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ABSTRACT
The bottleneck of modern data-intensive applications is increas-
ingly shifting towards memory access, as the CPU core count
growth continues to outpace the available DRAM bandwidth. The
CXL protocol has emerged as a technological solution to this prob-
lem, offering software applications transparent cache-coherent ac-
cess to additional memory resources. Recent work has shown that
a proper interleaving configuration of DRAM and CXL memory
can improve the performance of bandwidth-intensive analytical
workloads, and that a single interleaving configuration can give
optimal performance across any workloads.

In this paper, we revisit CXL memory bandwidth expansion for
analytical workloads. We find that interleaving DRAM and CXL
memory transparently to a state-of-the-art query execution engine
Proteus, when running the SSB workload, degrades its average per-
formance by 20%. We show that realizing the full potential of CXL
memory bandwidth expansion requires efficient hardware utiliza-
tion through maximizing memory-level parallelism and adapting
to the workload’s access patterns and characteristics.
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1 INTRODUCTION
Modern data-intensive applications face an increasingly severe
memory bottleneck as performance limitations shift from com-
putation to memory access. Figure 1 shows that available DRAM
bandwidth per CPU core has stagnated across recent Intel® Xeon®
server generations [11], with AMD EPYC® processors following a
similar trend [4]. Although the number of CPU cores continues to
increase, the DRAM bandwidth scalability has been fundamentally
limited by the DDR scalability [31, 41]. This widening gap creates
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Figure 1: Theoretical maximum DRAM bandwidth per CPU
core across latest 2-socket Intel® Xeon® server CPU genera-
tions.

an imminent memory wall that threatens both performance and
cost efficiency [4, 33]. The new memory wall will become a critical
bottleneck in high-performance computing environments, particu-
larly affecting data management systems that process large-scale
analytical workloads [4].

Heterogeneous memory technologies [19, 39] present new op-
portunities to address the memory wall. The Compute eXpress Link
(CXL) protocol [13] represents a significant advancement in mem-
ory expansion technology, providing software applications with
transparent cache-coherent access to memory resources beyond tra-
ditional DRAM. CXL enables both memory capacity and bandwidth
expansion, attracting adoption by major industry players including
Microsoft Azure [26], Meta [30], Google [14], Alibaba [46], and SAP
HANA [1, 2, 18, 23].

Previous research has demonstrated promising results for CXL
memory capacity expansion [1, 2, 18, 23, 36]. However, bandwidth
expansion remains less thoroughly investigated, particularly for
data management systems. The effectiveness of bandwidth expan-
sion varies significantly based on hardware characteristics (avail-
able bandwidth, memory-level parallelism, etc.) and workload prop-
erties (memory intensity, access patterns, etc.).
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Recent studies have primarily evaluated CXLmemory bandwidth
expansion for HPC and AI workloads [33, 37, 41, 45]. Data man-
agement systems present distinct optimization opportunities since
they can tailor memory usage patterns to specific workloads rather
than relying on generic operating system solutions. Prior research
suggests that proper interleaving of DRAM and CXL memory en-
hances performance for bandwidth-intensive analytical workloads,
proposing that a single interleaving configuration suffices across
diverse workloads [16].

This paper provides a comprehensive reevaluation of CXL mem-
ory bandwidth expansion for analytical workloads. Through sys-
tematic evaluation of the Star Schema Benchmark (SSB) [32] using a
state-of-the-art query execution engine Proteus [5, 6, 20, 21] across
multiple hardware configurations, we demonstrate that CXL mem-
ory bandwidth expansion actually degrades performance for most
queries, with individual query improvements limited to 10% in
optimal cases.

We provide three key insights for designing data management
systems that effectively leverage CXL memory bandwidth expan-
sion:

• Transparent memory interleaving degrades analyti-
cal performance. Transparent interleaving of DRAM and
CXL memory degrades SSB workload’s average perfor-
mance by 20% (Section 5). Disabling hardware prefetch-
ing reduces performance degradation to 7%, revealing that
current prefetching mechanisms operate inefficiently with
interleaved DRAM and CXL memory configurations.

• Workload-adaptive interleaving is essential. No single
memory interleaving configuration achieves optimal per-
formance across workload variations, with optimal ratios
varying by up to 88% based on workload parameters (Sec-
tion 6). This necessitates adaptive approaches that respond
to runtime workload characteristics.

• Hardware utilization determines bandwidth expan-
sion benefits.Memory bandwidth underutilization reduces
potential performance gains by up to 60% (Section 7). Our
analysis demonstrates that hyper-threading improves per-
formance of bandwidth expansion, while sub-NUMA clus-
tering is insignificant. While hardware prefetching does not
always work efficiently with interleaved DRAM and CXL
memory configurations, it is crucial for getting performance
improvements. Maximizing hardware utilization through
efficient memory-level parallelism is essential for realizing
the potential of CXL memory bandwidth expansion.

We discuss the implications of our insights for data management
system design in Section 8 and conclude in Section 9.

2 BACKGROUND
Compute eXpress Link (CXL) [40] is an open industry standard
interconnect technology that enables high-bandwidth, low-latency
connections between processors and various devices, including
accelerators, memory expanders, and storage systems. Built upon
the PCIe physical layer, CXL has emerged as a critical technology
for memory expansion in data-intensive computing environments,
offering particular advantages for database systems and memory-
bound analytical workloads. The CXL specification defines three

Figure 2: CXL memory expansion platform topology.

complementary protocols that work together to enable coherent
memory access. CXL.io leverages existing PCIe functionality for de-
vice discovery, configuration, and basic I/O operations. CXL.cache
provides cache-coherent access to host memory from attached de-
vices. CXL.mem enables hosts to access device-attached memory
through standard load/store instructions with full cache coherence.

This paper focuses onCXLmemory expansion capabilities, which
utilize the CXL.io and CXL.mem protocols. CXL.io handles the
initial interface establishment and device management between
the CPU and CXL memory device, while CXL.mem provides the
cache-coherent memory access semantics that make CXL mem-
ory transparent to software applications. This transparency allows
existing applications to benefit from expanded memory resources
without modification. Further on, we refer to CXL memory simply
as CXL.

3 RELATEDWORK
CXL research has rapidly evolved from early hardware emulation
studies to comprehensive evaluations using commercial devices,
establishing a diverse research landscape that spans system-level
memory management, application-specific optimization strategies,
and performance characterization methodologies. The field has
primarily concentrated on memory capacity expansion applica-
tions, where CXL serves as a cost-effective alternative to traditional
DRAM scaling, while bandwidth expansion capabilities have re-
ceived comparatively limited attention despite their significant
potential for memory-intensive workloads.

CXL performance characterization. Early CXL research re-
lied heavily on hardware emulation, which introduced significant
limitations in understanding real-world performance characteris-
tics. The availability of commercial CXL devices has enabled more



accurate performance analysis and revealed important discrepan-
cies with emulated results.

Sun et al. [41] conducted one of the first evaluations using gen-
uine CXL hardware, revealing substantial differences between emu-
lated and real CXL performance. Their work provides insights into
fundamental performance characteristics and latency-bandwidth
tradeoffs of CXL memory devices and highlights the opportunity of
bandwidth expansion for bandwidth-intensive applications Subse-
quent studies have provided deeper insights into CXL performance
characteristics. Liu et al. [27, 28] have performed a systematic char-
acterization, performance modeling and performance analysis of
CXL. Additional research has characterized the hardware paral-
lelism [47] and interference [29] of CXL.

Transparent memory management. The systems community
has developed various approaches for transparent CXL memory
management without requiring application modifications. These
solutions operate at the hypervisor and operating system levels to
efficiently manage heterogeneous memory tiers.

Hypervisor-level solutions include memory pooling systems
that aggregate CXL memory across multiple nodes. Microsoft’s
Pond [26] implements CXL-based memory pooling for cloud plat-
forms, while other research explores virtualized CXL memory en-
vironments [49] that enable dynamic memory allocation across
virtual machines.

Operating system approaches focus on intelligent page place-
ment and migration policies. Meta’s TPP [30] implements proac-
tive page demotion and promotion strategies. Google’s TMTS [14]
provides application-transparent memory tiering that maintains
service-level objectives across diverse workloads. Other notable
systems include MEMTIS [24], vTMM [38], and Colloid [44], each
contributing different optimization strategies for tiered memory
management. Overall, these systems focus on designing efficient
tiered memory management transparently to userspace applica-
tions.

Explicit memory management. The data management re-
search community has focused on efficiently managing CXL mem-
ory explicitly, since data management applications have more pre-
cise knowledge of their current and future workloads. Riekenbrauck
et al. have proposed a tiered buffer manager design for CXL [36].
Further, SAP HANA researchers have proposed various data place-
ment techniques [1, 2, 23] for efficient memory expansion and mem-
ory pooling. Finally, various memory-conscious algorithms [3, 18]
and architectures [4, 15, 25] for CXL have been proposed. Overall,
prior research work has focused on the memory capacity expansion
aspects of CXL. In this paper, we study the memory bandwidth
expansion aspect.

Memory bandwidth expansion research. CXL memory band-
width expansion research has primarily focused on artificial intel-
ligence and high-performance computing workloads [33, 37, 45].
Recent work by Huang et al. [16] specifically examined bandwidth
expansion for analytical workloads through interleaving DRAMand
CXL. However, their evaluation was limited to a single hardware
configuration using sub-NUMA clustering and the same interleav-
ing ratio across all workloads.

This paper revisits CXL memory bandwidth expansion for ana-
lytical workloads by providing comprehensive analysis across mul-
tiple hardware configurations, examining hardware prefetching

effects, analyzing memory bandwidth utilization, and evaluating a
wide range of memory interleaving configurations across different
workloads.

4 EXPERIMENTAL SETUP
This section presents our experimental methodology for evaluating
CXL memory bandwidth expansion across a range of hardware con-
figurations. Our evaluation addresses three fundamental research
questions:

• DRAMbandwidth scaling.Howdoes systematically vary-
ing available DRAM bandwidth per-core via sub-NUMA
clustering alter the effectiveness of CXLmemory bandwidth
expansion?

• Prefetching behavior.What role does hardware prefetch-
ing play in the performance of CXL memory bandwidth
expansion?

• Memory interleaving ratios. How does weighted mem-
ory interleaving affect performance across different work-
loads?

To answer these questions systematically, we evaluate multiple
hardware configurations with varying DRAM bandwidth capabil-
ities, examine both enabled and disabled hardware prefetching
modes, and test a comprehensive range of interleaving ratios be-
tween DRAM and CXL.

4.1 Experimental Platform
We conduct our experiments on a server running Linux kernel
version 6.9.0 with support for weighted memory interleaving [7].
The server has a dual-socket 48-core Intel® Xeon® Platinum 8468
Sapphire Rapids CPU supporting the CXL 1.1 protocol with 2 hyper-
threads per physical core, a 210 MB last-level cache (LLC), and 8
DDR5 DRAM channels with 1x32 GB DDR5 RDIMMs per channel.
Throughout our evaluation, we utilize a single CPU socket with
all 48 physical cores, disabling hyper-threading, except for spe-
cific scalability experiments detailed in Section 7. All of the data is
equally partitioned between the execution threads. For CXL mem-
ory expansion, we use a SMART® CXA-4F1W device [42], which
is a CXL 2.0 Type 3 memory expander, populated with 4x64 GB
DDR5 RDIMMs. This device connects to the utilized CPU socket
via a 16-lane (x16) PCIe 5.0 interface. Consequently, the CXL link
operates under the CXL 1.1 protocol, utilizing the PCIe 5.0 physical
layer’s data rate of 32 GT/s per lane.

Controlling DRAM bandwidth. We use Intel® Sub-NUMA
Clustering (SNC) [12] to systematically vary available DRAM band-
width. SNC partitions the CPU’s memory subsystem into multiple
NUMA domains, each with dedicated DRAM channels (Figure 2).
Our Sapphire Rapids CPU integrates four chiplets, each containing
12 cores and 2 DDR5 channels. We evaluate three configurations:

• Full Socket. SNC disabled, exposing all chiplets as a single
NUMA node (8 DRAM channels).

• SNC-2. Two chiplets per socket (4 DRAM channels).
• SNC-4. One chiplet per socket node (2 DRAM channels).

Memory interleaving implementation.We use the
/sys/kernel/mm/mempolicy/weighted_interleave/



Table 1: Peak sustainable memory bandwidth estimations in GB/s.

Hardware Configuration DRAM (Sysbench) DRAM (Intel® MLC) CXL (Sysbench) CXL (Intel® MLC)
Full Socket, hardware prefetching enabled 252.9 268.6 41.3 43.0
Full Socket, hardware prefetching disabled 184.0 194.5 44.5 46.4

SNC-2, hardware prefetching enabled 125.7 133.3 39.5 41.1
SNC-2, hardware prefetching disabled 106.9 107.1 44.3 46.2
SNC-4, hardware prefetching enabled 58.4 66.8 40.5 41.9
SNC-4, hardware prefetching disabled 48.0 51.0 44.4 46.3

Table 2: Idle memory latency estimations in nanoseconds.

Hardware Configuration DRAM CXL
Full Socket 111 229
SNC-2 105 226
SNC-4 96 212

Figure 3: Loaded memory latency as a function of memory
bandwidth utilization on logarithmic scales.

interface and the MPOL_WEIGHTED_INTERLEAVE memory alloca-
tion policy available in recent Linux kernel versions. A weighted
memory interleaving configuration X:Y means that every X con-
secutive OS memory pages allocated on DRAM are followed by Y
consecutive OSmemory pages allocated on CXL.We use 2MiB huge
pages to minimize the effects of TLB pressure. We use the percent-
age of memory bound pipeline slots and the percentage of memory
bandwidth-bound and latency-bound stalls from the Intel® VTune™
Profiler Top-down Microarchitecture Analysis Method [10, 48] to
characterize the performance implications of interleaving DRAM

and CXL from the CPU perspective. Further on, we refer to inter-
leaved DRAM and CXL as DRAM:CXL.

4.2 Memory Characteristics Heterogeneity
To interpret bandwidth expansion results, we need to understand
the fundamental performance characteristics of DRAM and CXL
across our hardware configurations. We characterize both band-
width and latency properties using established benchmarking tools.

Bandwidth characterization.We observe the peak sustainable
memory bandwidths of DRAM and CXL for each hardware config-
uration using two benchmarks: the bandwidth matrix test of Intel®
Memory Latency Checker (Intel® MLC) [8] and the local scope
sequential read memory test of sysbench [22]. Both benchmarks
allocate 1 GB of memory per thread entirely on DRAM or CXL and
access it using all 48 physical CPU cores. The results are presented
in Table 1.

The benchmarks report different results, and the peak bandwidth
ratio between DRAM and CXL does not remain the same. To under-
stand this discrepancy, we also use the Intel® Performance Counter
Monitor (Intel® PCM) [9] to measure the memory bandwidth using
hardware performance counters while running sysbench, and it
reports the same results as Intel® MLC. Thus, we conclude that the
discrepancy comes from the fact that the Intel® MLC reports raw
hardware memory bandwidth, while sysbench reports software
throughput.

Latency characterization. We measure the latency of DRAM
and CXL using the idle and loaded latency tests of Intel® MLC.
They characterize the latency under, correspondingly, low and high
bandwidth utilization. The results are presented in Table 2 and
Figure 3.

As the bandwidth utilization increases, the loaded DRAM latency
exceeds the idle CXL latency in all hardware configurations, except
for the full socket configuration with hardware prefetching disabled.
But even before the memory bandwidth is fully utilized, the loaded
CXL latency increases up to 5x times when hardware prefetching is
enabled. Disabling hardware prefetching delays this effect until the
memory bandwidth is saturated.While the SNC-4 configuration has
DRAM bandwidth comparable to CXL, the loaded latency increases
only 3x times. Similar effects of memory latency inflation under
load have also been observed in recent work on DRAM [17] and
CXL [27, 43]. CXL thus requires more attention than DRAM due to
its higher sensitivity to latency inflation, as overloading it causes
significantly more severe performance degradation.

These findings suggest that CXL memory bandwidth expan-
sion can improve a bandwidth-intensive workload’s performance
by reducing both its latency- and bandwidth- bound stall cycles.



Figure 4: Geometric mean speedups across the SSB workload for different DRAM:CXL interleaving weights normalized against
the DRAM-only configuration.

Conversely, CXL can hurt performance when either the DRAM
bandwidth is underutilized or the CXL bandwidth is saturated.

5 SSB WORKLOAD
To evaluate CXL memory bandwidth expansion for analytical work-
loads, we conduct experiments using the Star Schema Benchmark
(SSB) [32], a standard data warehouse benchmark. We use SSB scale
factor 100 to ensure the dataset fits within the memory capacity of
all hardware configurations1.

For query execution, we use Proteus [5, 6, 20, 21], a state-of-the-
art pipelined parallel in-memory analytical engine with just-in-time
LLVM-based code generation. We use hash joins for equi-joins,
where build-side table cardinalities result in cache-resident hash
tables for all queries. We analyze out-of-cache hash joins separately
in Section 6.2.

We evaluate SSB queries across multiple memory interleaving
configurations and compute geometric mean speedups normalized
against the DRAM-only baseline. Figure 4 presents aggregate re-
sults, while Figure 5 shows individual query performance.

5.1 Average Workload Performance
Across all SSB queries, CXL memory bandwidth expansion de-
grades performance for all hardware configurations except SNC-4
with hardware prefetching enabled. The performance impact is
substantial: for full socket and SNC-2 configurations with hardware
prefetching enabled, even the lightest CXL interleaving (9:1) causes
a 20% performance degradation. Profiling of the 9:1 interleaving

1We observed similar results when evaluating scale factor 1000 on the full socket
configuration.

configuration reveals that more than 44% of memory stall cycles
are memory latency-bound, while memory-bound pipeline slots
increase by at least 1.4 percentage points relative to the DRAM-only
configuration.

However, disabling hardware prefetching dramatically reduces
this penalty, limiting performance degradation to at most 7% for the
lightest interleaving configurations (9:1, 8:2). This finding indicates
that hardware prefetching operates inefficiently with heteroge-
neous memory configurations.

Supporting this conclusion, CXL-only often outperforms inter-
leaving configurations with heavier CXL weights. Only the SNC-4
configuration with hardware prefetching enabled shows improve-
ment: the 8:2 interleaving reduces bandwidth-bound memory stall
cycles by up to 4.1 percentage points and memory-bound pipeline
slots by up to 1.5 percentage points compared to the DRAM-only
configuration, achieving a modest 2% speedup.

5.2 Individual Query Analysis
To understand per-query performance implications, we show in-
dividual SSB query runtimes in Figure 5 for the best-performing
memory interleaving configurations compared to pure DRAM and
CXL configurations. All runtimes are normalized against the DRAM-
only baseline.

For full socket and SNC-2 configurations, individual queries
benefit from bandwidth expansion only when hardware prefetch-
ing is disabled. Notably, the CXL-only outperforms interleaving
for nearly half of all queries in these configurations. Disabling
hardware prefetching significantly reduces performance variation



Figure 5: SSB query runtimes for different memory configurations normalized against the DRAM-only configuration.

across queries in all hardware configurations, with the gap be-
tween DRAM-only and optimal weighted interleaving configura-
tions shrinking to at most 12%.

The SNC-4 configuration with hardware prefetching enabled
shows different behavior: the 8:2 interleaving reduces memory-
bound pipeline slots by up to 3.2 percentage points compared to the
DRAM-only configuration, delivering a 10% speedup for query 3.1.
These results consistently demonstrate that hardware prefetching
operates inefficiently with memory interleaving, supporting our
general findings.

6 WORKLOAD DIVERSITY
The SSB workload we evaluated in Section 5 is comprised of four
query groups, and, within each query group, the query’s selectivity
decreases with the rank. For instance, query 1.3 is more selective
than query 1.2, which is more selective than query 1.1. Furthermore,
the execution of each query goes throughmultiple execution phases
with distinct access patterns and characteristics, such as: (i) sequen-
tial read input scans; (ii) sequential write output flushes; (iii) hash
joins; (iv) filtering with various selectivities; (v) group-by hash par-
titioning with various fanouts. A typical analytical workload has a
plethora of different execution phases with distinct characteristics.

This suggests that a single DRAM:CXL interleaving configu-
ration cannot give optimal performance across all workloads. To
understand how the optimal interleaving configuration can change
depending onworkload characteristics, we analyze the performance
of four distinct execution phases typical for analytical workloads
on a range of interleaving weights.

6.1 Sequential Access
We start by analyzing the performance of sequential read and write
microbenchmarks, the former modeling an input scan, and the latter
an output flush. We sequentially read (write) a 32 GB array of 8-
byte integers, measuring the throughput as the amount of data read
(written) per second. We normalize the throughputs against the
DRAM-only configuration. The results are presented in Figure 6.

The optimal interleaving weights for the SNC-4 configuration
are the same for both read and write configurations when hard-
ware prefetching is enabled, but in all other cases they are different.
The optimal interleaving configurations for sequential reads re-
duce bandwidth-bound memory stall cycles by up to 2.5 percentage
points and memory-bound pipeline slots by up to 31 percentage
points relative to the DRAM-only configuration, giving up to 72%
speedup in the SNC-4 configuration. For sequential writes, the opti-
mal interleaving configurations reduce store-bound pipeline stalls
by up to 2.5 percentage points and memory-bound pipeline slots
reduce by up to 2.5 percentage points compared to the DRAM-only
configuration, giving a 76% speedup in the SNC-4 configuration.

While the ratio of peak sustainable bandwidth estimations for
DRAM and CXL is similar to the sequential read and write optimal
interleaving weights for the SNC-4 configuration with hardware
prefetching enabled, it significantly differs in all other cases. Both
of these findings are also confirmed by recent work [37] that shows
that the optimal interleaving weights change depending on the
read-write ratio of the workload. We conclude that the correlation
between the ratio of peak DRAM and CXL bandwidth estimations
and the sequential read and write optimal interleaving weights is
weak, and that the optimal weights are determined by both the
workload and the hardware.

6.2 Hash Join
Next, we analyze the performance of a hash join microbenchmark.
To model the build phase of the hash join, we sequentially access a
pre-generated 2 GB array of unique random 8-byte integer indices to
fill in a 16 GB array of hash table buckets consisting of 8-byte integer
keys and values. To maximize the memory bandwidth intensity
of this microbenchmark, we use an identity hash function which
is also a perfect hash function in this scenario, i.e., there are no
collisions. To model the probe phase, we sequentially access the
array of random indices to probe the array of hash table buckets 232
times, wrapping around the array of random indices, ensuring that
the probe phase exceeds 95% of the execution time of the hash join.
The sizings we choose ensure that none of the data gets completely



Figure 6: Sequential read and write throughputs for different DRAM:CXL interleaving weights normalized against the DRAM-
only configuration.

cached, allowing us to stress the memory accesses. We estimate
the throughput of the build phase as the number of values written
per second, and the throughput of the probe phase as the number
of values probed per second. For both phases, we normalize the
throughputs against the DRAM-only configuration. The results are
presented in Figure 7.

The optimal interleaving weights for both phases are close to
those for sequential writes and reads respectively, and they do
not depend on hardware prefetching. Even though we do random
writes (reads) during the build (probe) phase, we sequentially read
the random indices at which we write (read). Hence, the work-
load is still amenable to hardware prefetching, and we attribute
the similarity between the optimal interleaving weights for scans
and hash joins to this. The results diverge only for the full socket
configuration with hardware prefetching enabled, which shows the
DRAM bandwidth underutilization discussed in Section 7 further
exacerbated by indirect memory accesses. The optimal interleaving
configurations for the build phase reduce memory-bound pipeline
slots by up to 11.4 percentage points compared to the DRAM-only
configuration, giving a 82% speedup in the SNC-4 configuration.
For the probe phase, the optimal interleaving configurations reduce
memory-bound pipeline slots by up to 10 percentage points rela-
tive to the DRAM-only configuration, giving a 70% speedup in the
SNC-4 configuration.

6.3 Filtering
Next, we analyze the performance of a filtering microbenchmark
to model a selective access execution phase. We sequentially read
a 32 GB array of 8-byte integers, varying the number of tuples
skipped between two consecutive accesses (selectivity) as powers
of 2, and estimate the throughput as the amount of filtered data
read per second. We normalize the throughputs against the DRAM-
only configuration for each selectivity. The results are presented in
Figure 8.

All hardware configurations benefit from interleaving for at
least 1 selectivity value, regardless of hardware prefetching. The
optimal interleaving configurations depend on the selectivity, and

they tend to shift to CXL as the selectivity increases. The optimal
interleaving configuration reduces the bandwidth-bound memory
stall cycles by at most 12 percentage points and the memory-bound
pipeline slots by at most 8.6 percentage points compared to the
DRAM-only configuration, giving a 90% speedup for selectivity 512
in the SNC-4 configuration. In this hardware configuration, CXL-
only reduces the bandwidth-bound memory stall cycles by at 7.7
percentage points and the memory-bound pipeline slots by at most
1.7 percentage points relative to the DRAM-only configuration,
giving a 24% speedup for selectivity 512. The optimal interleaving
ratio can change by up to 55% as in the SNC-4 configuration with
hardware prefetching enabled (from 6:4 to 4:6).

6.4 Radix Partitioning
Finally, we study the performance of a partitioningmicrobenchmark
to model a group-by hash partitioning execution phase. We perform
radix partitioning [34] on a 16 GB array of 8-byte integers, varying
the number of partitions (fanout) as powers of 2, and estimate the
throughput as the number of partitioned tuples per second. We
normalize the throughputs against the DRAM-only configuration
for each fanout. The results are presented in Figure 9.

There is no hardware configuration for which a single memory
interleaving configuration would be optimal across all fanouts, ex-
cept for the full socket configuration with hardware prefetching
disabled, which does not benefit from interleaving at all. The opti-
mal configurations drastically change as the fanout increases, and
configurations with heavier CXL weights become optimal for some
of the fanouts. Since partitioning also involves writing data, this
may be a consequence of the higher cache coherence overhead of
CPU-associated memory when accessing it under high contention.
For the full socket configuration with hardware prefetching enabled,
the optimal interleaving configuration reduces latency-bound mem-
ory stall cycles by at most 2.7 percentage points and memory-bound
pipeline slots by at most 0.7 percentage points compared to the
DRAM-only configuration, giving a 32% speedup for fanout 8192.



Figure 7: Hash join build and probe phases throughputs for different DRAM:CXL interleaving weights normalized against the
DRAM-only configuration.

For other hardware configurations, the optimal interleaving con-
figuration reduces the store-bound memory stalls by up to 6.8 per-
centage points and the memory-bound pipeline slots by at most 4.3
percentage points relative to the DRAM-only configuration, giving
a 71% performance improvement for fanout 8192 in the SNC-4 con-
figuration. The optimal interleaving ratio can change by up to 88%
as in the SNC-2 configuration with hardware prefetching enabled
(from 9:1 to 5:5).

7 MEMORY BANDWIDTH UTILIZATION
To understand the reasons for the poor performance of CXL mem-
ory bandwidth expansion when running the SSB workload, we an-
alyze the throughput scalability of the sequential read microbench-
mark used in Section 6.1 with respect to the number of utilized
CPU cores. In the SNC configurations, we first utilize the CPU cores
local to the SNC NUMA node. For memory interleaving, we use
the optimal interleaving configurations for sequential reads found
in Section 6.1. We omit memory interleaving for the full socket
configuration with hardware prefetching disabled, since it does not
improve performance for it. We evaluate throughput improvements
below as the the absolute improvements over the DRAM-only con-
figuration normalized against the CXL configuration to account for
the DRAM bandwidths of different hardware configurations. The
results are presented in Figure 10.

7.1 Scalar Reads
For scalar reads in the area of physical CPU cores, bandwidth ex-
pansion improves the throughput only when the number of utilized
CPU cores saturates the DRAM bandwidth. This is evident by the
flattening of the throughput curve of the DRAM-only configuration
for Subfigures (b), (c) and (f). However, the hardware configura-
tions in Subfigures (a), (d) and (e) scale up to all physical CPU cores,
and, apparently, the CPU does not have enough physical cores to
saturate the DRAM bandwidth. In the SNC-4 configuration, the

throughput of the DRAM-only configuration degrades after 24 of
its local cores are utilized. We attribute it to the NUMA effects of
accessing the memory of the SNC-4 node from other chiplets, and
to the contention over its memory interconnect. Conversely, the
throughput continues to grow in the memory interleaving configu-
ration. While interleaving improves the throughput of the SNC-2
(SNC-4) configurations by to 90% (96%), it improves the throughput
of the full socket configuration by at most 7.3%. This suggests that
there is headroom for improvement in the full socket configuration
coming from memory bandwidth underutilization.

7.2 SIMD Reads
To demonstrate the memory bandwidth underutilization, we use
SIMD reads. We use the 512-bit load instruction from the AVX-512
instruction set. Figure 10 shows that SIMD reads are capable of
saturating the DRAM bandwidth even in the full socket configu-
ration, when hardware prefetching is enabled, and in the SNC-2
configuration with hardware prefetching disabled. This again corre-
sponds to the flattening of the throughput curve of the DRAM-only
configuration in all of the Subfigures except for (d). For the full
socket configuration with hardware prefetching disabled, even with
the smallest of sampled interleaving weights, 19:1, there is no per-
formance improvement. With memory interleaving, SIMD reads
do not improve throughput compared to scalar reads in the SNC-2
and SNC-4 configurations with hardware prefetching enabled, in
which scalar reads can saturate the DRAM bandwidth on their own,
however they allow to acheive the same peak throughput using
less CPU cores. Furthermore, SIMD reads improve the through-
put by up to 90% (96%) of the theoretical potential in the SNC-2
(SNC-4) configuration with hardware prefetching disabled and by
at least 67.4% of it in the full socket configuration with hardware
prefetching enabled.



Figure 8: Filtering throughputs for different DRAM:CXL interleaving weights as a function of selectivity on a logarithmic scale
normalized against the DRAM-only configuration.

7.3 Hardware Prefetching
Hardware prefetching increases the benefits gained from bandwidth
expansion in the SNC-2 configuration by 5% and enables bandwidth
expansion in the full socket configuration. However, in the SNC-4
configuration, disabling hardware prefetching allows to get a 6%
higher peak throughput. As the memory interconnect contention
increases with number of utilized CPU cores in the SNC-2 and SNC-
4 configurations, hardware prefetching stabilizes the performance
(Subfigures (b) and (c)) and prevents it from significantly degrading
(Subfigures (e) and (f)).

7.4 Hyper-Threading
Another way to demonstrate the underutilization of the memory
bandwidth is hyper-threading. Hyper-threading allows to multi-
plex the hardware resources of a CPU core between two execution
threads, allowing to improve the memory bandwidth utilization,
when it is underutilized. We scale all our hardware configurations
to hyper-threads, adding them in the same order as physical CPU
cores. For the full socket configuration with hardware prefetching
enabled, scalar reads are able to saturate the DRAM bandwidth,
and memory interleaving improves the throughput by at most 64%
compared to DRAM. However, in the rest of the hardware config-
urations, using memory interleaving with hyper-threading either
improves the throughput by at most 10% in the SNC-4 configu-
ration with hardware prefetching disabled and all available CPU
cores utilized, or degrades it. In these configurations, the memory
resources can be saturated without hyper-threading.

7.5 Sub-NUMA Clustering
SNC exposes fine-grainedmemory localization domains and was de-
signed to improve performance when such locality can be achieved.
In our experiments with different hardware configurations, the
finer-grained SNC configurations consistently achieve a higher
throughput improvement compared to the full socket configuration.
However, when SIMD reads are used in the full socket configura-
tion with hardware prefetching enabled, the potential for memory
bandwidth expansion is also saturated, since the throughput curve
flattens. Finer-grained configurations achieve a higher throughput
improvement than the full socket configuration mainly because
they have less DRAM bandwidth per core. This means fewer cores
are needed to saturate DRAM bandwidth, so more cores use the
CXL bandwidth. Thus we conclude that realizing the full potential
of bandwidth expansion does not require using SNC.

8 DISCUSSION
Based on our experimental findings, we identify three key design
principles for data management systems to effectively leverage CXL
memory bandwidth expansion. We discuss each principle along
with concrete implementation strategies and their limitations.

8.1 Hardware-Consciousness
Transparent DRAM and CXL interleaving degrades average per-
formance of the SSB workload by 20% (Section 5), demonstrating
that a hardware-conscious approach is essential for effective CXL
bandwidth expansion.

DRAM and CXL exhibit fundamentally different performance
characteristics that vary dynamically with load on the memory



Figure 9: Partitioning throughputs for different DRAM:CXL interleaving weights as a function of fanout on a logarithmic scale
normalized against the DRAM-only configuration.

system (Section 4.2). CXL can degrade performance, relative to a
DRAM baseline, when DRAM bandwidth is underutilized or when
CXL bandwidth becomes saturated. Additionally, our results show
that hardware prefetching operates inefficiently with interleaved
memory configurations, particularly under high memory band-
width utilization.

Implementation strategies. Data management systems should
implement two key mechanisms. First, dynamic performance mon-
itoring using hardware performance counters to track memory-
bound pipeline slots, bandwidth-bound stalls, and latency-bound
stalls in real-time. Second, adaptive prefetching control that selec-
tively disables hardware prefetching for workload phases that ex-
hibit poor prefetching efficiency with CXL or interleaved memory.

Concrete approaches include extending existing buffer pool man-
agers to track access patterns per page and use these in combina-
tion with hardware performance counters to make timely decisions
about data placement and prefetching control.

8.2 Workload-Adaptivity
Our evaluation reveals that optimal memory interleaving config-
urations vary dramatically across workload characteristics, with
optimal ratios changing by up to 88% depending on the workload
characteristics (Section 6). This variability, also observed in HPC
and AI workloads [37], necessitates runtime adaptation rather than
static configuration.

Analytical workloads present unique adaptation opportunities
due to their structured execution. Each physical query operator
(e.g., scan, filter, hash join build and probe phases, partition) exhibits

distinct optimal interleaving ratios that also depend on their param-
eters, e.g., filter selectivity and partitioning fanout. For example, our
results show that filtering operations require progressively heavier
CXL weighting as selectivity increases, while sequential operations
perform optimally with interleaving configurations that approx-
imate the DRAM:CXL bandwidth ratio measured with standard
tools.

Implementation strategies. Systems should implement op-
erator aware memory management with three components. First,
workload characterization during query compilation that analyzes
operators to predict access patterns, data volumes, and selectivity
estimates. Second, runtime adaptation mechanisms that monitor ex-
ecution progress and adjust memory interleaving weights between
execution phases. Third, predictive data migration that proactively
moves data based on upcoming operator requirements, for example,
building a hash table and then moving it for the probe phase of a
hash join.

Practical approaches include extending query optimizers to gen-
erate memory placement hints, implementing lightweight profiling
during initial query executions to build adaptation models, and
developing cost-based models that balance migration overhead
against potential performance gains. The adaptation frequency
should align with operator boundaries to minimize disruption, with
more aggressive adaptation for long-running operators that process
large data volumes.

Adaptation overhead considerations. Runtime adaptation
introduces computational overhead and potential data movement
costs. Systems should implement hysteresis mechanisms to avoid
thrashing between configurations and establish minimum execu-
tion time thresholds before triggering adaptations.



Figure 10: Memory access throughput scaling across DRAM and CXL configurations as a function of CPU core count.

8.3 Efficient Memory Bandwidth Utilization
CXL memory bandwidth expansion provides benefits only when
DRAM bandwidth is a bottleneck (Section 7). The relationship
between bandwidth utilization and performance is nuanced. Higher
utilization enables CXL bandwidth expansion benefits, but can
simultaneously increase memory latency. Our experiments show
that memory contention causes DRAM latency to increase up to
2× and CXL latency to increase up to 5× under high bandwidth
utilization with hardware prefetching enabled (Section 4.2).

Implementation strategies. Systems should focus on three
techniques to optimize bandwidth utilization. First, vectorized execu-
tion using SIMD instructions for sequential access patterns. Second,
improve memory-level parallelism for random access patterns, for
example, through software prefetching with coroutines [35] which
improves memory-level parallelism without the interference effects
observed with hardware prefetching. Third, intelligent thread sched-
uling that leverages hyper-threading when memory bandwidth is
underutilized but avoids it when bandwidth is saturated.

Concrete approaches include implementing vectorized scan op-
erators that process multiple cache lines per instruction, developing
coroutine-based hash join implementations that overlap memory
accesses with computation, and creating dynamic thread pool man-
agers that adjust parallelism based on real-time bandwidth utiliza-
tion measurements.

Bandwidth utilization monitoring. Systems should monitor
both achieved bandwidth (via performance counters) and memory-
bound pipeline slots to distinguish between insufficient parallelism
and memory bandwidth saturation. The optimal target utilization
varies by hardware configuration.

9 CONCLUSION
In this paper, we revisit CXL memory bandwidth expansion for
bandwidth-intensive analytical workloads. We find that interleav-
ing DRAM with CXL transparently to a state-of-the-art query ex-
ecution engine when running the SSB workload degrades its av-
erage performance by 20%, and we show that realizing the full
potential of CXL memory bandwidth expansion requires efficient
hardware utilization through maximizing memory-level parallelism
and adapting to the workload’s access patterns and characteristics.
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