreSQL, DuckDB, and TiDB.

Overall, the convergence of upstream Linux support, distribution-
level packaging, and modern language toolchains has made it fea-
sible to develop, compile, and deploy high-performance database
systems on RISC-V, accelerating both research and production use
of the architecture. ures like the vector extension or relaxedmemory
models.

3.2 RDBMS Compatibility
As shown in Table 2, the support for the RISC-V architecture
varies significantly between the main relational database manage-
ment systems (RDBMS). Among those with official support, SQLite
demonstrates excellent portability, due to its clean C codebase and
well-maintained engineering practices, allowing seamless compila-
tion on RISC-V platforms. PostgreSQL has also officially merged
architecture-specific patches, such as support for RISC-V spinlocks,
into its mainline.
MySQL and MariaDB. For communities-maintained ports, the
situation is more fragmented.MySQL, a widely used open-source
RDBMS known for its plugable storage engine architecture andwide
compatibility with legacy enterprise applications, has not officially
adopted support for RISC-V. Although downstream distributions
such as Debian and Gentoo maintain working patches —-notably
those addressing access to CPU timestamp counters (e.g., rdtime)
and atomic operations —- the upstreamMySQL project has declined
to merge these changes[23]. By contrast, MariaDB, a community-
driven fork of MySQL that emphasizes extensibility and portability,
has integrated equivalent RISC-V patches upstream. These include
the architectural adjustments necessary for clean builds on RISC-V
Linux [7]. MariaDB’s more modular design, active collaboration
with distribution maintainers, and broader platform testing have
enabled smoother operation on RISC-V systems, positioning it as a
more accessible option for open-source RDBMS experimentation
on this architecture.

PostgreSQL. PostgreSQL is a widely adopted open-source rela-
tional database system known for its robustness, extensibility, and
compliance with SQL standards. Designed with a strong focus on
correctness and transactional integrity, PostgreSQL is commonly
used in applications requiring complex queries, concurrency con-
trol, and advanced data types. Starting from version 16, official
support for the RISC-V architecture has been incorporated into
the upstream repository [29], allowing out-of-the-box compilation
without the need for downstream patches. The PostgreSQL com-
munity has shown a proactive engagement in supporting emerging
platforms, and RISC-V is no exception. Packages for RISC-V are
actively maintained in major Linux distributions such as Debian
and Arch Linux, ensuring accessibility and timely updates. This
makes PostgreSQL one of themostmature and portable open-source
databases available for experimentation and deployment on RISC-V
systems.
SQLite, as a lightweight embeddable SQL database engine, main-
tains strong portability across platforms due to its minimalist design
and careful engineering. Although the SQLite development team
does not explicitly advertise RISC-V support, the system compiles
and runs out-of-the-box on RISC-V without requiring any patches
or architecture-specific modifications. This is largely attributed to
its OS-level abstraction layer (VFS) and CPU-agnostic architecture,
where platform independence is achieved through portable C code,
leaving CPU-specific details to the compiler [13].
TiDB, while capable of running on RISC-V, has not yet integrated
native support, citing the absence of continuous integration (CI)
infrastructure for this architecture [37]. TiDB is a distributed SQL
database designed for HTAP workloads, combining a stateless SQL
layer (compatible withMySQL) with a distributed key-value storage
engine inspired by Google Spanner and HBase [14]. Its architec-
ture is implemented primarily in Go, which makes the maturity of
the Go toolchain critical for successful compilation and execution.
Although PerfXLab’s 2023 experiment reported that TiDB could
not be compiled or executed on RISC-V [28], our 2025 experiment
demonstrates that TiDB can now be successfully built and run on
RISC-V hardware. This progress is largely attributable to the ongo-
ing stabilization and completeness of the Go language toolchain for
the RISC-V Linux environment, which supports the TiDB’s build
system and runtime. The discrepancy between earlier and current
findings underscores the rapid evolution of the RISC-V software
ecosystem.
DuckDB. DuckDB is an in-process analytical database designed
for OLAP-style workloads, featuring vectorized query execution,
columnar storage, and seamless integrationwith data science ecosys-
tems. Its lightweight architecture and zero-dependency deployment
model make it well suited for embedded analytics and interactive
environments such as notebooks [30]. In 2025, DuckDB has inte-
grated CI testing for RISC-V using QEMU-based environments,
demonstrating functional compatibility with RISC-V Linux [9].
However, the system depends on jemalloc—a high-performance
memory allocator that improves multithreaded memory manage-
ment efficiency—which in turn requires the Zihintpause exten-
sion. This optional RISC-V ISA feature enables more efficient spin-
wait loops, which jemalloc leverages to reduce contention and

4



Table 2: RISC-V Support Status of Major RDBMS (as of 2025)

Database Type Open Source Primary Language Support Patch Distro Release Binary Release

SQLite OLTP Yes C Official No Yes No
Mimer SQL OLTP No C/C++ Official No No Yes
Oracle OLTP No C/C++ No N/A No No
SQL Server OLTP No C/C++ No N/A No No
PostgreSQL OLTP Yes C Official No Yes No
MySQL OLTP Yes C/C++ Community Yes Yes No
MariaDB OLTP Yes C/C++ Community No Yes No
DuckDB OLAP Yes C++ Community No No No
ClickHouse OLAP Yes C++ No N/A No No
TiDB HTAP Yes Go Community No No No
OceanBase HTAP Yes C++ No N/A No No

improve allocator performance under parallel workloads. Conse-
quently, DuckDB runs reliably only on hardware or emulators that
implement Zihintpause, limiting support onminimal RISC-V cores
that omit this extension.
Mimer SQL.Mimer SQL is a lightweight relational database system
primarily designed for embedded high-performance and real-time
applications. It is known for its small footprint, support for stan-
dard SQL and the ability to operate in environments with stringent
resource constraints, such as automotive and industrial control sys-
tems. Although it is proprietary software, Mimer SQL stands out as
one of the few commercial database systems that officially supports
RISC-V, offering pre-built binaries targeted at this architecture.

In contrast, several major systems—such as Oracle, SQL Server,
ClickHouse, and OceanBase—have not disclosed any RISC-V sup-
port efforts to date. These systems are either tightly coupled to x86-
specific optimizations or are closed-source, hindering community-
driven porting.

4 PERFORMANCE EVALUATION
We perform a comprehensive performance evaluation of relational
databases on RISC-V platforms, focusing on three key perspectives:
(1) the overall impact of the base RISC-V ISA on analytical work-
loads (subsection 4.3), (2) the performance effects of enabling or
disabling specific ISA extensions (subsection 4.4), and (3) the per-
formance gains achievable through manual optimization using the
RISC-V Vector Extension (RVV) (subsection 4.6). Before present-
ing the results, we first outline the experimental setup used in our
study.

4.1 Test Environment
Hardware Setup. All native RISC-V experiments were conducted
on the Milk-V Jupiter development board, equipped with a Spacemit
M1 processor clocked at 1.8 GHz and paired with 16GB LPDDR4X
memory. The processor features an octa-core X60™ implementation
(RV64GCVB) that compiles with RVA22 ABI and supports the RISC-
V Vector Extension 1.0 (RVV 1.0) [22]. Passive thermal dissipation
is provided via a copper heatsink. Persistent storage is handled by
a FanXiang S500Pro NVMe SSD.

Software Stack. The operating system used is Bianbu Linux, a
Debian-derived distribution customized by Spacemit, running the
Linux kernel version 6.6. The database systems evaluated include
PostgreSQL (v16.2), DuckDB (v1.3.0), and SQLite (v3.45.1, commit
e876e51a0). PostgreSQL and SQLite were installed from the official
Bianbu package repository. Compilation was performed using GCC
14, with LLVM 20 used for comparison in specific experiments.
Emulated Environment. Some experiments, particularly those
that involve instruction-level tuning or compiler comparisons not
feasible on the hardware board(Virtual Memory Extension and
Zknd extension), were conducted using QEMU 10. The host sys-
tem featured an Intel® Xeon® Gold 6342 CPU at 2.80GHz. The
QEMU target was configured for RV64 with 8 emulated cores and
16GB allocated memory. ISA extensions were selectively enabled
depending on the specific experiment, allowing detailed control
over architectural configurations.
Benchmark Configuration.We use the TPC-H benchmark [38],
a widely adopted OLAP workload that simulates decision support
queries on large datasets with minimal prior knowledge of query
patterns. It consists of eight tables in the third normal form (3NF).
Unless otherwise noted, experiments are conducted using a scale
factor of 10 and all benchmark results report the mean of three
independent runs.

4.2 How Does the RISC-V ISA Influence TPC-H
Performance?

To understand the architectural impact of RISC-V on analytical
query workloads, we examine how key ISA-level features influence
performance when executing the TPC-H benchmark on emerging
RISC-V platforms.
Can vector instructions accelerate core query operations? Yes.
RISC-V’s Vector Extension (RVV) Version 1.0, particularlywith hard-
ware supporting at least Zvl256b (256-bit vector register length),
enables efficient data-level parallelism. This is beneficial for opera-
tions such as scan, filter, projection, and aggregation, all of which
are fundamental to analytical queries.

5



Q1 Q4 Q6 Q8 Q13 Q21
Query

0

1

2

3

4

5

E
xe

cu
tio

n 
Ti

m
e 

(s
)

DuckDB PostgreSQL SQLite

(a) TPC-H (SF0.1)

Q1 Q2 Q3 Q6 Q11 Q18
Query

0

10

20

30

40

50

E
xe

cu
tio

n 
Ti

m
e 

(s
)

DuckDB PostgreSQL SQLite

(b) TPC-H (SF1)

Q1 Q2 Q3 Q6 Q11 Q18
Query

0
10
20
30
40
50
60
70
80

E
xe

cu
tio

n 
Ti

m
e 

(s
)

DuckDB PostgreSQL

(c) TPC-H (SF3)

Figure 1: Execution time comparison of DuckDB, PostgreSQL, and SQLite across scale factors.

What is the role of floating-point extensions in analytical
workloads? Floating-point capabilities, such as Zfh (half-precision)
and D (double-precision), are essential for numerical processing. Ag-
gregation and statistical functions in TPC-H (e.g., SUM, AVG) rely on
precise and efficient arithmetic operations, which these extensions
help accelerate.
Can Compressed Instructions effect Execution Efficiency?
The C extension (compressed instruction set) contributes to perfor-
mance indirectly by reducing code size and alleviating instruction
cache pressure. This is particularly beneficial for vectorized query
engines, where complex, instruction-dense execution plans can
suffer from instruction cache thrashing. By improving binary com-
pactness, the C extension improves cache residency, which in turn
helps sustain pipeline throughput under heavy workloads.
Is virtual memory support relevant for database workloads?
Yes. Support for virtual memory, including standard paging and ad-
dress translation mechanisms, is vital for running complex database
systems under Linux. Activating features such as memory protec-
tion, process isolation, and fine-grained memory management, all
of which are fundamental to stability and performance.
What about security and cryptographic extensions?While not
directly affecting the speed of the query, cryptographic extensions
such as Zknd can enhance data security by accelerating encryption
and integrity checks. This makes them valuable in secure database
environments, especially in cloud or multi-tenant deployments.
How important is the software stack? A well-developed soft-
ware environment is critical, including RVV-aware compiler toolchains
(e.g., LLVM with vector intrinsics), vector-friendly memory layouts,
and an in-memory execution model—is critical. These components
ensure that the hardware features are actually utilized in query
execution, enabling meaningful performance gains.

Together, these features define a practical baseline for evaluating
RISC-V in high-performance relational database systems. By focus-
ing on microarchitectural characteristics, we can isolate the ISA’s
impact on analytical query workloads such as those represented by
TPC-H.

4.3 Baseline TPC-H Benchmark Results
As shown in Figure 1a,Figure 1b and Figure 1c, DuckDB main-
tains consistent performance in all scale factors (SF0.1, SF1, SF3),
successfully executing all queries within the 20 second threshold.
PostgreSQL shows scalability challenges: while handling SF0.1 ad-
equately, it exceeds the timeout on Query 17 and 20 at SF1, and
these issues intensify at SF3 (Figure 1b,Figure 1c). SQLite demon-
strates severe performance degradation with scale growth - though
functional for Queries 6, 10–12, 14,16 at SF0.1 (Figure 1a), it fails
most queries (including 17,20,22) at SF1 and becomes impractical
at SF3. DuckDB is the only database that can run TPC-H SF10 in
less than 5 minutes.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

Q01
Q02
Q03
Q04
Q05
Q06
Q07
Q08
Q09
Q10
Q11
Q12
Q13
Q14
Q17
Q18
Q19
Q20
Q21
Q22

Disable RVV1.0
Enable RVV1.0

Figure 2: Comparison of total elapsed time on DuckDB for
each Query with and without RVV1.0 on TPC-H SF10

6



Q17 Q18 Q9 Q21 Q19
Query

0

2

4

Ti
m

e 
In

cr
ea

se
 (s

)

(a) Zfh extension impact (SF10)

DuckDB SQLite PostgreSQL
Database System

0

10

20

30

R
ed

uc
tio

n 
(%

)

24.1%

5.0%

17.8%

(b) C extension binary size

Q1 Q9 Q13 Q18 Q21
Query

0

5

10

15

E
xe

cu
tio

n 
Ti

m
e 

(s
)

D Extension Disabled
D Extension Enabled

(c) D extension impact (SF10)

Q9 Q10 Q13 Q18 Q21
Query

0

2

4

6

E
xe

cu
tio

n 
Ti

m
e 

(s
)

Without RISC-V Zknd
With RISC-V Zknd

(d) Zknd extension impact (SF3)

Figure 3: Performance impact of key RISC-V ISA extensions across database benchmarks.

4.4 RISC-V ISA Extension Impact Analysis
Given DuckDB’s superior performance across all TPC-H scale fac-
tors in our baseline evaluation (subsection 4.3), we selected it as the
primary subject to analyze the impact of RISC-V ISA extensions. As
the only engine capable of completing the TPC-H SF10 benchmark
in five minutes, DuckDB provides a stable and high-performing
baseline, making it well suited for assessing how low-level archi-
tectural features affect execution efficiency.

To this end, we compile DuckDB under varying compiler config-
urations and with selected RISC-V extensions enabled, evaluating
the effects on execution time, binary size, and responsiveness to
vectorized and compressed data formats.
V Extension. The Spacemit M1 processor adopts the RVV 1.0 stan-
dard for the RISC-V vector extension. To evaluate its impact on data-
base performance, we modified DuckDB compilation parameters to
enable or disable RVV 1.0 support and executed the TPC-H bench-
mark at scale factor 10 (SF10). The experimental results indicate
that the performance difference between the two configurations is
negligible, with a maximum variation of less than 0.1 seconds, as
shown in Figure 2.

For GCC and Clang, there are some differences in the way these
two compilers implement auto-vectorization, which may cause
performance differences, but experiments show that this difference
is negligible as shown in Figure 4.

While our experiments reveal limited benefits from compiler
auto-vectorization, we further investigate whether manual RVV
code optimization can unlock higher performance for specific query
patterns in the next subsection.
Zvl Extension.The Zvl Extension is a modular enhancement to the
base execution engine that introduces vectorized processing capabil-
ities optimized for heterogeneous hardware platforms. Specifically
designed to exploit architectural features such as the RISC-V Vector
Extension (RVV), Zvl dynamically adapts its execution strategy at
runtime by selecting an appropriate vector length and instruction
configuration based on the capabilities of the underlying hardware.

The Spacemit M1 processor recommends a default vector length
of 256 bits. To assess the sensitivity of performance to vector length,
we performed experiments using compilation configurations tar-
geting 128, 512, 1024, 2048, and 4096 bit vectors. A binary-level

Q1 Q9 Q13 Q18 Q21
Query

0.0

2.5

5.0

7.5

10.0

12.5

15.0

E
xe

cu
tio

n 
Ti

m
e 

(s
)

GCC Clang

Figure 4: Query execution times of a RISC-V-based database
compiled with GCC and Clang On TPC-H SF10.

comparison revealed minimal differences across these configura-
tions, with only 0.15% of the binary content varying. In practical
runtime tests, the zvl parameter had negligible impact on overall
data processing performance, as illustrated in Table 3. This sug-
gests that the compiler effectively adapts to the available vector
length, generating near-optimal code regardless of the configured
zvl value.

Zvl length Time
zvl128b 5.65s
zvl256b 5.61s
zvl512b 5.61s
zvl1024b 5.61s
zvl2048b 5.61s
zvl4096b 5.61s

Table 3: Average query time across different Zvl vector con-
figurations on TPC-H SF10

7



Zfh Extension.The Zfh Extension enhances the execution engine by
enabling efficient computation using half-precision (16-bit) floating-
point arithmetic, in line with the RISC-V Zfh specification. This
extension targets workloads that are tolerant to reduced precision,
such as approximate query processing, machine learning inference,
and aggregation over noisy data, where computational throughput
and memory bandwidth are critical.

By introducing native support for half-precision operations, Zfh
significantly reduces the memory footprint and increases SIMD
packing density. The query planner is augmented to detect eligible
operations and automatically downcast operands and intermedi-
ate results to 16-bit floats when precision constraints allow. At
runtime, Zfh leverages hardware-supported conversions and arith-
metic instructions to avoid costly emulation overheads. However,
we observed that 27% performance degradation(Figure 5b) upon
enabling the Zfh extension may stem from several architectural
and compiler-related factors. First, the activation of Zfh may alter
the compiler’s optimization decisions, potentially resulting in un-
intended insertion of half-precision floating-point operations and
type conversion instructions (e.g., fcvt.h.s or fcvt.s.h), even
when the data is predominantly in single or double precision. Sec-
ond, the introduction of Zfh may increase register pressure, es-
pecially in the floating-point register file, thus affecting register
allocation and spilling behavior during function calls. This could
lead to a higher frequency of memory accesses and degradation of
execution efficiency. Third, on in-order RISC-V cores or microarchi-
tectures with limited instruction dispatch capabilities, the inclusion
of additional Zfh instructions may exacerbate pipeline hazards or
structural conflicts, thus reducing overall instruction throughput.
Together, these factors may explain the counterintuitive slowdown
observed in the database workload when Zfh is enabled.
C Extension To evaluate the effect of the RISC-V compressed in-
struction set (C extension), we compiled DuckDB, SQLite and Post-
greSQL on RISC-V platforms with and without the extension en-
abled. As summarized in Figure 3b, enabling the C extension reduces
the binary size by 24% for DuckDB, 17.8% for PostgreSQL, and 5%
for SQLite. These reductions reflect the structural differences be-
tween systems, with larger or more modular engines benefiting
more. Despite expectations that reduced binary size could allevi-
ate instruction cache pressure, particularly in vectorized engines
with dense execution plans, our benchmarks show no measurable
runtime performance improvement across tested workloads. This
suggests that, under current compiler and hardware configurations,
instruction fetch and decode are not dominant bottlenecks, and the
primary benefit of the C extension remains in reducing the memory
footprint rather than execution latency.
D extension.The D extension provides hardware acceleration for
double-precision floating-point operations. To assess its impact on
analytic query performance, we compared the execution times of
TPC-H SF10 with and without the D extension enabled. As shown in
Figure 3c, disabled this extension consistently leads to performance
degradation, with an average slowdown of 1 to 2 seconds per query.
Virtual Memory Extension.This part of the test is performed on
QEMU10. This part involves the two RISC-V extensions Svpbmt and
Svnapot. Enabling these two options does not significantly improve
database performance.

Zknd Extension. The Zknd extension introduces specialized RISC-V
instructions for accelerating SHA-based cryptographic hash func-
tions. We evaluated its impact on analytical query performance
using the TPC-H SF3 benchmark under QEMU-based simulation.
As shown in Figure 3d, enabling Zknd resulted in consistent perfor-
mance degradation across all queries. This outcome suggests that
SHA acceleration is largely irrelevant for typical database work-
loads, where hash joins and aggregations rely on non-cryptographic
hash functions. The observed slowdown may stem from increased
branching overhead, contention on shared execution resources, or
suboptimal code generation triggered by the presence of crypto-
graphic instructions. Moreover, simulation artifacts and instruction
scheduling changes may exacerbate cache behavior, further limiting
overall efficiency.

4.5 Cross-Architecture Performance
Comparison

Although the RISC-V architecture has made significant progress
in recent years, it still lags far behind the ARM architecture, de-
spite both being based on the RISC design philosophy. As shown in
Figure 5, there is a substantial performance gap in the TPC-H bench-
mark between the Broadcom BCM2712 (Raspberry Pi 5) and the
Spacemit M1 (Milk-V Jupiter). The average execution time on the
RISC-V platform is approximately 3 to 5 times slower. This disparity
is in part due to architectural differences: Spacemit M1 runs at a
lower frequency (1.8 GHz) and only supports in-order execution,
whereas Broadcom BCM2712 features higher frequencies (2.4Ghz)
and support out-of-order execution [1]. Furthermore, the IPC (in-
structions per cycle) of current RISC-V designs is notably lower
than the mainstream CPUs. This performance gap is largely driven
by economic factors: increasing IPC typically requires larger chips
with more transistors, which in turn reduces power efficiency, in-
creases manufacturing costs, and adds complexity to the design [25].
Given the highly competitive nature of the processor market, most
RISC-V vendors have so far prioritized the microcontroller and
embedded system segments. They are gradually climbing up the
performance ladder, but designing a truly high-performance CPU
is a multi-year effort requiring substantial engineering resources.
Currently, the RISC-V ISA is undergoing rapid development, with
frequent specification updates and extension proposals actively
maintained by the community on GitHub [40].

4.6 Case Study: Manual RVV-Aware Query
Optimization

Motivated by performance inconsistencies observed in preliminary
experiments and to explore the potential of RVV beyond compiler
defaults, we implemented a TPC-H scale factor 3 (SF3) benchmark
using Apache Arrow to load data from Apache Parquet files with
hand-optimized vectorized kernels on the Milk-V Jupiter develop-
ment board. Our evaluation demonstrates that using the RISC-V
Vector Extension (RVV) improves query performance across the
benchmark, with speed-ups ranging from 3% to 10×. While Query 4
and Query 6 benefit most significantly, we also observe meaningful
acceleration in Query 12 (2.26×) and modest gains in Query 9 (3%),
as detailed in Figure 6.

8



Q1 Q3 Q9 Q13 Q18 Q21
TPC-H Query

0

5

10

15
E

xe
cu

tio
n 

Ti
m

e 
(s

)

RISC-V (MilkV) ARM (Raspberry Pi 5)

(a) SF10 of DuckDB

Q3 Q6 Q9 Q13 Q18 Q21
TPC-H Query

0

100

200

300

E
xe

cu
tio

n 
Ti

m
e 

(s
)

RISC-V (MilkV) ARM (Raspberry Pi 5)

(b) SF3 of TiDB

Figure 5: Query execution time comparison on TPC-H running on Arm-based Broadcom BCM2712 (Raspberry Pi 5) and
RISC-V–based Spacemit M1 (Milk-V Jupiter).

A closer examination of representative queries reveals the prac-
tical value and limitations of RVV-aware optimization. Query 1
benefits from vectorized arithmetic operations to compute derived
columns (e.g., discount_price, taxed_price) and vectorized ag-
gregation for SUM/AVG metrics. Query 4 leverages RVV for par-
allelized date comparisons (e.g., order_date < ’1993-10-01’),
while Query 6 achieves its 10× speedup through vectorized condi-
tional aggregation in both selection and accumulation stages. For
Query 12, RVV accelerates the evaluation of complex shipping rule
predicates through vectorized string matching and date arithmetic.
Query 9 shows more modest gains (3%) due to its dependence on
hash joins that benefit less from our current vectorization approach
— suggesting join algorithms as future optimization targets.

These results demonstrate that explicit RVV utilization can signif-
icantly outperform compiler defaults, though optimization efficacy
varies with query characteristics. Consistent improvements high-
light the importance of low-level architectural awareness in query
execution in RISC-V, particularly for compute-intensive operations
where RVV delivers 1.03–10× speedups in our benchmark.

Q1 Q4 Q6 Q9 Q12
Query

0

100

200

Ti
m

e 
(s

)

Enable RVV Disable RVV

Figure 6: Execution time comparison for TPC-H queries Q1,
Q4, Q6, Q9, andQ12 at scale factor 3 (SF3) usingApacheArrow
with Apache Parquet input

5 DISCUSSION
Our experimental evaluation reveals the nuanced relationship be-
tween RISC-V architectural features and database system perfor-
mance. Although baseline benchmarks illustrate the feasibility of
running relational databases on RISC-V, a deeper analysis of the
characteristics at the ISA level uncovers both latent performance
opportunities and practical limitations. We now summarize the key
insights gained and outline directions for future research.

5.1 Key Findings
Our study yields several important insights into the viability and
performance of relational databases on RISC-V:

• SQLite exhibits the highest out-of-the-box compatibility
among the tested databases, compiling and executing success-
fully on RISC-V platforms without modifications. PostgreSQL
shows the strongest community and upstream support, as re-
flected in the active maintenance of official RISC-V packages by
several major Linux distributions. MariaDB and TiDB provide
partial but promising support. DuckDB can be compiled with
minor attention to compiler parameters. However, the lack of ro-
bust and widely adopted CI solutions targeting RISC-V presents
a practical barrier to sustained support, as it discourages develop-
ers from actively maintaining cross-architecture compatibility.

• Most RISC-V ISA extensions have a limited impact on ma-
ture database systems. Enabling the Vector Extension (V) pro-
vides less than 5% improvement on TPC-H SF10 using default
compilation pipelines, with no significant variation betweenGCC
and LLVM. The D extension offers modest improvements (1–2
seconds reduction) due to hardware-accelerated double precision
arithmetic. The Zvl vector-length extensions show negligible
effect on performance in current workloads and compilers.

• Some extensions can negatively affect performance. Acti-
vating the Zknd cryptographic extension reduces performance by
up to 32%, likely due to code generation overheads and immature
support in back-end optimizers. Likewise, the Zfh half-precision
extension increases the execution time in several queries, as
shown in Figure 5b.

9



• The compressed instruction set (C) significantly reduces
binary size—by up to 24%—without impacting runtime per-
formance. This makes it particularly beneficial for memory-
constrained deployments such as embedded systems.

• Manually optimized RVV implementations provide sub-
stantial performance gains. In our case study (subsection 4.6),
handwritten vectorized kernels using RVV achieved up to 10×
speedups, especially for filter and aggregation-heavy queries
such as Query 4 and Query 6. This highlights the performance
ceiling imposed by current compiler auto-vectorization and the
benefit of hardware-aware tuning.

These findings suggest that, while RISC-V is a promising target
for general-purpose database systems, realizing its full potential
requires fine-grained architectural awareness and low-level opti-
mization beyond what current compilers automatically provide.

5.2 Future Directions
Building on our evaluation of general-purpose RISC-V platforms
for relational database workloads, we identify several promising
directions for future research.
(1) Supporting Embedded and Edge-Oriented Extensions. To extend
the support of the database to constrained environments, future
work should explore RISC-V extensions such as Zfinx, Zdinx, and
Zhinx, which enable floating-point operations using integer reg-
isters. These extensions offer reduced hardware complexity and
binary size, aligning well with edge computing and IoT deploy-
ments. Compiler support in GCC and LLVM is already progressing,
and empirical evaluation on embedded-class RISC-V chips would
help quantify their practical benefits.
(2) Co-Designing Custom ISA Extensions for Databases. The mod-
ularity of RISC-V opens opportunities to tailor the ISA for database
acceleration. Potential directions include:

• Query planning and execution optimizations: Introduce
custom instructions for filtering, aggregation, and join primitives.

• Memory hierarchy tuning: Explore cache-aware or memory-
efficient layouts in conjunction with hardware hints.

• Vector-aware JIT support: Build JIT engines that emit RVV-
adaptive code paths depending on runtime VLEN and microarchi-
tecture capabilities.

Tools such as Spike [34] and Sail [2] enable prototyping such
changes, and hardware simulators can assist in cost-benefit analysis
before silicon implementation.

Together, these directions aim to deepen the synergy between
RISC-V’s hardware flexibility and the evolving needs of relational
data processing, especially as the architecture enters new deploy-
ment domains.

6 RELATEDWORK
RISC-V Architecture. In 2023, Perfxlab investigated the adapt-
ability of the database to RISC-V on the SG2042 processor, but only
tested compatibility and did not run performance-related tests [28].
Gao et al. analyzed the possibility of running big data applications
on the RISC-V architecture [10]. Jihwan Lim et al. tried to extend
ISA to increase the speed of memory data processing in embedded

devices, achieving a 34.4% speed increase and 18% energy reduc-
tion [16]. Heng Lin et al. tried to use the Rust language to implement
the early version of the RISC-V V Extension library, speeding up
the basic linear algebra subroutines(BLAS) by 1.3 to 2.31 times [17].
Quentin et al. studied the problems caused by the X86 and RISC-V
architectures in JIT compiler porting [8]. Konstantin et al. tried to
analyze the efficiency of RISC-V ISA on ANN algorithms [35].
RISC Type Architecture. As RISC-based architectures, both ARM
and RISC-V share similar design philosophies, emphasizing sim-
plicity and efficiency. They are frequently compared in terms of
performance, power consumption, and hardware support. Gruber et
al. evaluated the Umbra database system on an AArch64-based plat-
form on TPC-H Benchmark, conducting a detailed comparison with
x86-64 [12]. Their analysis highlights key architectural differences,
particularly in memory ordering semantics, memory alignment
requirements, arithmetic operations, instruction selection, and the
handling of immediate operands.
Hardware Accelerated RDBMS. Recent studies have explored
hardware acceleration to improve RDBMS performance. Mancini
et al. investigated GPU acceleration to optimize join operations
on large-scale multi-table datasets [20] , while another work by
Riccardo Mancini’s team employed FPGA to improve PostgreSQL’s
read performance [19]. Furthermore, Perach et al. demonstrated the
potential of processing-in-memory (PIM) architectures to acceler-
ate read operations in relational databases [27]. These approaches
collectively highlight the growing trend of leveraging specialized
hardware to address performance bottlenecks in RDBMS.

7 CONCLUSION
In this paper, we present an in-depth evaluation of relational data-
base systems on RISC-V platforms, revealing how architectural
features and toolchain configurations influence performance. By
assessing database engines across a range of RISC-V ISA extensions
and compiler toolchains, we show that, while RISC-V is increasingly
capable of supporting modern data processing workloads, its effi-
ciency depends strongly on hardware-aware tuning and compiler
maturity. Our results indicate that many standard ISA extensions
contribute little to performance in default settings, while features
like compressed instructions benefit memory-constrained deploy-
ments. Manual optimization with RVV yields substantial gains,
highlighting the current limitations of auto-vectorization. These
findings suggest a need for closer integration between database
design and RISC-V architecture evolution, particularly in embedded
and edge computing scenarios, where custom ISA co-design and
improved toolchain support can unlock greater efficiency.

REFERENCES
[1] Arm Ltd. 2025. Cortex-A76 | Laptop-class Performance with Mobile Efficiency.

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a76. Accessed:
2025-07-03.

[2] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.
Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-
pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.
ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proc. ACM Program. Lang.
3, POPL, Article 71 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290384

[3] Krste Asanović, David Patterson, et al. 2016. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Version 2.1. https://people.eecs.berkeley.edu/~krste/
papers/riscv-spec-v2.1.pdf. RISC-V Foundation.

10

https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a76
https://doi.org/10.1145/3290384
https://people.eecs.berkeley.edu/~krste/papers/riscv-spec-v2.1.pdf
https://people.eecs.berkeley.edu/~krste/papers/riscv-spec-v2.1.pdf


[4] Nick Clifton. 2018. GCC 8.2 Released with RISC-V Support. https://lists.gnu.org/
archive/html/info-gnu/2018-09/msg00001.html. GNU Project Announcement.

[5] Debian Developers. 2025. RISC-V is now a release architecture for Debian 13
(trixie). https://lists.debian.org/debian-devel-announce/2025/05/msg00004.html.
Accessed: 2025-05-21.

[6] Debian Developers. 2025. RISC-V is now an official Debian architecture. https:
//lists.debian.org/debian-devel-announce/2025/05/msg00004.html. Accessed:
2025-05-21.

[7] MariaDB Developers. 2025. Fix building with Clang and GCC on RISC-V. https:
//github.com/MariaDB/server/commit/05be1865a9. Commit 05be186, accessed:
2025-06-01.

[8] Quentin Ducasse, Guillermo Polito, Pablo Tesone, Pascal Cotret, and Loïc Lagadec.
2022. Porting a JIT Compiler to RISC-V: Challenges and Opportunities. In Proceed-
ings of the 19th International Conference on Managed Programming Languages and
Runtimes (Brussels, Belgium) (MPLR ’22). Association for Computing Machinery,
New York, NY, USA, 112–118. https://doi.org/10.1145/3546918.3546924

[9] DuckDB Contributors. 2024. Feature Request: Add RISC-V support Docker
Test for DuckDB. https://github.com/duckdb/duckdb/discussions/16462. https:
//github.com/duckdb/duckdb/discussions/16462 GitHub Discussion #16462.

[10] Yue Gao, Enfang Cui, and Tianzheng Li. 2025. A Review of Big Data Applications
Based on RISC-V. In Proceedings of the 2024 3rd International Conference on
Algorithms, Data Mining, and Information Technology (ADMIT ’24). Association
for Computing Machinery, New York, NY, USA, 316–320. https://doi.org/10.
1145/3701100.3701165

[11] Go Authors. 2022. RISC-V: proposal to move riscv64 port to first class port.
https://github.com/golang/go/issues/52644. Accessed: 2025-05-21.

[12] Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neumann, and
Jana Giceva. 2023. Bringing Compiling Databases to RISC Architectures. Proc.
VLDB Endow. 16, 6 (Feb. 2023), 1222–1234. https://doi.org/10.14778/3583140.
3583142

[13] Richard Hipp. 2021. Forum post: Optimizing indexes with
WHERE clause expressions. https://sqlite.org/forum/forumpost/
92a85830dd5e5277d054fafe56e10c9bdc198a39a114c9d80aa65e7e15d20d44.
Accessed: 2025-07-03.

[14] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, WanWei, Cong Liu, Jian Zhang, Jianjun Li,
XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,
Liquan Pei, and Xin Tang. 2020. TiDB: a Raft-based HTAP database. Proc. VLDB
Endow. 13, 12 (Aug. 2020), 3072–3084. https://doi.org/10.14778/3415478.3415535

[15] Wenqi Jiang, Dario Korolija, and Gustavo Alonso. 2023. Data Processing with
FPGAs on Modern Architectures. In Companion of the 2023 International Con-
ference on Management of Data (Seattle, WA, USA) (SIGMOD ’23). Association
for Computing Machinery, New York, NY, USA, 77–82. https://doi.org/10.1145/
3555041.3589410

[16] Jihwan Lim, Jeonghun Son, and Hoyoung Yoo. 2024. Efficient Processing-in-
Memory System Based on RISC-V Instruction Set Architecture. Electronics 13,
15 (2024). https://doi.org/10.3390/electronics13152971

[17] Heng Lin, Piyo Chen, Yuan-Shin Hwang, and Jenq-Kuen Lee. 2019. Devise Rust
Compiler Optimizations on RISC-V Architectures with SIMD Instructions. In
Workshop Proceedings of the 48th International Conference on Parallel Processing
(Kyoto, Japan) (ICPP Workshops ’19). Association for Computing Machinery, New
York, NY, USA, Article 13, 7 pages. https://doi.org/10.1145/3339186.3339193

[18] LLVM Project. 2025. RISC-V Usage in LLVM. https://llvm.org/docs/RISCVUsage.
html. Accessed: 2025-05-21.

[19] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun Kumar,
and Hadi Esmaeilzadeh. 2018. In-RDBMS hardware acceleration of advanced
analytics. Proc. VLDB Endow. 11, 11 (July 2018), 1317–1331. https://doi.org/10.
14778/3236187.3236188

[20] Riccardo Mancini, Srinivas Karthik, Bikash Chandra, Vasilis Mageirakos, and
Anastasia Ailamaki. 2022. Efficient Massively Parallel Join Optimization for
Large Queries. In Proceedings of the 2022 International Conference on Management
of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Ma-
chinery, New York, NY, USA, 122–135. https://doi.org/10.1145/3514221.3517871

[21] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. 2017. Relaxed opera-
tor fusion for in-memory databases: making compilation, vectorization, and

prefetching work together at last. Proc. VLDB Endow. 11, 1 (Sept. 2017), 1–13.
https://doi.org/10.14778/3151113.3151114

[22] Milk-V. 2025. Milk-V Jupiter - Detail. https://milkv.io/jupiter. Available at
https://milkv.io/jupiter.

[23] MySQL Bugs Database. 2020. MySQL Bug #100356: Compressed columns are not
used for index statistics. https://bugs.mysql.com/bug.php?id=100356 Accessed:
2025-06-01.

[24] Haoran Ning, Bocheng Han, Zhengyi Yang, Kongzhang Hao, Miao Ma, Chunling
Wang, Boge Liu, Xiaoshuang Chen, Yu Hao, Yi Jin, Wanchuan Zhang, and Cheng-
wei Zhang. 2024. Exploring Simple Architecture of Just-in-Time Compilation
in Databases. InWeb and Big Data, Wenjie Zhang, Anthony Tung, Zhonglong
Zheng, Zhengyi Yang, Xiaoyang Wang, and Hongjie Guo (Eds.). Springer Nature
Singapore, Singapore, 504–514.

[25] Omdia. 2023. RISC-V Processors Report. Technical Report. Om-
dia. https://omdia.tech.informa.com/-/media/tech/omdia/brochures/ai/risc-v-
processors-report.aspx Accessed: 2025-05-18.

[26] Che Pan. 2023. Chip War: Chinese Scientists Vow to Launch Break-
through RISC-V Open-source CPU by 2025. South China Morning Post (dec
2023). https://www.scmp.com/tech/tech-war/article/3293610/chip-war-chinese-
scientists-vow-launch-breakthrough-risc-v-open-source-cpu-2025 Accessed:
2025-05-19.

[27] Ben Perach, Ronny Ronen, and Shahar Kvatinsky. 2023. Accelerating Relational
Database Analytical Processing with Bulk-Bitwise Processing-in-Memory. In
2023 21st IEEE Interregional NEWCAS Conference (NEWCAS). 1–5. https://doi.
org/10.1109/NEWCAS57931.2023.10198122

[28] PerfXLab. 2023. RISC-V Public Beta Platform Release. RISC-V International Blog.
https://riscv.org/blog/2023/08/risc-v-public-beta-platform-release Accessed:
2025-05-19.

[29] PostgreSQL Global Development Group. 2025. PostgreSQL 16 Documenta-
tion: 17.6. Supported Platforms. https://www.postgresql.org/docs/16/supported-
platforms.html. Accessed: 2025-05-31.

[30] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981–1984. https://doi.org/10.1145/3299869.
3320212

[31] Red Hat. 2024. Red Hat Partners with SiFive for RISC-V Developer Preview for
Red Hat Enterprise Linux 10. https://www.redhat.com/en/blog/red-hat-partners-
with-sifive-for-risc-v-developer-preview-for-red-hat-enterprise-linux-10. Ac-
cessed: 2025-05-27.

[32] RISC-V International. 2021. The RISC-V Vector Extension, Version 1.0. https:
//github.com/riscv/riscv-v-spec. Accessed: 2025-05-19.

[33] RISC-V Software Development Mail List. 2023. Re: Status of Timestamp
Counter on RISC-V. https://groups.google.com/a/groups.riscv.org/g/sw-dev/c/2-
u-c3kyZlc/m/awYsLfQ_BwAJ. Accessed: 2025-05-21.

[34] RISC-V Software Source. 2025. riscv-isa-sim: Spike RISC-V ISA Simulator. https:
//github.com/riscv-software-src/riscv-isa-sim. Accessed: 2025-05-09.

[35] Konstantin Rumyantsev, Pavel Yakovlev, Andrey Gorshkov, and An-
drey P. Sokolov. 2024. RISC-V RVV efficiency for ANN algorithms.
arXiv:2407.13326 [cs.LG] https://arxiv.org/abs/2407.13326

[36] Rust Embedded WG. 2025. riscv – Rust crate for RISC-V specific functionality.
https://docs.rs/riscv. Accessed: 2025-05-21.

[37] PingCAP TiDB Team. 2023. My machine is riscv64, how do I deploy and install
tidb? https://github.com/pingcap/tidb/issues/46088. GitHub Issue #46088.

[38] Transaction Processing Performance Council (TPC). 2023. TPC-H Benchmark.
http://www.tpc.org/tpch/. http://www.tpc.org/tpch/ Version 3.0.1.

[39] AndrewWaterman and Krste Asanovic. 2017. The RISC-V Instruction Set Manual,
Volume I: User-Level ISA, Document Version 2.2. https://riscv.org/specifications/.

[40] Andrew Waterman, Krste Asanović, and RISC-V International. 2023. The RISC-V
Instruction Set Manual. GitHub repository. https://github.com/riscv/riscv-isa-
manual Commit: d6a7bb3, 2023-12-13.

[41] XiangShan Project. 2025. XiangShan Biweekly Report #69. https://docs.
xiangshan.cc/zh-cn/latest/blog/2025/02/03/biweekly-69-en/. Accessed: 2025-05-
19.

11

https://lists.gnu.org/archive/html/info-gnu/2018-09/msg00001.html
https://lists.gnu.org/archive/html/info-gnu/2018-09/msg00001.html
https://lists.debian.org/debian-devel-announce/2025/05/msg00004.html
https://lists.debian.org/debian-devel-announce/2025/05/msg00004.html
https://lists.debian.org/debian-devel-announce/2025/05/msg00004.html
https://github.com/MariaDB/server/commit/05be1865a9
https://github.com/MariaDB/server/commit/05be1865a9
https://doi.org/10.1145/3546918.3546924
https://github.com/duckdb/duckdb/discussions/16462
https://github.com/duckdb/duckdb/discussions/16462
https://github.com/duckdb/duckdb/discussions/16462
https://doi.org/10.1145/3701100.3701165
https://doi.org/10.1145/3701100.3701165
https://github.com/golang/go/issues/52644
https://doi.org/10.14778/3583140.3583142
https://doi.org/10.14778/3583140.3583142
https://sqlite.org/forum/forumpost/92a85830dd5e5277d054fafe56e10c9bdc198a39a114c9d80aa65e7e15d20d44
https://sqlite.org/forum/forumpost/92a85830dd5e5277d054fafe56e10c9bdc198a39a114c9d80aa65e7e15d20d44
https://doi.org/10.14778/3415478.3415535
https://doi.org/10.1145/3555041.3589410
https://doi.org/10.1145/3555041.3589410
https://doi.org/10.3390/electronics13152971
https://doi.org/10.1145/3339186.3339193
https://llvm.org/docs/RISCVUsage.html
https://llvm.org/docs/RISCVUsage.html
https://doi.org/10.14778/3236187.3236188
https://doi.org/10.14778/3236187.3236188
https://doi.org/10.1145/3514221.3517871
https://doi.org/10.14778/3151113.3151114
https://milkv.io/jupiter
https://bugs.mysql.com/bug.php?id=100356
https://omdia.tech.informa.com/-/media/tech/omdia/brochures/ai/risc-v-processors-report.aspx
https://omdia.tech.informa.com/-/media/tech/omdia/brochures/ai/risc-v-processors-report.aspx
https://www.scmp.com/tech/tech-war/article/3293610/chip-war-chinese-scientists-vow-launch-breakthrough-risc-v-open-source-cpu-2025
https://www.scmp.com/tech/tech-war/article/3293610/chip-war-chinese-scientists-vow-launch-breakthrough-risc-v-open-source-cpu-2025
https://doi.org/10.1109/NEWCAS57931.2023.10198122
https://doi.org/10.1109/NEWCAS57931.2023.10198122
https://riscv.org/blog/2023/08/risc-v-public-beta-platform-release
https://www.postgresql.org/docs/16/supported-platforms.html
https://www.postgresql.org/docs/16/supported-platforms.html
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://www.redhat.com/en/blog/red-hat-partners-with-sifive-for-risc-v-developer-preview-for-red-hat-enterprise-linux-10
https://www.redhat.com/en/blog/red-hat-partners-with-sifive-for-risc-v-developer-preview-for-red-hat-enterprise-linux-10
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-v-spec
https://groups.google.com/a/groups.riscv.org/g/sw-dev/c/2-u-c3kyZlc/m/awYsLfQ_BwAJ
https://groups.google.com/a/groups.riscv.org/g/sw-dev/c/2-u-c3kyZlc/m/awYsLfQ_BwAJ
https://github.com/riscv-software-src/riscv-isa-sim
https://github.com/riscv-software-src/riscv-isa-sim
https://arxiv.org/abs/2407.13326
https://arxiv.org/abs/2407.13326
https://docs.rs/riscv
https://github.com/pingcap/tidb/issues/46088
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://riscv.org/specifications/
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://docs.xiangshan.cc/zh-cn/latest/blog/2025/02/03/biweekly-69-en/
https://docs.xiangshan.cc/zh-cn/latest/blog/2025/02/03/biweekly-69-en/

	Abstract
	1 Introduction
	2 RISC-V Architecture Primer
	2.1 What is RISC-V?
	2.2 Overview of RISC-V ISA
	2.3 Vector Extension (RVV 1.0)

	3 Database Ecosystem on RISC-V
	3.1 Toolchain & OS Support
	3.2 RDBMS Compatibility

	4 Performance Evaluation
	4.1 Test Environment
	4.2 How Does the RISC-V ISA Influence TPC-H Performance?
	4.3 Baseline TPC-H Benchmark Results
	4.4 RISC-V ISA Extension Impact Analysis
	4.5 Cross-Architecture Performance Comparison
	4.6 Case Study: Manual RVV-Aware Query Optimization

	5 Discussion
	5.1 Key Findings
	5.2 Future Directions

	6 Related Work
	7 Conclusion
	References

