
A Data Aggregation Visualization System supported by
Processing-in-Memory

Junyoung Kim

Columbia University

New York, USA

junyoung2@cs.columbia.edu

Madhulika Balakumar

Columbia University

New York, USA

mb5144@columbia.edu

Kenneth Ross

Columbia University

New York, USA

kar@cs.columbia.edu

ABSTRACT
Data visualization of aggregation queries is one of the most com-

mon ways of doing data exploration and data science as it can

help identify correlations and patterns in the data. We propose DI-

VAN, a system that automatically normalizes the one-dimensional

axes by frequency to generate large numbers of two-dimensional

visualizations. DIVAN normalizes the input data via binning to allo-

cate more pixels to data values that appear more frequently in the

dataset. DIVAN can utilize either CPUs or Processing-in-Memory

(PIM) architectures to quickly calculate aggregates to support the

visualizations. On real world datasets, we show that DIVAN gener-

ates visualizations that highlight patterns and correlations, some

expected and some unexpected. By using PIM, we can calculate

aggregates 45%-64% faster than modern CPUs on large datasets. For

use cases with 100 million rows and 32 columns, our system is able

to compute 4,960 aggregates (each of size 128x128x128) in about a

minute.

VLDBWorkshop Reference Format:
Junyoung Kim, Madhulika Balakumar, and Kenneth Ross. A Data

Aggregation Visualization System supported by Processing-in-Memory.

VLDB 2025 Workshop: 16th International Workshop on Accelerating

Analytics and Data Management Systems Using Modern Processor and

Storage Architectures (ADMS25).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/thewindmills/agg-pim.

1 INTRODUCTION
Data visualization is the most common way of doing data explo-

ration and data science, and is widely used by data analysts to

derive useful insights and trends from data. This is shown by the

increasing user base of commercial data visual analysis systems

such as Tableau [3]. In particular, aggregation queries are a popular

candidate for visualizations [12, 23, 24], as they can help analysts

identify correlations and patterns between attributes in the data.

As datasets grow increasingly large and complex, there has been a

growing interest in interactive visualization of big data, and as a

result also in technologies that are scalable and increase the size

and complexity of the data our systems can handle [5].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment. ISSN 2150-8097.

In this paper, we focus on how to efficiently calculate aggre-

gates on large datasets for the purpose of visualizing two and three

dimensional interactions. A two-dimensional visualization will cor-

respond to a certain kind of heatmap (described in detail below).

A three-dimensional visualization is a set of such heatmaps, cor-

responding to partitions of the data according to values of the

third dimension. We aim to help users visualize and identify both

expected and unexpected patterns in the data that may be more

complex than simple correlations.

Before describing our approach, we identify desirable features

for any such system.

Scale The system should scale to large datasets with many rows

and many candidate columns.

Focus Visualizations should focus users’ attention to where most

of the data resides. One consequence of this requirement is

that pixels should be allocated roughly in proportion to data

density. This requirement is the opposite of what might be

required in systems that aim to identify small numbers of

outliers within a large dataset.

Interaction Visualizations should focus on the interactions be-

tween dimensions, while leaving simpler one-dimensional

patterns to simpler analyses.

Coherence In a high-dimensional dataset, a system may generate

many visualizations for various pairs/triples of dimensions.

The visualization itself should be interpretable in a uni-

form manner even without looking at the identity of the

dimensions themselves.

Robustness Many large datasets have a small number of erro-

neous data items that can confound data visualizations. For

example, an outlier value (perhaps due to an accidental key-

stroke leading to an extra digit) could skew an axis range

so that much of the visualization space is wasted. Avoiding

such problems could require manual data cleaning on many

columns. A visualization system that is robust to a small

number of erroneous data items can proceed without this

time-consuming data cleaning step.

We will use the term “dimension” to describe an axis of a visual-

ization. A dimension may be a column value, a function applied to

some column values, or some lexicographic combination of such

values. Each dimension has an implicit order. For numeric attributes,

the numeric ordering is the most natural. For categorical attributes,

one can potentially choose multiple different orderings to get dif-

ferent candidate dimensions. For example, the taxi dataset we use

for experiments has a zone-ID string to identify the pick-up and

drop-off zones for a taxi ride. The zone-ID could be ordered (a)

alphabetically, (b) by the latitude of the zone’s centroid, (c) by the

https://github.com/thewindmills/agg-pim
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

longitude of the zone’s centroid, (d) the lexicographic combina-

tion of the borough (e.g., Manhattan) with latitude or longitude.

Each choice would be a different candidate dimension, and induce

different clustering patterns on the corresponding visualizations.

Our visualization scheme is based on independence diagrams [8,
9]. An independence diagram is a heatmap in which both the hori-

zontal and vertical axes are binned into groups of equal population.

By “normalizing out” the one-dimensional distributions, interac-

tion patterns (i.e., adherence to or departures from “independence”)

can be seen in a manner that devotes visualization space in pro-

portion to data density. When bin counts are large, outliers play a

minor role in the definition of axis bins. These properties make the

independence diagram a good candidate for the requirements of fo-

cus, interaction and robustness. Coherence is also supported, in the

sense that any diagram can be interpreted in terms of quantiles, e.g.,

“there is a cluster in which the top few percent of dimension 𝑥 are

associated with the bottom few percent of dimension 𝑦”. Knowing

the dimension labels and bin boundaries can make the cluster more

concrete, but the more abstract interaction is visible without that

information. There are some technical differences from [8, 9] in

how we determine bin boundaries, and how we color images; these

differences enhance coherence and are described in Sections 3.1

and 5.

The original independence diagram evaluation [8, 9] considered

only two-dimensional visualizations. There are

(𝑁
2

)
possible visual-

izations, each of size 𝐵2 where 𝑁 is the number of dimensions and

𝐵 is the number of bins per dimension. For 𝑁 = 13 and 𝐵 = 100,

the maximum size considered by [8, 9], the memory footprint 𝐹

was sufficiently small that a single pass through the source data

could accumulate aggregates to support all

(
13

2

)
= 78 diagrams. To

support three dimensional analyses, one needs

(𝑁
3

)
aggregates each

of size 𝐵3. For 𝑁 = 13 and 𝐵 = 100, this footprint is three orders of

magnitude larger than the two-dimensional footprint 𝐹 . For 𝑁 = 32

and 𝐵 = 128 (a case we’ll consider in this paper), the footprint is six

orders of magnitude bigger than 𝐹 . A larger footprint means that

aggregates need to be stored much lower in the memory hierarchy

leading to a potential performance bottleneck. Thus, to address

our requirement of scale, we need to devise techniques that can

efficiently generate these large aggregate arrays for both general

CPUs and Processing-in-Memory devices. For general CPUs, we

implement a method of partitioning updates to aggregates that

trades off slow random accesses to memory lower in the mem-

ory hierarchy for more sequential scans over the input data. For

processing-in-memory devices, we introduce a method that evenly

divides aggregates among the many weaker workers in the system

without any overlap that is flexible to the number of dimensions in

the dataset and the workers in the system, while ensuring that a

given tuple in the dataset is only sent to a fraction of the workers,

and introduce a fast way of updating aggregates within a worker

that minimizes accesses to the main memory while avoiding syn-

chronization primitives. These techniques constitute the primary

contribution of this paper.

Generating somany visualizations creates a new scaling problem,

because a user should not be expected to look at thousands of

images, most of which are uninteresting. To handle this problem

we allow users to select a heuristic to order the results, so that the

most promising images are presented first.

Our key contributions are summarized as follows:

• We propose DIVAN ("Dimensions Interact - Visualize All

Now!"), an end-to-end system that receives as input a dataset,

and outputs visualizations corresponding to aggregation

queries with 3 group-by columns. DIVAN uses a binning

algorithm that allocates approximately the same number

of tuples per bin to automatically focus on high frequency

data, while still having fast execution times.

• We implement two versions of DIVAN, one that can run on

general-purpose CPUs, and one that can run on Processing-

in-Memory architectures for better performance. We de-

velop algorithms that utilizes each architecture’s character-

istics to achieve fast performance.

• We show through experiments that DIVAN can be effec-

tively used to highlight trends and patterns in real world

datasets, and that using a Processing-In-Memory archi-

tecture with DIVAN can speed up query processing for

visualization compared to modern CPU systems.

2 WORKFLOW
We now describe the workflow that a data analyst might employ

to create and analyze visualizations. The first step is to identify

a dataset/table of interest. A global set of dimensions would then

be specified, based on the columns in the dataset. Some columns

may be used in multiple dimensions, using different orders to sup-

port different potential clustering patterns. A preprocessing step is

then done once on the entire dataset that transforms the original

dimensions into integers to speed up later processing steps. This

preprocessing is only done once and does not need to be done on

subsequent workflows on the same dataset.

At this point the analyst is ready to generate some visualizations.

They select a subset of rows to analyze, 𝑁 candidate dimensions,

some number of aggregation functions, and instructs the system to

generate visualizations. The system will compute the aggregates

needed for the visualization, transform the results into images, and

compute priorities for the images based on user-selected heuristic

rules. The images will then be presented to the user in order of

priority. Images may be presented in groups. For example if dimen-

sions 𝑥 and 𝑦 are being analyzed along with a time dimension 𝑡 ,

the system may present four 𝑥/𝑦 images side by side, each corre-

sponding to a quarter of the dataset partitioned evenly by time. To

increase the diversity of images, we lower the priority of an image

(or image group) if its visualized dimensions 𝑥 and 𝑦 have been

seen before, with a different partitioning dimension.

Based on the results, the user may choose to analyze the dataset

with a new combination of dimensions and aggregate functions.

The user always has the option of returning to the original database

to get finer-granularity results for specific visualizations.

3 DATASET NORMALIZATION
In this section, we describe how we bin dimensions of the dataset of

interest in a normalized fashion so that each bin contains an equal

number of tuples.

2

3.1 Binning via sorting
For each dimension in the dataset, a simple way to achieve the

aforementioned binning is to first sort the dataset according to the

dimension of interest, and then assign bins based on the sort order.

For example, if 100 bins are used, the first 1% of tuples in the sorted

dataset will be assigned the first bin, and the last 1% of tuples in

the sorted dataset will be assigned the hundredth bin.

Binning the dataset this way allocates bins to values roughly

proportional to the frequency of the value. For example, a value

that appears in 30% of the dataset will be allocated around 30% of

the total bins. The same principle applies to continuous domains as

well, such as time. If 30% of the dataset falls in the range of 12pm

to 1pm, 30% of the total bins will be allocated to values within

that range. This translates to more pixels being allocated to more

frequent values/ranges in the resulting visualization, which helps

the user focus on where most of the data resides. This also makes

DIVAN robust, as it prevents outliers from skewing an axis range

on a visualization by allocating fewer bins to infrequent values.

Note that different values can be mapped to the same bin, such as

when infrequent values that do not have enough tuples to fill a bin

share their allocated bin with other values, and when a value fills

the leftover space in the previous bin. This approach preserves the

even spacing of bins in pixel space, at the cost of possibly “diluting”

visual patterns as correlations associated with different values are

grouped into the same visualization space, i.e. pixels. However, this

is a minor issue as frequent values are mapped to many bins and

are thus less affected by sharing up to two bins with other values,

and infrequent values that are greatly affected by this dilution are

mapped to few bins and are not the focus of the visualization. A

higher linear image resolution, proportional to the number of bins,

can also reduce the effects of dilution.

While our binning method is related to equidepth binning, it

differs from it due to the fact that a single value may be mapped to

multiple bins, which allows DIVAN to dedicate more visualization

space to frequent values. This approach differs from independence

diagrams [8, 9] which don’t split single values across multiple bins.

Instead, independence diagrams scale the visualization pixel width

of a bin based on bin frequency.

3.2 Approximate binning via histograms
The aforementioned method of binning is a performance bottleneck

in the workflow as it is required to sort the entire dataset for each

dimension every time one wishes to perform data analysis, which

hurts DIVAN’s scalability.

For the purposes of visualization, we observed that binning does

not have to be perfect, and having small variances in the number

of tuples in each bin has little effect on visualizing the patterns

present in the data. In this section, we describe how we can intro-

duce a preprocessing step to speed up the binning process on all

subsequent analysis workflows on the dataset, regardless of the

subset of the dataset used for analysis.

3.2.1 Dataset preprocessing. We preprocess the dataset by doing

an argsort for every dimension in our dataset, which results in

an additional integer column that corresponds to the sorted index

of the tuple. This preprocesssing step is only done once, and the

resulting augmented dataset can be used for all subsequent analysis

workflows on any subset of the dataset. By doing preprocessing, we

speed up subsequent analysis workflows as the dimension domains

are converted into integers, and also supports scenarios where the

analyst may generate additional visualizations focusing on areas of

interest, and also scenarios where multiple analysts may perform

data analysis on different subsets of the same dataset.

3.2.2 Dataset binning. At the time of visualization, for each dimen-

sion the dataset is approximately binned by creating a histogram

with a number of bins much larger than the target number of

bins used for analysis. For example, we might create a histogram

with 1048576 bins with the purpose of subsequently re-binning

the histogram into 128 bins. The following pseudocode describes

the process of binning the dataset for a single dimension, using a

histogram with 1048576 bins.

Input: data[], // Sorted indexes of dimension

num_tuples, // Number of tuples in dataset subset

total_num_tuples, // Number of tuples in dataset

bins // Number of bins used for binning

Output: binned_data[] // Array to store binned dataset

// Calculate number of bits needed to

// represent a sorted index in the data set.

idx_bits = ceil(log_2(total_num_tuples))

// Allocate zeroed out space for histogram

HISTO_SIZE = 1048576 // 2^20

int histogram[HISTO_SIZE]

// Use the upper 20 bits of each sorted idx

// to index into and update the histogram.

shift = idx_bits - 20

for (i = 0; i < num_tuples; i+=1):

histogram[data[i] >> shift] += 1

// Iterate through histogram and replace bin contents with

// bin index based on the number of tuples seen before.

tuples_per_bin = ceil(num_tuples / bins)

seen = 0

for (i = 0; i < HISTO_SIZE; i+=1):

num_in_bucket = histogram[i]

histogram[i] = seen / tuples_per_bin

seen += num_in_bucket

// Allocate space to store binned dataset

int binned_data[num_tuples]

// Use the upper 20 bits of each sorted idx to index

// into the histogram and get the corresponding bin index.

for (i = 0; i < num_tuples; i++):

binned_data[i] = histogram[data[i] >> shift]

return binned_data

Note that this approach is not effective for datasets that are very

small subsets of the preprocessed dataset, in which case we can get

heavily skewed histograms that skew the number of tuples in each

resulting bin. Using 128 bins for binning and using histograms with

2
20

bins, we encounter skew when using subsets of the dataset are

smaller than 1/213th of the preprocessed dataset. However, this is

not a big issue as even for large datasets with a 100M rows, 1/213
3

is only 12k rows, at which point one can quickly sort the rows

directly.

Our binning scheme can also handle small inserts. As it is inef-

ficient to preprocess the data every time a batch of new rows are

inserted, we can handle small inserts by approximately keeping

track of the histogram’s bucket boundaries by saving the original

domain value of the first tuple to enter each bucket. Then, we can

iterate over the new tuples and update the histogram using the

saved boundaries, and then assign bins to the new rows using the

histogram. While this code path is slow compared to the code path

for preprocessed indexes, the time to process the new rows is only

a fraction of the total binning time if the batch of new rows is small

compared to the dataset of interest.

As frequent values in the dataset are assigned more bins, there

is potential to extract more insights from the dataset if we assign

bins for frequent values based on secondary attributes, as we can

use the bins allocated to a frequent value to further divide the data

within a range of visualization space. We show examples of this in

Section 7.7.

4 AGGREGATE CALCULATION
After binning the data using 𝐵 bins, we now have a dataset consist-

ing of 𝑁 columns of binned data, derived from the dimensions of

the original dataset, along with an additional column corresponding

to the value to be aggregated. All of the 𝑁 binned columns have

an approximately even distribution of 𝐵 distinct values. For our

visualization system, our goal is to calculate all GROUP-BY queries

with every combination of three GROUP-BY columns, which is a

total of

(𝑁
3

)
∗ 𝐵3 aggregates.

4.1 General CPU Execution
We assume that the input is stored in columnar fashion, and that the

aggregate CPU memory is large enough to hold the entire output.

A straightforward way to compute the aggregations is as follows:

for r = 1 to #records
read record r
for j = 1 to #aggregations

update agg #j using r

One problem with the method above is that it has poor locality.

Every aggregation update is likely to be a miss in the lowest level

CPU cache. A second problem is that if we attempt to distribute

work to multiple threads by parallelizing the outer loop (partition-

ing the input) then costly synchronization primitives are necessary

to prevent interference.

An alternative way to compute the aggregations changes the

loop order:

for j = 1 to #aggregations
for r = 1 to #records

read record r
update agg #j using r

At first glance this rewritten version seems inefficient because

the input needs to be scanned multiple times. However, the input

reading cost is manageable because (a) one only needs to read the

columns involved in the current aggregation, and (b) hardware

prefetching hides the memory latency associated with sequential

access of the input. This method has better temporal locality be-

cause there is repeated access to a single aggregate array rather

than interleaved access to all aggregate arrays. Further, paralleliza-

tion of the outer loop can proceed without synchronization because

the output for each thread is disjoint. We can further explore the

tradeoff between temporal locality and scans through the input

by dividing a single aggregate array into smaller partitions, and

doing a scan for each partition. As we shall see experimentally in

Section 7.6, dividing the aggregates into smaller partitions may

be beneficial when an individual aggregation alone has a large

memory footprint.

4.2 Processing-In-Memory Architecture
Processing-in-memory (PIM) refers to the concept of being able to

execute operations inside or near the memory of a system, which

reduces costly data movement to and from the main CPU.While the

concept has been around for some time [15, 25, 26], only recently

has advances in technology made PIM available on commerical

hardware. In particular, the UPMEM PIM architecture [11] is the

first PIM system that is commercially available on real hardware,

and is the system we have used in this paper.

The UPMEM PIM system consists of a single monolithic CPU,

which we will refer to as the host CPU, and many weaker processing

units integrated with the system’s DRAM arrays, called DRAM

processing units (DPUs). The host CPU can send and receive data

from the DPUs, and can signal to the DPUs to run their code. It is

possible for the host CPU to signal the DPUs in either synchronous

mode, where the host CPU is blocked until all the DPUs finish, or

asynchronous mode, where control is immediately returned to the

host CPU right after signalling the DPUs. Direct communication

between DPUs is not possible in this model, and all data sent and

received by the DPUs must be through the host CPU.

A DPU is a weak, general purpose processor running at 450

MHz. It is capable of running C code, and consists of a single core

that has 24 threads, 64MB of MRAM which serves as its main

memory and 64KB of WRAM that serves as its cache [4]. Despite its

low processing power, a PIM system has the potential to run data

intensive workloads quickly by utilizing the thousands of DPUs

equipped on the system in parallel. Because of this it is of utmost

importance to achieve workload balance for a task involving PIM,

and minimize data movement between the host CPU and DPUs.

4.3 Aggregation Distribution
Given a preprocessed dataset with 𝑁 dimensions, DIVAN needs

to calculate

(𝑁
3

)
aggregates, where each aggregate is a group by

between 3 different dimensions in the dataset. To efficiently do this

with a PIM system, these aggregates need to be distributed evenly

across all DPUs so that each DPU does an equal amount of work.

A simple way to distribute aggregates is to send all aggregates

to all DPUs. We can then distribute the tuples (each of which is an

entire row of 𝑁 + 1 columns) in the dataset evenly across all DPUs

for the DPUs to read and use to update the aggregates. However,

since each DPU only has 64MB of MRAM to hold aggregates, this

method is infeasible even for datasets that only have 8 dimensions.

Another way of distributing aggregates is to evenly distribute the(𝑁
3

)
aggregates among DPUs. Although this does not raise storage

issues as each DPU now holds a disjoint subset of the aggregates,

4

since each tuple is used to update every aggregate, every tuple

needs to be sent to every DPU, which results in a performance

bottleneck due to data transfer between the host CPU and DPUs.

Instead, we can do the following. Suppose our dataset has 𝑁

dimensions, each of which is binned using 𝐵 bins. We first divide

the

(𝑁
3

)
aggregates into 𝑁 equal sized groups, where all aggregates

in group 𝑖 share dimension 𝑖 .1 We further divide group 𝑖 into 𝐵

different subgroups by partitioning all the aggregates in group 𝑖

by distinct bins in dimension 𝑖 . Each subgroup is then sent to a

different DPU. With this aggregation distribution, each DPU holds

a disjoint subset of the aggregates, while we get reasonable transfer

times as each tuple only needs to be sent to 𝑁 distinct DPUs since

a tuple only updates one subgroup for every group. Furthermore,

our approximate binning strategy ensures that we achieve almost

perfect workload balance across DPUs as roughly equal numbers

of tuples are sent to each subgroup. However, with this scheme, we

utilize exactly 𝑁 ∗ 𝐵 DPUs, which may be different from the actual

number of DPUs in the system. We now explain how to extend our

scheme to an arbitrary number of DPUs to the nearest multiple of

𝐵, and go into detail on how we exactly distribute aggregates.

We index the dimensions using integers 0...𝑁−1.We represent an

aggregate between three dimensions 𝑑0, 𝑑1, 𝑑2 as (𝑑0, 𝑑1, 𝑑2), where
𝑑0, 𝑑1, 𝑑2 are distinct integers in the range 0...𝑁 − 1.

Definition 4.1 (Shift). For aggregate (𝑑0, 𝑑1, 𝑑2), and an integer 𝑠 ,

we define shift((𝑑0, 𝑑1, 𝑑2), 𝑠) as ((𝑑0+𝑠)%𝑁, (𝑑1+𝑠)%𝑁, (𝑑2+𝑠)%𝑁).
Definition 4.2 (Equality). We say two aggregates (𝑑0, 𝑑1, 𝑑2), and
(𝑒0, 𝑒1, 𝑒2) are equal ((𝑑0, 𝑑1, 𝑑2) = (𝑒0, 𝑒1, 𝑒2)) if the set of dimen-

sions for both aggregates are equal (i.e. {𝑑0, 𝑑1, 𝑑2} = {𝑒0, 𝑒1, 𝑒2})
Consider first the case where 𝑁 is not a multiple of 3. To distrib-

ute

(𝑁
3

)
aggregates into 𝑁 equal-sized groups, where all aggregates

in group 𝑖 share dimension 𝑖 , we first find
(𝑁
3

)
/𝑁 aggregates that be-

long in group 0. Next, to get aggregates in group 𝑖 , where 1 ≤ 𝑖 < 𝑁 ,

for every aggregate 𝐴 in group 0 we apply shift(𝐴, 𝑖). This requires
that the initial aggregates in group 0 are chosen carefully, so that

we do not get duplicate aggregates (and thus miss other aggregates)

when calculating aggregates for other groups.

Definition 4.3 (Shift overlap). We say two aggregates 𝐴1 and 𝐴2

shift overlap if there exists 𝑠 where shift(𝐴1, 𝑠) = 𝐴2.

Note that we get duplicate aggregates when creating aggre-

gates for other groups when there exists aggregates in group 0

that are equal with each other after a shift operation. For exam-

ple, if 𝑁 = 5 and group 0 contains (0, 1, 2) and (0, 1, 4), since
shift((0, 1, 2), 4) = (4, 0, 1) = (0, 1, 4), we get duplicate aggregates
when creating aggregates for group 4. Without loss of general-

ity, an aggregate in group 0 can be represented as (0, 𝑎, 𝑏), where
0 < 𝑎 < 𝑏 < 𝑁 . For some 𝐴 = (0, 𝑎, 𝑏), since 𝐴 shift overlaps

with shift(𝐴, 𝑁 −𝑎) and shift(𝐴, 𝑁 −𝑏), group 0 can be obtained by

iterating through each possible 𝑎 and 𝑏, sort (0, 𝑎, 𝑏), shift(𝐴, 𝑁 −𝑎)
shift(𝐴, 𝑁 − 𝑏) respectively, and only choose to put 𝐴 in group 0 if

𝐴 is the first in the lexicographical order between the 3 aggregates

generated. Algorithm 1 describes how to obtain group 0. Once we

create group 0, we can create groups 1 to N-1 by shifting aggregates

in group 0. This process is described in Algorithm 2.

1
This is always possible when𝑁 is not a multiple of 3; we handle multiples of 3 slightly

differently.

Algorithm 1 Create group 0

1: procedure Group0(𝑁) ⊲ N: Number of dimensions

2: group0 = []

3: for a in 1,2,..N-2 do
4: for b in a+1,a+2..N-1 do
5: A = (0, a, b)

6: overlap1 = sort(shift(A, N-a))

7: overlap2 = sort(shift(A, N-b))

8: if A < overlap1 and A < overlap2 then
9: group0.add(A)

10: return group0

When 𝑁 is a multiple of 3,

(𝑁
3

)
/𝑁 is not an integer, and we

cannot shift aggregate (0, 𝑁 /3, (𝑁 /3) ∗2) to group 𝑖 where 𝑖 ≥ 𝑁 /3
without duplicating aggregates. In this case, for only group i where

𝑖 < 𝑁 /3 we add shift((0, 𝑁 /3, (𝑁 /3) ∗2), 𝑖) to the group. As a result
when 𝑁 is a multiple of 3 we still have 𝑁 groups, but some of the

groups compute an extra aggregate relative to others.
2

Algorithm 2 Distribute

(𝑁
3

)
3D aggregates into N groups where

each group contains a common dimension

1: procedure EvenDist3D(𝑁) ⊲ N: Number of dimensions

2: group0 = Group0(N)

3: groups = [group0]

4: for i in 1,2,..N-1 do
5: group_i = [shift(agg, i) for agg in group0]

6: if N % 3 == 0 and i < N / 3 then
7: group_i.add(shift((0, N/3, 2*(N/3), i))

8: groups.add(group_i)

9: return groups

Using the aforementioned procedures, it is possible to effectively

utilize𝑁 ∗𝐵 DPUs by creating𝑁 groups and partitioning the groups

into 𝐵 subgroups, as explained above. However, suppose the system

has fewer than 𝑁 ∗ 𝐵 DPUs. Because a group is divided among 𝐵

DPUs, let’s say our system has 𝑅 ∗ 𝐵 DPUs, where 𝑅 < 𝑁 . In this

case, it is possible to calculate the aggregates separately by dividing

the

(𝑁
3

)
aggregates into one group that contains aggregates that

contain at least one dimension from 0..𝑅 − 1 and one group that

contains aggregates that only contains dimensions from 𝑅..𝑁 − 1,

and treat them as separate problems that require different aggre-

gation distributions. For the first group, we can create 𝑅 groups

where each group contains a common dimension by using Algo-

rithm 2 to distribute aggregates that contain at least one dimension

from 0..𝑅 − 1, and distribute aggregates that contain only dimen-

sions from 𝑅..𝑁 − 1 to groups 0..𝑅− 1 by utilizing another function,

EvenDist2D, that distributes
(𝑁
2

)
2D indexes into N groups where

each group contains a common index. This process is explained in

Algorithm 3 and Algorithm 4. For the second group, since we are

dealing with

(𝑁−𝑅
3

)
aggregates that only contain dimensions from

𝑅..𝑁 − 1, we can recursively handle this as a problem of calculating

aggregates for a dataset with 𝑁 − 𝑅 dimensions. This recursive

2
The performance impact of this imbalance is minor in practice; for 𝑁 = 24 some

groups will have 84 aggregates and some will have 85.

5

process is explained in Algorithm 5, and DIVAN calculates groups

for each iteration of the recursion by calling 𝐷𝑝𝑢𝐷𝑖𝑠𝑡 (𝑁, 𝐵, 𝐷, 0),
where 𝐷 is the number of DPUs in the system. Note that in the case

where the number of DPUs is not a multiple of 𝐵, DIVAN utilizes

the nearest multiple of 𝐵 DPUs.

Algorithm 3 Distribute

(𝑁
2

)
2D indexes into N groups where each

group contains a common index

1: ⊲ N: Number of indexes

2: ⊲ front: Determines whether front half of groups or back half

of groups get more aggregates when N % 2 = 0

3: procedure EvenDist2D(𝑁 , front)

4: groups = []

5: for i in 0,1,..N do
6: num_aggs = ⌊

(𝑁
2

)
/𝑁 ⌋

7: if (𝑖 < 𝑁 /2 and front) or (𝑖 ≥ 𝑁 /2 and !front) then
8: num_aggs += 1

9: group_i = [(i, (i + j) % N) for i in 1,2,..num_aggs]

10: groups.add(group_i)

11: return groups

Algorithm 4 From

(𝑁
3

)
3D aggregates, distribute aggregates that

contain at least one dimension from 0..R-1 into R groups where

each group contains a common dimension

1: ⊲ N: Number of dimensions, R: Number of groups

2: procedure Split(𝑁, 𝑅)

3: if 𝑅 ≥ 𝑁 then
4: return EvenDist3D(N)

5: groups = EvenDist3D(R)

6: ⊲ Distribute aggs that contain two dimensions in R...N-1

7: for dim in 0,1,..R-1 do
8: for i in R,R+1,..N-2 do
9: for j in i+1,i+2,..N-1 do
10: groups[dim].add((dim, i, j))

11: ⊲Need to evenly use both 2d groups to get even distribution

12: 2d_gp_front = EvenDist2D(R, True)

13: 2d_gp_back = EvenDist2D(R, False)

14: ⊲ Distribute aggs that contains one dimension in R...N-1

15: curr = 0

16: for dim in R,R+1,..N-1 do
17: 2d_groups = (curr % 2 == 0) ? 2d_gp_back : 2d_gp_front

18: for i in 0,1,..R-1 do
19: for g in 2d_groups[i] do
20: groups[i].add((g[0], g[1], dim))

21: curr += 1

22: return groups

4.4 Execution
The following sections detail the roles of the host CPU and DPUs.

Algorithm 5 Distribute

(𝑁
3

)
aggregates binned with B bins to D

DPUs, using multiple iterations

1: ⊲ N: Number of dimensions, B: bins,

2: ⊲ B: bins, S: Offset to shift aggregates

3: procedure DpuDist(𝑁, 𝐵, 𝐷, 𝑆)

4: R = int(𝐷/𝐵) ⊲ Number of DPU ‘rows’ of B DPUs

5: it = Split(N, R)

6: for group in it do
7: for agg in group do
8: agg = shift(agg, S)

9: iterations = [it]

10: if N - R > 2 then
11: iterations += DpuDist(N-R, B, D, R)

12: return iterations

4.4.1 Host CPU. Before the actual aggregate calculation, DIVAN
uses Algorithm 5 to evenly distribute aggregates to the DPUs. Each

aggregate group in each iteration returned by Algorithm 5 is divided

into 𝐵 different subgroups by partitioning the aggregates in each

group by distinct bins in the common dimension of the group. The

dimension indexes in each subgroup is then sent to each DPU, in

the form of a contiguous integer array.

Which subgroup a DPU is in charge of updating determines

which tuples are sent to it. For example, if a subgroup is the 6th

subgroup in a group where dimension 5 is the common dimension,

the corresponding DPU receives tuples whose 5th dimension has

the value 6. For the purpose of sending tuples to the DPUs for

aggregation calculation, the host CPU allocates a buffer of 320KB

for each DPU. The host CPU then iterates through the data and fills

the buffers with the tuples the DPUs need. If an iteration contains

R groups, a tuple is sent to R different buffers, one for each group.

During this step, the host CPU utilizes multithreading and allocates

one thread to each group to fill the buffers faster.

For an iteration, in the case we have two or more times more

DPUs than needed to calculate aggregates, we duplicate the ag-

gregates assigned to each DPU to the leftover DPUs, and partition

tuples evenly among the DPUs that share the same aggregates so

that each DPU does less work. Since the aggregates are duplicated,

the host CPU needs to do a final aggregation of the duplicated ag-

gregates at the end of execution. However, as this final aggregation

only depends on the number of dimensions and number of bins, for

large datasets this step has little effect on performance.

Once a single buffer in a group is filled with tuples, the corre-

sponding thread stops execution and waits for other threads to

stop. Due to the properties of our binning strategy, all buffers fill

at approximately the same rate, which leads to good load balance.

Once all threads stop execution, the main thread initiates a DPU

transfer, and sends the contents of all buffers to their corresponding

DPUs. Once the transfer is over, the host CPU signals the DPUs to

start running their code and calculate aggregates. Once aggregate

calculation is done, the host CPU repeats the above process for

the remaining tuples in the data. In asynchronous mode, control is

returned to the host CPU as soon as the host CPU signals the DPU

to run their code, which allows DIVAN to overlap host CPU buffer

filling and DPU execution.

6

At the end of execution, the host CPU initiates a data transfer

from the DPUs to the CPUs, to read back the calculated aggregates

to be used for visualization.

4.4.2 DPU processing. For every tuple, a DPU needs to update a

different location in memory for every aggregate in its subgroup.

A simple way to update aggregates is to evenly distribute the 𝐴

aggregates across the threads in theDPU, and update each aggregate

individually. However, we found that this was slow as each thread

needed to do an expensive scan over the tuples in MRAM. Instead,

we introduced an optimization that takes advantage of the DPU’s

ability to directly manage WRAM. Aggregation updates are now

done in two phases. In the first phase, all threads work together

and read 32KB worth of tuples from the MRAM into WRAM. In the

second phase, the threads work independently and iterate through

the tuples in WRAM and update their assigned aggregates. This

improved execution time because as a whole, the DPU only needs

to do one pass through the tuples stored in MRAM, as opposed to

doing a pass in MRAM for every thread.

5 TRANSFORMING AGGREGATES TO
VISUALIZATIONS

For a given visualization, we use 𝑥 and 𝑦 to refer to the horizontal

and vertical dimensions of the image and 𝑧 to refer to the partition-

ing dimension. A subset of the data can be defined by a contiguous

range of 𝑧 slices. Data within the region is aggregated to generate

totals grouped by 𝑥 and 𝑦. A visual representation of this process

is shown in Figure 1. Any conventional aggregate functions can be

used as the basis for determining pixel intensities via an intensity

function 𝐼 mapping an aggregate value to (red,green,blue) triples.

Pixel intensities vary from 0 to 1 in each component.

Formost of the diagrams in this paper, we define 𝐼 to be a function

that compares the aggregate value with the expected value in each

cell. By construction, when the 𝑥 and𝑦 dimensions are independent,

each cell will have roughly the same aggregate subtotal 𝑆 , equal

to the total for the whole dataset divided by 𝐵2, the number of

visualized cells. We will color cells red when their totals are larger

than 𝑆 (hot areas that are over-represented), blue when their totals

are smaller than 𝑆 (cold areas that are under-represented), and black

when their totals are close to 𝑆 (neutral areas that have the expected

contribution). We avoid the use of green because it can be confused

with red by colorblind individuals. So 𝐼 (𝑣, 𝑆) is given by

• (0, 0, 1 − 𝑣/𝑆) when 𝑣 ≤ 𝑆

• (𝑚𝑖𝑛(1, 𝑣/𝑆 − 1), 0, 0) when 𝑣 > 𝑆

Figure 1: Process of creating 2D images from 3D aggregates

This design has the feature that brightness increases as the distribu-

tion departs from expectation. The most uninteresting images (or

regions within images) are therefore the blackest images/regions

and they are easy to ignore. The positive intensities saturate at

twice the expected value. Without saturation, one could alterna-

tively scale to the maximum intensity of any cell. However scaling

in this fashion would (a) dim the intensities of many other cells in

the visualization and be contrary to the focus requirement, and (b)

create a data-dependent intensity scale, contrary to the coherence
requirement; see Section 1.

As originally proposed [8, 9], independence diagrams scale the

intensity in grayscale between the 5th and 95th percentiles of the

cell value distribution, which can cause problems for focus and
coherence for some data distributions. Further, brightness does not

necessarily increase as the distribution departs from expectation,

making it harder to separate interesting from uninteresting regions.

There is a trade-off in the choice of 𝐵, the number of bins in

each dimension. Doubling 𝐵 doubles the linear resolution of the

generated visualizations, while multiplying the space requirement

for the output by 2
3 = 8. One should therefore seek a sweet-spot

that provides sufficient resolution to see interesting patterns while

achieving a feasible memory footprint. A value of 𝐵 ≥ 100 is suffi-

cient to see patterns that affect at least 1% of the data.

6 VISUALIZATION RECOMMENDATION
To present interesting images to the user, DIVAN scores images

and presents them to the user in order of score. DIVAN computes

image scores using the average of the red values of all RGB pixels.

This heuristic is chosen so that a high score is given to images that

contain a lot of red (i.e., where the over-represented data is) across

a large area of space. DIVAN then groups together every image that

shares the same 𝑥 and 𝑦 axes, and then scores each group by taking

the sum of scores of all images belonging to the group. The user is

then presented with the top 𝑛 images of the top𝑚 groups, where 𝑛

and𝑚 are configurable. By using a small 𝑛, the user can enhance

the diversity of images they see.

7 EXPERIMENTAL EVALUATION
To demonstrate the usage and usefulness of our system, we evalu-

ate DIVAN on real-world datasets in this section. We focus on two

aspects, its performance in calculating aggregates and the visual-

ization images it generates.

7.1 Dataset Description
We use two real word datasets in our evaluation. The first dataset,

which we will refer to as the taxi dataset [2], is a dataset that

details taxi trips in New York during 2019 and 2020. The dataset

contains around 100 million rows, where each row corresponds

to a single taxi trip. After joining the dataset with a lookup table

that contains additional information about taxi zones, the dataset

contains 28 columns that describe each trip with characteristics

such as pickup/dropoff location, trip distance, passenger count etc,

which we each use as a dimension in our analysis. We create more

dimensions for analysis by choosing the taxi service zone, latitude

and longitude columns as secondary columns to pickup/dropoff

locations and passenger count columns, for a total of 32 dimensions

7

to inspect during analysis. To test various aggregate data types,

we use counts (32-bit integers), fare amount (32-bit floats) and trip

distance (64-bit doubles) as values to aggregate.

Our second dataset, whichwewill refer to as the flight dataset [1],

is a dataset that details global flights from 2018 and 2022. The dataset

contains around 29 million rows, where each row corresponds

to a single flight. The dataset contains 61 columns that describe

the flights, such as flight date, origin/destination, delay time, etc.

However, many of the columns have a 1:1 relationship between each

other (e.g. origin airport and origin city), so for our experiments

we pick out and use 24 columns to use as dimensions that do not

have a 1:1 relationship with each other. For aggregate values, we

use counts (32-bit integers), arrival delay (casted to 32-bit floats)

and departure delay (64-bit doubles).

7.2 Experiment machines
For experiments using Processing-in-Memory, we use a server pro-

vided by UPMEM. The server is equipped with two Intel Xeon

4215 CPUs, each with 8 cores and 2 threads per core. The server

is equipped with 20 UPMEM DIMMs for a total of 2560 DPUs and

160GB memory. However, at the time of experiments only 2210

DPUs were available due to technical issues, so we use 2048 DPUs

in our experiments.

For experiments on general CPUs, we use a server equipped with

two Intel Platinum 8488C CPUs (the most recent general purpose

Intel CPU available on AWS at the time of experiments), each with

48 cores and 2 threads per core. There is 768GB of available memory.

7.3 Varying Dimensions and Data Types
We evaluate the time taken to compute aggregates on real world

datasets, varying the number of dimensions and aggregate value

data types. For the CPU machine, we run the aggregation calcula-

tion method (Section 4.4.1) using all 192 threads, and run individual

experiments where we divide the aggregate arrays into 1, 2, and 4

partitions and report the best execution time. For all experiments,

we bin the data using 128 bins. For the PIM system, we measure

execution in synchronous and asynchronous modes, and report

aggregate computation, data transfer, and buffer filling times.

For the taxi dataset, we measure the time taken to calculate ag-

gregates using 8, 16, 24 and 32 dimensions on aggregate values

of type int, float, and double. Results are shown in Figure 2. For 8

dimensions, the computation is close to interactive, taking a few

seconds to compute

(
8

3

)
= 56 aggregates each of size 2

21
elements.

For 32 dimensions, the PIM system takes about 73 seconds to com-

pute

(
32

3

)
= 4, 960 aggregates, demonstrating scalability with the

number of aggregates computed.

Figure 2 shows that for datasets with 16 or more dimensions,

using PIM in asynchronous mode results in 45% to 64%, 28% to

30%, and 31% to 53% speedup compared to the CPU machine for

integer, float and double data type aggregates, respectively. The

speedup for float data types is lower than for integer data types as

doing floating point calculations on DPUs is significantly slower

than doing integer calculations, whereas on CPUs, it is only slightly

slower. For double data types, the speedup from using PIM is slightly

higher than floats; while double data type calculations in the DPU

do take longer compared to floats, since the DPU is only able towrite

to memory at a minimum of 8 bytes at a time, there is no slowdown

regarding memory bandwidth, whereas the CPU machine needs to

write to twice the memory.

For datasets with 8 dimensions, using PIM in asynchronousmode

is 25% to 41% slower compared to the CPU machine. On datasets

with comparatively few dimensions, there are fewer aggregates to

update, so relatively more of the PIM execution time is spent filling

buffers in the host CPU and transferring data to the DPUs compared

to updating aggregates in the DPUs, as shown in Figure 2 using

PIM in synchronous mode. As the PIM server uses a relatively weak

CPU that was released in 2019, it would be possible to achieve better

performance for the PIM server on datasets with fewer dimensions

by replacing the PIM server’s CPU with a more modern CPU.

Figure 2 shows that using PIM in asynchronous mode has the

intended effect of overlapping time spent filling buffers in the host

CPU and updating aggregates in the DPUs. End to end execution

time is reduced relative to synchronous execution by the smaller of

the time spent updating aggregates or filling host CPU buffers.

Execution times for the flight dataset are shown in Figure 3.

Since time spent updating aggregates, filling buffers in the host

CPU, and transferring data from the host CPU to DPUs is linear

to the number of rows in the dataset, for the PIM system we get

speedups similar to those shown in the taxi dataset against the

CPU machine to those sections of execution. However, since the

total size of the aggregations depends solely on the number of

dimensions, for the same number of dimensions the time to transfer

the aggregates back to the host CPU is the same as those shown in

the taxi dataset, meaning this transfer time takes up a larger portion

of execution time. Overall, using PIM in asynchronous mode results

in a 25% to 49% speedup compared to the CPU machine on 16 or

more dimensions, and is 44% to 69% slower than the CPU machine

for 8 dimensions, which could be improved by replacing the PIM

system’s CPU with a faster CPU having more memory bandwidth.

Although the hardware on the PIM system was released in 2019,

we believe it is fairest to compare our PIM system with a modern

CPU. We have also compared the PIM system with a Intel Xeon

Gold 6312U CPU released in 2021, and observed approximately

6X speedup when using the PIM system on the taxi dataset. A

hypothetical PIM system using modern (2025) technology could

potentially achieve similar speedups compared to modern CPUs.

7.4 Varying the Number of Bins
We compare runtimes of calculating aggregates on the taxi dataset

that is binned with either 32, 64 or 128 bins. Results are shown in

Figure 4 for 24 dimensions. For the general purpose CPU, we can

see that execution times for 32 and 64 bins is approximately 11X

and 6X faster, respectively, than for 128 bins. This is because when

we use 64 or fewer bins, a size of a 3-dimensional aggregate is 1MiB

or less, which fits inside the CPU’s 2MiB L2 cache. For PIM, we only

report the end-to-end execution time for 128 bins as the end-to-end

execution time was similar for all bin sizes. This is because each

DPU receives the same number of tuples, and writes to the same

number of locations in memory regardless of the bin size. While a

smaller bin size means that a subgroup would receive more tuples,

our optimization of duplicating aggregates and partitioning tuples

among DPUs when there are leftover DPUs ensures that each DPU

receives the same number of tuples for smaller bin sizes.

8

Figure 2: Execution time for varying number of dimensions (Taxi dataset)

Figure 3: Execution time for varying number of dimensions (Flight dataset)

Figure 4: Execution time for various numbers of bins

For our largest experiments with 32 dimensions and 128 bins,

the system needs to store 10.4 billion data elements, or about 41GB

using four-byte aggregates. 256 bins would not be feasible on our

PIM system as it would require more than the 160GB available. To

improve the resolution by using 256 bins, one would need to limit

the number of dimensions to 24. Even in such cases, the cost of

transferring the results from the DPU to the CPU increase by a

factor of 8, and become a dominant factor in the overall cost. Thus,

for the DPU system, a bin size of 128 is a sweet-spot that balances

performance with visualization image resolution.

7.5 Varying the Number of DPUs
We measure the end to end execution time of calculating integer

aggregates on the taxi dataset with 16 and 24 dimensions, with

varying number of DPUs running in asynchronous mode. Results

are shown in Figure 5. We can see that increasing the number of

9

Figure 5: Execution time with various numbers of DPUs

Figure 6: Execution time where aggregate is partitioned

DPUs results in speedup almost proportional to the number of

DPUs. This shows that our aggregation distribution approach is

flexible and scales well with the number of DPUs.

7.6 CPU Experiments
We ran experiments to see the effect of dividing aggregate arrays

into smaller partitions, so that we can get better temporal locality

at the cost of scanning more data. Results are shown in Figure 6

for calculating integer aggregates on the taxi dataset for 16 and 24

dimensions. Dividing the aggregate into 4 partitions resulted in no

speedup. We can see that dividing the aggregate into 2 partitions

results in approximately 13% speedup. As the size of each 3 dimen-

sional aggregate is 8MiB, and the size of the L2 cache on the CPU

machine for each core is 2MiB, by dividing the aggregate into two

partitions we reduce the number L2 cache misses. While dividing

the aggregate into 4 partitions would make it fit in the L2 cache, the

system would need 2 more passes over the whole dataset, which is

why we do not get additional speed ups.

7.7 Visualization Comparison
We present images generated by our system for the taxi dataset

and flight dataset. For analysis, the user can mouse over the image

to get the range of values corresponding to the bin at the location

of the cursor, as shown in Figure 7(a). We also generate images

using a conventional equidistance binning of the original dimension

domains. For an apples-to-apples comparison, we implemented a

pixel computation function for equidistance binning that highlights

cells based on over-representation or under-representation relative

to the expected value according to the marginal distributions of

each dimension.

We begin by comparing two visualizations generated using count

aggregates between the tip amount and trip distance dimensions

in the taxi dataset. For the first visualization (Figure 7(a)), we use

DIVAN to calculate aggregates, using 128 bins for equidepth binning.

For the second visualization (Figure 7(b)), we use equidistance

binning with 128 bins within the tip and distance domains.

The robustness of our visualization approach is illustrated by the

steps necessary to generate these images. Our initial attempts to

generate an equidistance visualization were confounded by some

erroneous values, including over 900 negative values for the tip

and one tip amount of over $141,000! Such values would distort the

equidistance diagram to the point of being useless. Thus, we were

forced to apply a manual data cleaning step in which we identified

reasonable bounds for the tip and distance, and filtered the dataset

to remove outliers. Figure 7 (b) corresponds to the subset of the data

with tip amounts between $0 and $15 and trip distances between 0

and 20miles. Evenwith these reasonable limits, Figure 7(b) uses a lot

of visualization real-estate for regions with little data, colored blue.

In contrast, our equidepth binning is robust to a small proportion

of outliers and uses the original full data set data directly. Further,

Figure 7(a) uses image real-estate in proportion to data populations.

Even before visualizing the data, one expects to see a positive

correlation between the trip distance and the tip amount. Our vi-

sualization allows for a deeper understanding of this correlation.

Firstly, there is a large black rectangle at the bottom of Figure 7(a)

that spans 39 bins vertically and 128 bins horizontally. This region

corresponds to tip amounts that are $0, and we can see that approx-

imately 30% of riders give no tip, and that giving no tip is common

regardless of the trip distance. In the equidistance representation

of Figure 7(b), this pattern corresponds to the thin red line at the

bottom of the visualization. This line is not immediately obvious,

and it is hard to gauge what percentage of riders do not tip.

Secondly, in Figure 7(a) horizontal lines span several bins, inter-

rupting the correlation. Upon inspection by mousing over these

lines as shown in the figure, these values correspond to rounded

tip values, such as $1, $3 or $5, meaning these tip values are more

common compared to other positive tip values, and users are more

inclined to give these values as tip, even if it is not at the normal

rate for the trip distance. For Figure 7(b), there are horizontal lines

sticking out of the correlation, but it is far from clear that there is a

horizontal displacement in the distribution for discrete dollar tips

rather than just a wider distribution.

Figure 7(a) does waste some visualization capacity, because all

of the 39 vertical bins at the bottom of the diagram have the same

horizontal distribution. One way to improve the visualization is to

use a secondary attribute. Figure 7(c) is similar to Figure 7(a) except

that the 𝑦 dimension is now the pair (tip-amount,pickup-time). As

a result, ties in tip-amount will be ordered by pickup-time. The

bottom 39 bins now reveal a new pattern, namely that there is an

over-representation of $0 tips for long trips early in the day. Figure

7(d) uses the same dimensions as Figure 7(c), except that the data is

binned using 32 bins. With a lower resolution, it becomes harder

to do fine-grained analysis, as some horizontal lines corresponding

to discrete tip values are no longer apparent.

We also compare two visualizations generated using count ag-

gregates between the arrival delay and the pair (year, arrival time)

dimensions in the flight dataset, shown in Figure 8. For the visu-

alization generated by DIVAN, the bins for each year is further

divided by arrival time, which shows additional patterns for each

year. All years have a general pattern where flights with arrival

10

(a) (b) (c) (d)

Figure 7: Visualization between tip amount (y-axis) and trip distance (x-axis), usingDIVAN’s binning (a) and equidistance binning
(b) using 128 bins. In diagrams (c) and (d), the y-axis is (tip-amount,pickup-time), binned with 128 and 32 bins respectively.

(a) (b)

Figure 8: Visualization between arrival delay time (y-axis)
and (year, arrival time) (x-axis), using DIVAN’s binning (a)
and equidistance binning (b) with 128 bins.

times late in the night also tend to have arrival delays. However, we

can easily notice that the middle year, which corresponds to 2020,

has a less strong correlation compared to other years. The bright

dots at the bottom of each year are null values for arrival delays that

take up around 3% of the data. For Figure 8(b), we tried to create

a comparable visualization by concatenating the year and arrival

time into a single integer, and then applying equidistance binning.

While we do get separate patterns for each year, we get skewed bins

due to the magnitude of year, and the positive correlation between

arrival time and arrival delay is harder to see.

We next show an example of image groups partitioned by a 𝑧

attribute. We consider pickup location as the 𝑥 dimension, trip

distance as the 𝑦 dimension, and pickup time as the 𝑧 dimension.

In the taxi dataset, pickup and dropoff locations are coded into

265 discrete zones. For the 𝑥 dimension we use a composite (bor-

ough,latitude) representation so that zones are ordered primarily by

borough (e.g., Manhattan, Queens), and south-to-north within each

borough according to the latitude of the zone’s centroid. Figure 9

shows our generated visualizations for four 𝑧 partitions. Figure 10

shows a version of the same data in which each unique pickup

location has its own bin; the x-axis is longer (265 bins) compared

to the equidistance-binned y-axis (128 bins).

The vast majority of the data corresponds to pickups in Manhat-

tan. Correspondingly, the majority of the horizontal axis in Figure 9

(the central region) is devoted to Manhattan, unlike Figure 10. The

cluster at the top-right of the images in Figure 9, highlighted using

the interactive tool in Figure 9(d), corresponds to long trips from

the airports JFK and LGA, which are located in Queens. In Figure 10,

the airports correspond to the tall vertical line that is at the right

end of the cluster.

Figure 9 shows that the location/distance interaction changes

depending on the time, something that is much harder to appre-

ciate from Figure 10. We can see that within Manhattan, which is

geographically vertically long, people tend to start long taxi rides

in the lower part of Manhattan at the beginning and end of day,

and take shorter taxi rides in the higher part of Manhattan later in

the middle of day, as inspecting the data showed that the middle 2

images correspond to pickup times between 10am and 6pm.

7.8 Visualization Recommendation Evaluation
We evaluate DIVAN’s ability to present interesting images to the

user using the process described in Section 6. For this experiment,

we use the 16-dimension taxi dataset and compute count aggre-

gates, and generate 12 images for every 3-dimensional aggregate

by dividing each dimension into 4 partitions, for a total of 6720

images. Figure 11 shows one image from each of the top 30 groups,

along with the highest scoring images of the bottom 10 groups.

This heuristic successfully produces images that have distinct, in-

terpretable patterns, including visualizations shown in Section 7.7.

Figure 11: Images from top 30 and bottom 10 groups

11

Figure 9: Visualizations created usingDIVANof aggregates between pickup location (x-axis) and trip distance (y-axis), partitioned
into 4 groups using pickup time (z-axis)

Figure 10: Visualizations of aggregates calculated on a categorical/equiwidth binned dataset, between dimensions pickup
location (x-axis) and trip distance (y-axis), partitioned into 4 groups using pickup time (z-axis)

8 RELATEDWORK
Data cubes [13] are a common candidate for visualization for the

purpose of identifying correlations. [19, 20, 28] propose data struc-

tures that require less memory than a traditional data cube by

computing aggregates on binned data, with the purpose of sup-

porting interactive querying times on the aggregates and saving

storage. However, they do not consider the normalized binning

method introduced in this paper. [21, 22] explores how adaptive in-

dexing can be used to efficiently support data visualization tasks on

commodity hardware on large data files that do not fit in memory.

[33] proposes an extension of relational algebra for the purpose

of expressing complex analytic queries on aggregates. The goal

of DIVAN is related to data profiling [27], the process of collect-

ing information and statistics on data. [31] discusses several ways

to visualize scatterplots for large amounts of data, depending on

the data’s characteristics. [5] provides a comprehensive review of

recent trends at the intersection of visualization and databases.

Our pixel computation function is related to the usage of heatmaps

in genomic data analysis, where over/under-representation has bi-

ological significance [14].

With the release of commerical hardware that supports Processing-

in-Memory there has been work on utilizing it in the field of

databases, in particular for accelerating joins [18], ordered indexes

[17], large table scans [6], adaptive query processing [7] and inte-

gration of PIM in main-memory DBMSs [10].

Our preprocessing step is related to data discretization [30] in

that we convert the domain of the database’s dimensions to integers

which are easier to work on. Our approximate binning method is

related to approximating frequencies for building equidepth his-

tograms [29] but differs in how the bin boundaries are handled.

9 CONCLUSIONS
We propose DIVAN, a system that utilizes normalized binning to

create visualizations of aggregates that automatically focuses on

where the data is. DIVAN is able to quickly calculate all possi-

ble 3-dimensional aggregates of the binned dataset using either

general purpose CPUs or Processing-in-Memory architectures, us-

ing algorithms that take advantage of each hardware’s memory

characteristics. By using Processing-in-Memory, DIVAN is able

to calculate aggregates on large scale datasets that have tens of

millions of rows and tens of columns 45%-64% faster than modern

CPUs. DIVAN is fully end-to-end in that it accepts a dataset, and

automatically bins the dataset and calculates the aggregates using

the available hardware it is on, and recommends interesting visual-

izations for the user to analyze. We show through examples that

DIVAN generates visualizations that highlight both expected and

unexpected patterns in the data that are more complex than simple

correlations.

For future work, we plan to investigate more effective ways

of doing visualization recommendation [16, 32] by automatically

identifying interesting patterns in the images generated by DIVAN

using more sophisticated techniques.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under

grant III-2312991.

REFERENCES
[1] [n.d.]. Flight Status Prediction. https://www.kaggle.com/datasets/robikscube/

flight-delay-dataset-20182022

[2] [n.d.]. Newyork Taxi Trip Data. https://www.kaggle.com/datasets/microize/

newyork-yellow-taxi-trip-data-2020-2019

[3] [n.d.]. Tableau. https://www.tableau.com/products/public

[4] [n.d.]. UPMEM Technology. https://www.upmem.com/technology/

12

https://www.kaggle.com/datasets/robikscube/flight-delay-dataset-20182022
https://www.kaggle.com/datasets/robikscube/flight-delay-dataset-20182022
https://www.kaggle.com/datasets/microize/newyork-yellow-taxi-trip-data-2020-2019
https://www.kaggle.com/datasets/microize/newyork-yellow-taxi-trip-data-2020-2019
https://www.tableau.com/products/public
https://www.upmem.com/technology/

[5] Leilani Battle and Carlos Scheidegger. 2021. A Structured Review of Data

Management Technology for Interactive Visualization and Analysis. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2021), 1128–1138.

https://doi.org/10.1109/TVCG.2020.3028891

[6] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2023. Ac-

celerating large table scan using processing-in-memory technology. Datenbank-
Spektrum 23, 3 (2023), 199–209.

[7] Alexander Baumstark, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2023.

Adaptive query compilation with processing-in-memory. In 2023 IEEE 39th Inter-
national Conference on Data Engineering Workshops (ICDEW). IEEE, 191–197.

[8] Stefan Berchtold, H. V. Jagadish, and Kenneth A. Ross. 1998. Independence

Diagrams: A Technique for Visual Data Mining. In Proceedings of the Fourth
International Conference on Knowledge Discovery and Data Mining (KDD-98),
New York City, New York, USA, August 27-31, 1998, Rakesh Agrawal, Paul E.

Stolorz, and Gregory Piatetsky-Shapiro (Eds.). AAAI Press, 139–143. http:

//www.aaai.org/Library/KDD/1998/kdd98-021.php

[9] Stefan Berchtold, H. V. Jagadish, and Kenneth A. Ross. 2000. Independence

diagrams: A technique for data visualization. J. Electronic Imaging 9, 4 (2000),

375–384. https://doi.org/10.1117/1.1289356

[10] Arthur Bernhardt, Andreas Koch, and Ilia Petrov. 2023. Pimdb: From main-

memory dbms to processing-in-memory dbms-engines on intelligent memories.

In Proceedings of the 19th International Workshop on Data Management on New
Hardware. 44–52.

[11] Fabrice Devaux. 2019. The true Processing In Memory accelerator. In 2019 IEEE
Hot Chips 31 Symposium (HCS). 1–24. https://doi.org/10.1109/HOTCHIPS.2019.

8875680

[12] Yanlei Diao, Paweł Guzewicz, Ioana Manolescu, and Mirjana Mazuran. 2021. Effi-

cient Exploration of Interesting Aggregates in RDF Graphs. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD ’21). Association for Computing Machinery, New York, NY, USA, 392–404.

https://doi.org/10.1145/3448016.3457307

[13] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. 1996. Data cube: a relational

aggregation operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS.

In Proceedings of the Twelfth International Conference on Data Engineering. 152–
159. https://doi.org/10.1109/ICDE.1996.492099

[14] ZuguangGu, Roland Eils, andMatthias Schlesner. 2016. Complex heatmaps reveal

patterns and correlations in multidimensional genomic data. Bioinformatics 32
18 (2016), 2847–9. https://api.semanticscholar.org/CorpusID:25808906

[15] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F.

Oliveira, and Onur Mutlu. 2022. Benchmarking a New Paradigm: Experimental

Analysis and Characterization of a Real Processing-in-Memory System. IEEE
Access 10 (2022), 52565–52608. https://doi.org/10.1109/ACCESS.2022.3174101

[16] Kevin Hu, Michiel A. Bakker, Stephen Li, Tim Kraska, and César Hidalgo. 2019.

VizML: A Machine Learning Approach to Visualization Recommendation. In

Proceedings of the 2019 Conference on Human Factors in Computing Systems (CHI).
ACM.

[17] Hongbo Kang, Yiwei Zhao, Guy E Blelloch, Laxman Dhulipala, Yan Gu, Charles

McGuffey, and Phillip B Gibbons. 2023. PIM-trie: A Skew-resistant Trie for

Processing-in-Memory. In Proceedings of the 35th ACM Symposium on Parallelism
in Algorithms and Architectures. 1–14.

[18] Chaemin Lim, Suhyun Lee, Jinwoo Choi, Jounghoo Lee, Seongyeon Park, Hanjun

Kim, Jinho Lee, and Youngsok Kim. 2023. Design and Analysis of a Processing-in-

DIMM Join Algorithm: A Case Study with UPMEM DIMMs. Proc. ACM Manag.
Data 1, 2, Article 113 (June 2023), 27 pages. https://doi.org/10.1145/3589258

[19] Lauro Lins, James T. Klosowski, and Carlos Scheidegger. 2013. Nanocubes

for Real-Time Exploration of Spatiotemporal Datasets. IEEE Transactions on
Visualization and Computer Graphics 19, 12 (2013), 2456–2465. https://doi.org/

10.1109/TVCG.2013.179

[20] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. 2013. imMens: Real-time visual

querying of big data. In Computer graphics forum, Vol. 32. Wiley Online Library,

421–430.

[21] Stavros Maroulis, Nikos Bikakis, George Papastefanatos, Panos Vassiliadis, and

Yannis Vassiliou. 2021. Rawvis: A system for efficient in-situ visual analytics. In

Proceedings of the 2021 International Conference on Management of Data. 2760–
2764.

[22] Stavros Maroulis, Nikos Bikakis, George Papastefanatos, Panos Vassiliadis, and

Yannis Vassiliou. 2023. Resource-aware adaptive indexing for in situ visual

exploration and analytics. The VLDB Journal 32, 1 (2023), 199–227.
[23] Zhengjie Miao, Andrew Lee, and Sudeepa Roy. 2019. LensXPlain: visualizing

and explaining contributing subsets for aggregate query answers. Proc. VLDB
Endow. 12, 12 (aug 2019), 1898–1901. https://doi.org/10.14778/3352063.3352094

[24] Dominik Moritz, Bill Howe, and Jeffrey Heer. 2019. Falcon: Balancing Interac-

tive Latency and Resolution Sensitivity for Scalable Linked Visualizations. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
(Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New

York, NY, USA, 1–11. https://doi.org/10.1145/3290605.3300924

[25] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun.

2019. Processing data where it makes sense: Enabling in-memory computation.

Microprocessors and Microsystems 67 (2019), 28–41. https://doi.org/10.1016/j.

micpro.2019.01.009

[26] Onur Mutlu, Saugata Ghose, Juan Gómez-Luna, and Rachata Ausavarungnirun.

2022. A Modern Primer on Processing in Memory. arXiv:2012.03112 [cs.AR]

https://arxiv.org/abs/2012.03112

[27] Felix Naumann. 2014. Data profiling revisited. SIGMOD Rec. 42, 4 (Feb. 2014),
40–49. https://doi.org/10.1145/2590989.2590995

[28] Cícero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger, and João L. D. Comba.

2017. Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big

Data. IEEE Transactions on Visualization and Computer Graphics 23, 1 (2017),

671–680. https://doi.org/10.1109/TVCG.2016.2598624

[29] Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita. 1996.

Improved histograms for selectivity estimation of range predicates. ACM Sigmod
Record 25, 2 (1996), 294–305.

[30] Sergio Ramírez-Gallego, Salvador García, Héctor Mouriño-Talín, David Martínez-

Rego, Verónica Bolón-Canedo, Amparo Alonso-Betanzos, José Manuel Benítez,

and Francisco Herrera. 2016. Data discretization: taxonomy and big data chal-

lenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 6,

1 (2016), 5–21.

[31] Alper Sarikaya and Michael Gleicher. 2017. Scatterplots: Tasks, data, and designs.

IEEE transactions on visualization and computer graphics 24, 1 (2017), 402–412.
[32] Manasi Vartak, Silu Huang, Tarique Siddiqui, Samuel Madden, and Aditya

Parameswaran. 2017. Towards visualization recommendation systems. Acm
Sigmod Record 45, 4 (2017), 34–39.

[33] Xi Wu, Zichen Zhu, Xiangyao Yu, Shaleen Deep, Stratis Viglas, John Cieslewicz,

Somesh Jha, and Jeffrey F. Naughton. 2024. Multi-Relational Algebra and Its

Applications to Data Insights. arXiv:2311.04824 [cs.DB] https://arxiv.org/abs/

2311.04824

13

https://doi.org/10.1109/TVCG.2020.3028891
http://www.aaai.org/Library/KDD/1998/kdd98-021.php
http://www.aaai.org/Library/KDD/1998/kdd98-021.php
https://doi.org/10.1117/1.1289356
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1109/HOTCHIPS.2019.8875680
https://doi.org/10.1145/3448016.3457307
https://doi.org/10.1109/ICDE.1996.492099
https://api.semanticscholar.org/CorpusID:25808906
https://doi.org/10.1109/ACCESS.2022.3174101
https://doi.org/10.1145/3589258
https://doi.org/10.1109/TVCG.2013.179
https://doi.org/10.1109/TVCG.2013.179
https://doi.org/10.14778/3352063.3352094
https://doi.org/10.1145/3290605.3300924
https://doi.org/10.1016/j.micpro.2019.01.009
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/abs/2012.03112
https://arxiv.org/abs/2012.03112
https://doi.org/10.1145/2590989.2590995
https://doi.org/10.1109/TVCG.2016.2598624
https://arxiv.org/abs/2311.04824
https://arxiv.org/abs/2311.04824
https://arxiv.org/abs/2311.04824

	Abstract
	1 Introduction
	2 Workflow
	3 Dataset Normalization
	3.1 Binning via sorting
	3.2 Approximate binning via histograms

	4 Aggregate calculation
	4.1 General CPU Execution
	4.2 Processing-In-Memory Architecture
	4.3 Aggregation Distribution
	4.4 Execution

	5 Transforming Aggregates to Visualizations
	6 Visualization Recommendation
	7 Experimental Evaluation
	7.1 Dataset Description
	7.2 Experiment machines
	7.3 Varying Dimensions and Data Types
	7.4 Varying the Number of Bins
	7.5 Varying the Number of DPUs
	7.6 CPU Experiments
	7.7 Visualization Comparison
	7.8 Visualization Recommendation Evaluation

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

