
High Throughput GPU-Accelerated FSST String Compression
Tim Anema

Delft University of Technology
Delft, The Netherlands
tim.anema@hotmail.nl

Joost Hoozemans
Voltron Data

USA
joosthooz@gmail.com

Zaid Al-Ars
Delft University of Technology

Delft, The Netherlands
z.al-ars@tudelft.nl

H. Peter Hofstee
IBM

Texas, USA
hofstee@us.ibm.com

ABSTRACT
Slow PCIe bandwidth represents a bottleneck for I/O-bound appli-
cations such as GPU-accelerated data analytics. Compression can
improve ingestion throughput, but contemporary GPU compres-
sors are much slower than the latest PCIe buses. The sequential
nature of widely used LZ-based compression proves challenging
for the GPU’s SIMT-based architecture.

This paper introduces a GPU-accelerated compressor based on
the FSST (Fast Static Symbol Table) compressor, providing a through-
put of 74 GB/s on an RTX4090 while maintaining its compres-
sion ratio. The resulting compression pipeline is 3.86x faster than
nvCOMP’s LZ4 compressor, while providing similar compression
ratios (0.84x). We achieved this by creating a memory-efficient en-
coding table, an encoding kernel that uses a voting mechanism to
maximize memory bandwidth, and an efficient gathering pipeline
using stream compaction.

Additionally, our compressor is compatible with a modified
version of the GSST decompressor, which is capable of decom-
pressing at 191 GB/s, to provide a high-throughput end-to-end
(de)compressor.

VLDBWorkshop Reference Format:
Tim Anema, Joost Hoozemans, Zaid Al-Ars, and H. Peter Hofstee. High
Throughput GPU-Accelerated FSST String Compression. VLDB 2025
Workshop: 16th International Workshop on Accelerating Analytics and
Data Management Systems Using Modern Processor and Storage
Architectures (ADMS25).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/timanema/fsst-gpu.

1 INTRODUCTION
Modern analytical engines handle large amounts of data and are
starting to leverage GPU accelerators to benefit from the rapid
increase in throughput potential [11–13, 16]. With the release
of NVIDIA’s new Blackwell architecture, systems have access to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

HBM3e memory with a large bandwidth of 1TB/s per stack [24].
Even though these recent advances in memory bandwidth are im-
pressive, ingesting data into GPU memory happens through PCIe,
which is often a bottleneck in I/O-bound applications such as data
analytics. Conceptually, compression could alleviate that bottle-
neck, but the throughput of (de)compressing data on a GPU is
currently an order of magnitude slower than most other operations
in analytics pipelines [11, 12, 16]. For example, joins and aggrega-
tions can achieve a throughput of 100s of GB/s, while in contrast,
most compressors in NVIDIA’s nvCOMP library do not reach more
than 30 GB/s [23]. An important reason is that data compression
often uses an LZ-based algorithm [39], which is a poor match to the
GPU’s SIMT model of computation [29]. Compression is a field that
has been widely studied in the past [2, 6, 9, 21, 26, 30–32, 38, 39].

In the context of data analytics, decompression is most important
for data ingestion. NVIDIA introduced the Decompression Engine
with Blackwell, which is reported to achieve decompression speeds
of 180 GB/s for Snappy on a B200 [22, 24]. In addition, other GPU
decompressors have been proposed [20, 33, 36]

When considering big data query engines, there are also interest-
ing gains to be found for compression. GPU memory is a scarce and
expensive resource, creating a necessity to temporarily offloadmem-
ory to host memory (or fast storage, for example, using GDS [34]).
Another use case is distributing (shuffling) data between GPUs on
a multi-device system or to other nodes in a cluster.

This paper introduces a novel heterogeneous GPU-CPU com-
pressor based on the FSST (Fast Static Symbol Table) [6] string
compression algorithm. Our compressor is compatible with a modi-
fied version of the GSST decompressor [36], which allows for a full
compression and decompression cycle. We highlight the issues with
running FSST on a GPU and propose mitigations. Furthermore, we
show how to enhance throughput on the GPU with various opti-
mization techniques, such as adding transposition stages.

This paper has the following contributions:

• An analysis of the FSST compression bottlenecks on the
GPU

• Various GPU optimization techniques and their impact on
throughput

• An optimized GPU-accelerated FSST compression imple-
mentation achieving 74GB/s throughput

The paper is organized as follows. We will touch upon related
work and general GPU development background in Section 2. We
will then analyze the acceleration potential of FSST and possible

https://github.com/timanema/fsst-gpu
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

inhibitors in Section 3. We will then provide a memory-efficient
encoding table in Section 4, and use it in the encoding kernel im-
plementation in Section 5. The overall compression pipeline will
be discussed in Section 6, and we will evaluate its performance in
Section 7. Finally, we will conclude in Section 8 and discuss some
potential future work.

2 BACKGROUND
In Section 1, we have established that string (de)compression is a
relevant problem for big data analytics. Most CPU compression
schemes predate the use of GPUs as general-computing accelerators
and offer limited acceleration potential. Nonetheless, significant
work has been done to port those existing schemes to GPUs.

One example is the CULZSS algorithm [26], which has had sev-
eral follow-ups [27, 28]. The initial papers implemented the LSZZ
algorithm on NVIDIA GPUs, primarily by splitting data into chunks.
Several derivates of this include CULZSS-bit [25], GLZSS [40], and
GMATCH [21].

Other examples of CPU algorithms ported to GPUs include com-
pressors included in the nvCOMP [22] library, such as Snappy, LZ4,
(G)Deflate, and ZSTD. To the best of our knowledge, GPULZ [38] is
the fastest LZ-based (LZSS) GPU compressor outside of nvCOMP
with a best-case throughput of approximately 29 GB/s.

For newer systems and data formats, there is an increasing effort
to emphasize the parallelization potential. An example of this is the
FastLanes format [1], which is partially implemented on GPUs [2].
Some more recent (numerical) compressors include Bitcomp [22],
SPspeed/SPratio [4], DietGPU [18], and Ndzip [19]. While these
compressors focus on numerical data, they can (mostly) also be
applied to string data, but at the cost of a low compression ratio.

Compression acceleration can also be achieved with hardware
other than GPUs, such as FPGAs [7, 8] and NVIDIA’s data process-
ing units (DPUs) with hardware compression [37].

2.1 FSST
FSST is essentially a dictionary coder that replaces frequently oc-
curring strings (symbols) with a length of one to eight bytes with
smaller single-byte symbols. The compression process involves
creating a symbol table for every block and then replacing match-
ing entries in the block with their corresponding codes. Bytes not
matched by any symbol in the table will be escaped with a special
character.

Figure 1 shows an example of the FSST compression process.
During encoding, FSST transforms the input data stream to a smaller
data stream using the symbol table, or encoding table, for every
block. It scans the input stream and identifies the longest matching
symbol, it will then append the corresponding code to the output
stream. When no match is found, a special escape character will be
added in addition to the first byte, indicating to the decompressor
that the next byte should be interpreted as data instead of a code.
The encoded stream, together with metadata such as the symbol
table, forms the output data of the compression algorithm.

Decompression is the reverse operation, where every byte is
expanded to one or more bytes while taking special care of escape
characters.

Figure 1: An example of FSST compression. The uncom-
pressed data is encoded to a (smaller) format using a static
dictionary. Source: [6]

Figure 2: The split format GSST uses. Every block is divided
into splits, which individual threads will process. Source: [36]

The use of a static symbol table enables random access to com-
pressed data, without needing to decompress an entire data block.
This feature is particularly useful in the context of databases. Ad-
ditionally, the use of a static table introduces an opportunity for
acceleration, which is the focus of this paper.

2.2 GSST
GSST [36] provides a partial solution to high-throughput string
compression. The authors provide a high-throughput decompres-
sor that introduces some changes to the FSST data format. GSST
achieves high throughput using additional block-level metadata and
a tiling-based approach to distribute work over multiple threads.
By applying tiling, GSST creates parallelism within the block level,
which allows it to decompress blocks in SIMT fashion.

The main problem is that the location where each thread should
output its decompressed data is unknown. GSST relies on the com-
pressor providing metadata detailing the structure of a block. The
decompressor can then use this information in the file header to
deduce where every thread should output its data. The file header
following their splits format can be seen in Figure 2.

Overall, GSST achieves considerable throughput while main-
taining the high compression ratio that the FSST table generation
algorithm provides by limiting the amount of information it needs
from a compressor to reconstruct the original output structure.
However, the original version of GSST does not include a high-
throughput compressor, has been tested with limited datasets, and
does not provide any source code. For that reason, we aim to keep
our compressor mostly compatible with the GSST format so that
we can create a more complete software package in the future. We
will discuss this further in Section 6.4.

2

2.3 GPU development
AGraphical Processing Unit (GPU) is a special processor originating
in graphics processing, such as shaders. A GPU follows the Single
instruction, Multiple threads (SIMT) paradigm, a combination of
Single instruction, Multiple data (SIMD) and multithreading. This
execution model is suitable for algorithms that can be massively
parallelized and run on general-purpose GPUs (GPGPUs).

At the core of GPUs lie many small cores, which are grouped in
Streaming Processors (SMs), each with its own schedulers, register
files, and caches. The SMs can execute multiple threads simulta-
neously, achieving high throughput through parallelism. Threads
running on an SM are grouped into warps, which run in lockstep.
This means all threads execute the same instructions, potentially
leading to inefficiencies if there is divergence between threads in
the same warp.

NVIDIA introduced the CUDA API to use the available compute
on GPUs in 2007. CUDA includes drivers, compilers, development
tools, and libraries, enabling the use of NVIDIA GPUs for general-
purpose computing via languages such as C++. While ROCm is
available for AMD GPUs, this paper only focuses on NVIDIA plat-
forms.

A CUDA kernel is executed by many threads grouped together
in thread blocks. The thread blocks form a kernel grid. Threads
within a block are executed on the same SM, and a grid is divided
over many SMs. Threads within a block are grouped in blocks of 32
threads called warps. A block cannot be migrated to a different SM,
but a single SM can execute multiple blocks. A GPU contains many
SMs, so underutilized SMs can be used to execute different kernels.

One effect of this architecture is that all threads within a block
are guaranteed to use the same L1 memory, which enables its use
as shared memory. Some algorithms use collective communication
operations, such as parallel reductions and scans. Shared memory
is used as a communication layer for this purpose. When commu-
nication is confined to threads within the same warp, warp-level
primitives provide a more efficient mechanism

CUDA has three categories of warp-level primitives: synchro-
nized data exchange, active mask query, and thread synchroniza-
tion. With synchronized data exchange, threads can exchange data
directly through registers and use voting functions. This allows
threadswithin awarp to perform a reduction fully in the register file,
for example. Another example is accelerating stream compaction
using ballots [5, 17].

3 ACCELERATION POTENTIAL OF FSST
FSST generates a symbol table based on its bottom-up approach
and then encodes the input data in a more compact format. With
its AVX512-based encoder kernel, FSST encodes up to 24 strings
in parallel using an encoding table consisting of hashtables and an
additional lookup table for short symbols.

There are two main steps in the process: table generation and
encoding. Table generation can be parallelized as there are many
tables to be generated, but the process of generating a single table is
highly sequential. Furthermore, the divergence between processes
is high, and the process uses data structures unfit for a GPU, such
as a priority queue. However, table generation only needs a small
sample of the data to work with, so modifying this to run in parallel

on the CPU will already yield high throughput. The encoding stage
operates on all data and, therefore, must be executed on the GPU
itself. To achieve parallelism, we can divide the data into tiles and
encode each tile in a separate thread, a common technique often
called tiling or chunking [1, 2, 31, 36].

For that reason, our accelerated compression pipeline will focus
on GPU-accelerated encoding combined with multi-threaded table
generation on the CPU. A heterogeneous design like this is best
suited to the FSST compression algorithm. For that reason, we will
shift our focus to potential blockers for a GPU-accelerated encoding
kernel.

One issue with encoding is that the encoding table does not fit
in shared memory because of the significant size of the lookup
table used for shortcodes. This lookup table is around 130kB in size,
while the hash table uses an additional 16kB of memory, totaling
146kB of shared memory usage. This means the table has to be
stored in global memory, which is not suited for random accesses
like those bound to happen in a lookup table.

Another issue is the alignment of input data (and output, for
that matter). String data is essentially a sequence of 8-bit values,
which is unnatural for GPUs that use 32-bit registers. This means
that every operation on 8-bit values that is not bit-packed to 32-bit
registers effectively wastes bandwidth. FSST string matching uses
64-bit values to match up to eight characters, which would map to
eight 8-bit loads from memory in a naive implementation.

Finally, since we use tiling to create parallelism, our input data
tiles, and therefore also the output data tiles, will be in consecutive
blocks in memory. Consequently, threads within a warp will not
work with consecutive memory addresses from global memory,
and no memory coalescing can occur with reading or writing. This
drastically lowers the effective memory bandwidth and, therefore,
our overall compression throughput.

4 MEMORY-EFFICIENT ENCODING TABLE
We will first address the size of the encoding table. First, we will
investigate how the encoding table is used and where potential
gains are. Based on these observations, we will introduce our own
encoding table, which is more memory efficient and is structured
in a way that is efficient for GPUs.

4.1 Data properties
The encoding table consists of two main lookup structures: the
hashtable and the shortcodes matrix. The hashtable is used for
symbols with a length between three and eight, while the short-
codes matrix is used to efficiently encode symbols that consist of
one or two characters. Both lookup structures are very sparse; the
hashtable stores up to 1024 symbols with a memory footprint of
sixteen bytes each, while the shortcodes matrix can theoretically
store up to 65536 symbols that take up 2 bytes each. In reality, their
usage will depend on the actual dataset, but it will be much lower
for compressible data. Especially in the context of textual data, since
many combinations are not present in natural language.

To investigate a realistic data structure usage, we will examine
the resulting encoding tables generated by FSST for three datasets:
TPC-H [35], GDelt [10], and DBText [6]. To be more specific, we
will use textual data from the TPC-H lineitem and customer tables,

3

29

59

39

19 21
24

8

43

0

20

40

60

70 69

30

13 12 11 10

30

0

20

40

60

54

148

16
7 7 4 3

13

1 2 3 4 5 6 7 8
0

50

100

150

Symbol length

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

TPC-H

GDelt

DBText

Figure 3: This histogram shows the spread of symbols regard-
ing their length for three datasets: TPC-H, GDelt, andDBText.
In general, we can see that the DBText corpus heavily uses
short symbols, while the other datasets also use longer sym-
bols more often.

location data from GDelt, and the machine-readable datasets from
the DBText corpus used by the original FSST authors.

Figure 3 shows the average lengths of symbols generated for
the three datasets. We can see that the hashtable is responsible
for a significant portion of the symbols. In the case of TPC-H and
GDelt, the hashtable stores 64 percent and 43 percent of all symbols,
respectively. We can also observe that machine-readable data in the
DBText set, such as hex data, almost exclusively uses the shortcodes
data structure.

The shortcodes lookup table effectively works as a 2D matrix.
Retrieving the code and length of a given symbol is achieved by
accessing the location that corresponds to the two characters; the
first character is used to identify the row, and the second character
is used to identify the column. This means a lookup consists of a
single memory access into a very sparse matrix.

For this reason, we do not only specify the usage of the short-
codes data structure in terms of cells used, but rather in the maxi-
mum and average usage of rows and columns within a row. The
number of rows tells us something about how many symbols, with
a length of two characters, start with the same character. Similarly,
the number of columns within a row tells us something about how
many combinations of symbols with the same starting character
exist.

Table 1 shows the usage of the shortcodes data structure for the
three datasets, in terms of the metrics described above. Note that
we only look at symbols with a length of two characters. We can

Table 1: The usage of the lookup table in terms of row and
column usage. A row is used when there is a 2-byte sym-
bol starting with the character corresponding to the row.
The number of columns described in this table refers to the
columns used within the same row; in other words, the num-
ber of 2-byte symbols that start with the same character.

Dataset Max/avg rows Max/avg columns

TPC-H 26/16.7 15/3.7
GDelt 36/29.1 12/2.4
DBText 38/26.8 19/6.5

see that while the overall matrix is very sparse, the actual data is
relatively dense. The number of rows is relatively small compared
to the potential number of rows, which makes sense considering
most characters are not used in purely textual data. Furthermore,
we can see that the (average) number of symbols that start with
the same character, so the average number of entries (columns) in
the same row, is relatively low.

For textual data, the hashtable contains 130 out of 1024 symbols
on average, and the shortcodes table contains 131481 out of 65536
possible combinations on average. Note that all symbols that consist
of a single character use 256 entries in the lookup table. Formachine-
readable data, such as that found in DBText, the hashtable contains
50 symbols, and the shortcodes table contains 13972 entries.

4.2 Modifying the hashtable
The size of the hashtable directly influences the number of hash
collisions, as the size is used in a modulo operation. For this reason,
the size cannot easily be lowered to more closely fit the observed
usage. We can, however, introduce indirection to the hash lookup.
This means that one table is used to store the actual data, while
a (more memory-efficient) table is used to store hash locations.
The number of possible data entries can then be modified without
affecting the number of entries in the hashtable, and as a result, the
number of hash collisions.

Another minor modification we can perform has to do with the
memory organization of the actual symbol structure. In the original
implementation, a hashtable entry consists of a 64-bit number repre-
senting the symbol data and a 32-bit number to store metadata such
as the code and length. This allows the encoding kernel to perform
direct 64-bit comparisons. However, this also forces the compiler to
align the structure to 8-byte boundaries, which requires four bytes
of padding. A GPU does not perform direct 64-bit comparisons, but
uses two 32-bit comparisons. For that reason, we split the 64-bit
number into two 32-bit numbers representing the high and low
sides. Consequently, the structure can now be aligned to four bytes,
resulting in less padding.

Overall, this changes the memory requirement from 1024 ∗ 16
to 1024 + 12 ∗ 𝑋 at the cost of an additional lookup, where 𝑋 is
the size of the secondary data table. This parameter balances the
compression ratio and, indirectly, performance. We will investigate
the effect of this parameter in Section 7.1.

1 ((29 ∗ 256 + 59) + (70 ∗ 256 + 69) + (54 ∗ 256 + 148))/3
4

4.3 Efficient short symbols
We have already established that the shortcode structure is essen-
tially a sparse matrix. Furthermore, we have observed that most
rows are not used and that the number of entries in a single row
is also relatively low when only storing symbols with a length of
two bytes. For this reason, we will store single-byte symbols in a
separate data structure and only use the shortcode table for symbols
of length two.

4.3.1 ELL matrix. One data structure that could more efficiently
represent this data pattern is an ELL matrix based on the sparse ma-
trix package in ELLPACK [14]. The original matrix can be changed
to a 𝑁𝑥𝐾 matrix, where 𝐾 is the new number of columns, and all
non-zero elements within a row are compacted. While the ELL
format leads to a significant reduction in size, the matrix is still
sparse, storing more than 200 empty rows. Additionally, a GPU
uses 32 banks to address shared memory, meaning a single bank
will serve eight rows of this matrix, likely leading to bank conflicts
as the characters used in textual data are in close proximity.

4.3.2 Match table. We address these limitations with our own
matching table. The main idea behind the matching table is that
we translate the lookup table to a format that allows the GPU to
perform a series of computations to get the final result. We achieve
this by creating a series of masks and then applying the masks to all
codes for a particular row. The masking function uses the fact that
−(𝐴 == 𝐵) for unsigned numbers returns all zeros (0x00) when
𝐴 ≠ 𝐵 and all ones (0xFF) when 𝐴 = 𝐵.

We can select the row from the first character in a two-byte
symbol 𝑋𝑌 using a small lookup table. This row then consists of
several symbol-code pairs (SC pairs): a tuple containing a symbol
(𝑌) that can be used to create a mask and the code corresponding to
the combination of the row character with the symbol in the SC pair.
When the row has been selected, the GPU uses all SC pairs in that
row to generate the masks for all pairs and then applies the mask to
the respective codes. All results are then OR’ed to generate the final
code from that, which works because there is a maximum of one
match per row. Listing 1 shows the lookup algorithm, the buildup
algorithm, and the required memory structures for the match table.

The underlying SC pairs are represented in 32-bit words. Every
word contains two SC pairs. The reason we use a 32-bit number
is twofold: shared memory uses 32-bit words, both in addressing
and servicing. Additionally, GPUs use 32-bit registers, so anything
more than that will be split into 32-bit words anyway. This means
we can represent 𝐾 pairs in 𝐾 ∗ 2 bytes. We then use 𝑅 rows, which
must be a multiple of 32, to create a 𝑅𝑥𝐾 matrix and store it in
a column-major format. When 𝑅 is a multiple of 32, there are no
bank conflicts, and we reduce the memory usage even further to
𝑅 ∗ 𝐾 ∗ 2 + 256 bytes.

Note that the parameters 𝑅 and 𝐾 directly map to the row and
column usage described in Section 4.1, and will influence the final
compression ratio and, indirectly, performance. We have slightly
modified the original FSST table generation algorithm to respect
the additional constraints defined by these parameters and pick
the next best option if a constraint would be violated. We will
investigate the effects of these parameters in Section 7.1.

struct SymbolMatch { // Represents two symbol-code pairs
uint32_t val_sc_pairs;

SymbolMatch(uint8_t s1, uint8_t c1, uint8_t s2, uint8_t c2) :
val_sc_pairs(s1 << 24 | c1 << 16 | s2 << 8 | c2) {}

uint8_t get_val_if_equal(uint8_t b, uint8_t c, uint8_t val) {
return -(b == c) & val; // Returns val, if b == c

}

// Returns code if symbol matches any symbol, otherwise 0
uint8_t match(uint8_t symbol) {

return get_val_if_equal(symbol, val_sc_pairs >> 24,
val_sc_pairs >> 16) |

get_val_if_equal(symbol, val_sc_pairs >> 8,
val_sc_pairs);

}
};

struct SymbolMatchTable {
SymbolMatch matches[rows * matchesPerRow]; // R * K
uint8_t row_indices[256]{};

SymbolMatchTable(Symbol shortCodes[65536]) {
memset(row_indices, 255, 256); // Escape (255) by default
uint16_t values[rows][matchesPerRow * 2] = {};
uint8_t usedRows = 0; // assert(usedRows < rows)
for (uint16_t a = 0; a < 256; a++) {

bool matches = false;
int col = 0; // assert(col < matchesPerRow * 2)

for (uint16_t b = 0; b < 256; b++) {
if (Symbol ts = shortCodes[a | b << 8];

ts.code() != 255) {
matches = true;
// We need to maintain escape == 0, so +1
values[usedRows][col] = b << 8 | ts.code() + 1;
col += 1;

}
}

// If any 2-byte symbol is found in this row, save it
if (matches) {

row_indices[a] = usedRows;
usedRows += 1;

}
}

// And now construct all the symbol-code pairs structs
for (uint8_t row = 0; row < usedRows; row++) {

for (int i = 0; i < matchesPerRow; i++) {
uint16_t sc1 = values[row][i * 2];
uint16_t sc2 = values[row][i * 2 + 1];

matches[i * rows + row] =
SymbolMatch(sc1 >> 8, sc1, sc2 >> 8, sc2);

}
}

}

uint8_t lookup(uint8_t x, uint8_t y) {
const uint8_t row = row_indices[x];
if (row == 255) {

return 255; // No row found == escape for 2-byte lookup
}

uint8_t result = 0;
for (int i = 0; i < matchesPerRow; i++) {

SymbolMatch match = matches[rows * i + row];
result |= match.match(y); // OR entire row

}

return result - 1; // Restore to original code
}

};

Listing 1: All the requiredmemory structures and algorithms
for the match table. It is constructed from FSST structures
and then used in our GPU encoding kernel.5

5 ENCODING KERNEL DESIGN
The main challenge of accelerating the overall compression pipeline
lies in efficient encoding. For one, we need to create parallelism
within a single FSST block to make effective use of the GPU’s
massive parallelism. Furthermore, we need to mitigate the issues
mentioned in Section 3, besides the encoding table size.

In this section, we will describe a basic compression pipeline
and define the interfaces of the encoding kernel. We will describe
how we can mitigate the issue of memory alignment and how we
can achieve coalesced memory operations despite working with
non-contiguous tiles.

5.1 Applying tiling
After the tables have been created, the encoding stage will start.
Encoding is done on a block level, i.e., every FSST block can be
encoded separately. This is the first level of parallelism and maps
fairly naturally to a CUDA thread block. To create parallelismwithin
a (thread) block, we utilize the tiling technique. We will split the
data within a block into multiple tiles, which map to a single thread.
This means a single thread works on a small contiguous block of
memory, which is part of the original data block, and all threads in
the thread block work in parallel to encode a single data block.

The size of a tile has an effect on both the compression ratio and
the compression throughput. To create parallelism and indirectly
improve throughput, a smaller tile size is ideal. However, symbols
that overlap tile borders will not be recognized as a single symbol,
but instead will be split into two or more smaller symbols. Further-
more, a table block size that is too small will not be able to capture
repeating patterns that can be compressed. For that reason, table
generation prefers a bigger block size. To uncouple these conflicting
requirements, we use the concept of super tables. This means multi-
ple data blocks will use the same encoding table. This allows us to
modify the data block size to better suit the GPU, while continuing
to use a (larger) block size for table generation.

5.2 Inter-block dependencies
Compression of data inherently suffers from several sequential
dependencies, which prevent parallel execution. Since we use a
static symbol table, the only relevant dependency is determining
the output location for every block. At the start of compression, it
is not yet known what the resulting compressed size of each block
will be, so it is not possible to calculate where each block should
start depositing its output. This dependency forces a sequential
execution order between blocks.

This can be mitigated by the use of padding characters. We pad
the output blocks to their worst-case size. This ensures the output
location is fixed for all blocks. Padding ensures there is no overlap
between blocks and removes the inter-block dependency, allowing
for parallel execution.

However, the use of padding necessitates an additional post-
processing stage that removes said padding. This defines the basic
structure of our compression pipeline: we begin by generating
tables, proceed with the encoding kernel, and conclude with data
compaction during post-processing. We will go into more depth
about the post-processing stage in Section 6, but we can already
define the interface for the encoding kernel: it encodes the given

Figure 4: The process of using a slidingwindow to build a view
of the active data, which can be used by the encoding kernel
to directly match on. In this example, we show how data
moves through the registers as the data in shared memory is
processed. Bold numbers are used to show what part of the
data is part of the current view.

data blocks using a dedicated thread block into fixed locations in
global memory.

5.3 Sliding window
The main encoding loop consists of reading data from global mem-
ory, encoding it, and writing it to global memory. Because of the re-
peated random access, we use temporary buffers in shared memory,
which have limited space. For this reason, every thread performs
multiple encoding cycles, which consist of reading a small chunk
from global to shared memory, encoding it, and storing the result in
shared memory (and flushing when required). This loop is repeated
until the entire tile has been processed.

As mentioned before, a naive implementation performing byte-
level operations leads to many bank conflicts and underutilizes the
shared memory banks, which are capable of 32 bits per clock cycle.
We mitigate this by requesting 32 bits, or four characters, at a time
from shared memory, and we also organize the input buffer as a
column-major matrix. This means we view the input data for a
thread block as a 𝑁𝑥𝑀 matrix, where 𝑁 represents the number of
threads (or tiles) within a thread block and𝑀 the number of 4-byte
integers representing the data of a single tile. Shared memory will
then contain a 𝑋 ∗ 𝑁 matrix, where 𝑋 represents the chunk size.
All data for a single tile will be stored in a column in this matrix,
completely eliminating bank conflicts.

This greatly simplifies the encoding cycles, as we now deal with
32-bit words, but also introduces a problem: a symbol can span
multiple words andmight not consume a full 32-bit word. In order to
evaluate multiple (partial) words, we introduce the sliding window.

The sliding window uses three 32-bit registers and keeps track
of the reading offset to create a view of the next eight bytes. The
effect of the sliding window can be seen in Figure 4. In Listing 2,
we show how to create a view. We also keep track of the spillover
from the previous encoding cycle, as a symbol might overlap chunk
borders. When a register is fully encoded, indicated by the offset,
we shift the registers once and fetch the next 32-bit number.

6

uint64_t create_view(uint32_t first_word, uint32_t second_word,
uint32_t third_word, uint8_t offset, uint8_t len) {

uint8_t b_from_first = min(len, 4 - offset);
uint8_t b_from_second = min(len - b_from_first, 4);
uint8_t b_from_third = min(len-(b_from_first+b_from_second), offset);

uint64_t first_data = get_first_n(
first_word >> offset * 8, b_from_first);

uint64_t second_data = get_first_n(second_word, b_from_second);
uint64_t third_data = get_first_n(third_word, b_from_third);

return first_data | second_data << b_from_first * 8 |
third_data << (b_from_first + b_from_second) * 8;

}

Listing 2: Sliding window view creation using three registers
and an offset

void pack_results_local(uint32_t result[out_buf_size][thread_count],
uint32_t offset, uint32_t val) {

uint32_t shift = (offset & 3) * 8; // n-byte within word
uint8_t block_index = offset / 4; // Identify block
uint32_t val_mask = val << shift;
uint32_t clean_mask = ~(0xFF << shift);

uint32_t current = result[block_index][threadIdx.x];

result[block_index][threadIdx.x] = current & clean_mask
| val_mask;

}

Listing 3: The output packing process

5.4 Output packing
The sliding window addresses the issue of memory alignment on
the input side of the encoding loop, but we have a similar problem
with our output data. Every match iteration of an encoding cycle
produces one or two bytes, depending on whether the symbol
needs an escape character. This is not naturally aligned to 4-byte
boundaries, so we need to perform output packing. The process in
Listing 3 allows us to set individual bytes in a 32-bit number, which
allows us to use an efficient array of 32-bit numbers as if it were an
array of 8-bit numbers.

5.5 Ensuring coalesced writes
Up until now, we have defined our tiling approach, kernel interfaces,
and main encoding loop, including the sliding window and output
packing. However, we have yet to define a solution for possibly
the two biggest challenges: inter-tile dependencies and memory
coalescing. Just as is the case with blocks, the output lengths of
tiles are not known beforehand and have a sequential dependency.
Furthermore, the effective memory bandwidth has a significant im-
pact on our overall performance, which means memory coalescing
is necessary.

We will address both issues at the same time with the final part
of the encoding kernel: collaborative output writing. In order to
achieve coalesced writes, we will use a transposed output format.
This means the output data can be seen as a𝑌𝑥𝑁 matrix with 32-bit
words, where 𝑁 is the number of threads within a thread block and
𝑌 is the number of output words per thread. To achieve coalesced
memory transactions, all threads within a warp have to perform

Figure 5: Threads keep track of their own local buffer head
(marked with black arrows, on byte level), and their working
block (marked orange) and filled blocks (marked green). All
threads keep track of the active block in the warp (marked
with red arrows, on block level). Threads in a warp will de-
cide to flush in two scenarios: when all threads have filled
the currently active block with data, or when a thread can
potentially overrun the buffer in the next encoding iteration.

writes in the same row at the same time, hence the collaborative
part.

We achieve this using a voting system within warps using the
ballot functionality2, and a thread-local circular buffer. The overall
process is illustrated in Figure 5. Every thread has its own circular
output buffer and keeps track of its local head and the currently
active block. The local head is used in the output packing process,
and is specifically for that thread and refers to a byte location. The
currently active block is shared by all threads within a warp and
refers to the 4-byte word that is the next block to be flushed.

After every iteration in the encoding cycle, threads will hold
a vote on whether to initiate a flush or not. If any thread risks
overrunning its buffer, all threads will add padding to their local
buffer if needed and trigger a flush. A flush will also be triggered if
all threads have filled the currently active block, which is the ideal
scenario. After the last encoding cycle has completed, a warp will
continue flushing its buffers until all threads within a warp have
fully written their data. Additionally, all warps within a block will
communicate such that they perform the same number of overall
flushes to create a valid output matrix.

This method ensures all write transactions are coalesced and
also eliminates the sequential inter-thread dependency. Imbalances
in compression output between threads as a result of different local
compression ratios are no longer an issue due to this voting process.

6 COMPRESSION PIPELINE
In this section, we will describe our full pipeline in more detail
and provide several optimizations that take full advantage of the
capabilities of modern GPUs. We will also discuss our compatibility
with the existing GSST decompressor.

6.1 Gathering data
As mentioned before, our pipeline consists of three steps: table
generation, encoding, and post-processing. The post-processing
step involves removing padding between data blocks, i.e., gathering
the results from every thread block.

2https://docs.nvidia.com/cuda/cuda-c-programming-guide/#warp-vote-functions

7

We can employ one of two techniques to gather the resulting data
from thread blocks. We could perform stream compaction on the
entire data stream, removing the special padding symbol between
blocks. Thiswould be the best option if the paddingwere interleaved
throughout the data. However, our balloting scheme outputs dense
data, i.e., the inter-block padding is not interleaved but at the end of
the output block instead. This means using direct memory copies
also becomes an option. Instead of performing stream compaction
on the entire data stream, the CPU would trigger a device-to-device
memory copy for every block, which can be significantly faster.

6.2 Improving output format
The compression pipeline is now complete, but still has two issues.
Both issues are caused by the transposed format. The first issue
is that we (partially) lose FSST’s ability to perform random access
decompression. Since consecutive bytes are not guaranteed to be-
long to the same tile anymore, random access decompression would
become significantly more complex. The second issue is that the
compression ratio will be lower than that of FSST. This is because of
the special padding introduced by the collaborative output writing
when a thread forces a flush because of a potential buffer overflow.
This padding cannot be removed without creating an invalid ma-
trix with rows of different lengths. Even though we consider the
output matrix to be filled with 32-bit numbers, this does not matter
for the underlying memory. Removing a single byte will cause the
decompressor to interpret the data incorrectly.

We can fix the first issue by performing a transposition operation
on the output data of a block. This orients the output data in a 𝑁𝑥𝑌
format, which is more in line with the output format of FSST and
the input format of the GSST decompressor. Since this transposition
is on the block level, we can use dynamic parallelism to achieve
pipelining. This means we can use idle resources on the GPU, which
are likely to be there at the end of the encoding process, to transpose
the output data in parallel with encoding other data blocks.

In addition to this, we can now fix the second issue by performing
stream compaction on the transposed data to remove the interleaved
padding. Since the encoded data for a single tile is now in contiguous
memory, we no longer need to maintain identical output lengths
for all tiles.

These improvements are expected to give a high compression
ratio and transform the output format such that it is compatible
with the GSST compressor. We will investigate the performance
characteristics of the pipeline stages in Section 7.3.

6.3 Optimized pipeline
Our final pipeline now consists of five distinct stages. We first
create the encoding tables on the CPU, which we use to encode our
input data on the GPU. We then transpose the output data of every
individual data block to undo the effect of our coalesced writes.
Once all data has been transposed, we gather the resulting data
into a single contiguous block of memory using device-to-device
memory copies. Finally, we perform stream compaction to filter
out interleaved padding. The pipeline is shown in Figure 6.

Memory usage is an important aspect of compressors, which is
sometimes overlooked. This is especially the case on GPUs, where
memory is still a scarce resource. To minimize the required amount

(a) After table generation and encoding, the relevant data
is transposed such that all data from a single tile is in
contiguous memory. Note that we omitted the padded
data in the transposed data for the sake of brevity.

(b) After all blocks have been encoded and trans-
posed, we gather all data into a contiguous block of
memory by using device-to-device memory copies.
This eliminates the intra-block padding.

(c) We perform stream compaction on the entire data
stream to eliminate interleaved padding, which is a result
of the balloting system.

Figure 6: A simplified overview of our GPU-accelerated com-
pression pipeline. All data belonging to the same tile has the
same color. Note that the first two stages of encoding and
transposition operate on the block level, and the final two
stages of gathering and compaction operate on the entire
data stream.

of memory to compress the data, we carefully use a temporary
buffer and make use of the fact that we have multiple sequential
memory transformations. Figure 7 shows howwe use the temporary
buffer with the memory transformations to swap data between
buffers. We encode the input data to a temporary buffer, which we
then transpose to the output buffer. Since the temporary buffer is
now unused, we use it as the target buffer for our gathering stage.
After the gather operation has completed, the output buffer is no
longer used, so we directly perform our stream compaction from
the temporary buffer to the output buffer. Additionally, we copy
our generated headers to the output buffer during compaction. This
ensures that we only need a single additional buffer to compress
the data, reducing our overall memory usage. We will compare our
memory usage to state-of-the-art compressors in Section 7.4.

8

Figure 7: The data flow through the temporary and destina-
tion buffers in our pipeline. The overall memory usage is low
because we reuse the temporary and destination buffers for
multiple operations.

6.4 Ensuring compatibility with GSST
Aswementioned in Section 2.2, GSST [36] introduced a GPU decom-
pressor but lacks a high-throughput compressor. We will discuss
the technical details of integration in this section.

GSST works by applying tiling to the FSST algorithm and provid-
ing some metadata about the tiles, or splits, as the authors of GSST
call them. The tiles have a constant uncompressed length, and the
header is slightly modified to include the compressed length of each
tile. This allows the decompressor to identify the exact starting lo-
cations of each tile. This work division matches our tiling approach.
To make our compressor compatible with the GSST decompressor,
every thread will have to write its output length, excluding padding,
to the block header.

The GSST decompressor also has to be slightly modified, as we
write all headers to the start of the file as opposed to the start of
each data block. This is because we perform stream compaction on
the entire data stream, which requires that all data is in contiguous
memory. However, this should not be a problem because the rele-
vant table can be retrieved fairly easily as long as the decompressor
keeps track of which data block it is decompressing.

7 EVALUATION
In this section, wewill evaluate the performance of our compression
pipeline and compare it to the state-of-the-art. We will use the
same datasets as analyzed in Section 4.1, and perform our tests on a
system with an RTX 4090 and a Ryzen 9 9950X (16 hardware cores,
32 threads). We use CUDA 12.8 and the NVIDIA driver 570.133.20,
in combination with nvidia-smi to gather usage data. All code was
compiled in release mode with the highest optimization settings.

We will compare our performance in terms of compression
throughput and compression ratio with the nvCOMP library from
NVIDIA, GPULZ [38], and compressors generated with the LC
framework [3]. For GPULZ, we use three configurations: fast, aver-
age, and max-compression, which match the configurations based
on the original authors’ parameter sweep of (C=4096, W=32, S=4),
(C=4096, W=128, S=2), and (C=4096, W=255, S=1), respectively.
For LC, we generate compressors with one, two, and three stages.
The throughput measurements are performed on data in GPU mem-
ory.

0 50 100 150 200

2

2.5

3

Dataset
TPC-H
GDelt
DBText

Size

Co
m

pr
es

si
on

 R
at

io

Figure 8: The effect of varying the number of entries in the
hashtable on the resulting compression ratio. It is clear that
the hash table can be smaller without sacrificing significant
accuracy.

7.1 Encoding table performance
In Section 4.2 and 4.3, we introduced the modified hashtable and
the new match table, respectively. Both have the goal to encode the
same, or at least close to the same, amount of information while
using less memory.

Figure 8 shows the effects of reducing the hashtable size. We
can see that a size of 128 is sufficient for all datasets to reach their
compression ratio. Datasets like DBText that do not contain many
long symbols will require even less.

To determine the effects of a maximum number of rows and a
maximum number of entries within a row, we performed a param-
eter sweep using these two parameters. As a baseline, we used the
average usage by the regular FSST algorithm, which can be found in
Section 4.1. The results of this experiment can be found in Figure 9.

Remember that in the match table format, the number of allowed
rows must be a multiple of 32. Based on our experiments, we can
say that 32 rows will be enough. The maximum number of entries
in a single row must be a multiple of two, and the average usage
for all datasets is between 2.4 and 6.5. When limiting the number
of rows to 32, using more than eight columns results in a negligible
increase in compression ratio for the textual datasets. DBText is
the exception, since it heavily uses the shortcodes structure. Using
eight columns as a baseline results in similar compression ratios
as FSST, while only suffering an acceptable 5 percent decrease for
machine-readable data.

These parameters indirectly affect the throughput of the encod-
ing kernel by changing how much shared memory is needed. This
influences the occupancy of our encoding kernel, which can poten-
tially change the overall performance. When using the parameters
above, we use 1024 + 12 ∗ 128 = 2560 bytes for the hashtable and
32 ∗ 8 ∗ 2 + 256 = 768 bytes for the lookup table, a reduction of 84
percent and 99 percent compared to FSST, respectively.

Figure 10 shows the effect on overall pipeline throughput as a
result of higher shared memory usage when modifying the number
of columns. When combined with the effect on the compression
ratio shown in Figure 9, these results suggest that a throughput
reduction of approximately 3 percent across all datasets leads to an

9

2.97 3.06 3.12 3.15 3.15

3.04 3.14 3.21 3.23 3.24

3.11 3.23 3.30 3.33 3.34

3.12 3.24 3.31 3.34 3.34

3.12 3.24 3.31 3.34 3.34

3.12 3.24 3.31 3.34 3.34

4 6 8 10 12

15

20

25

30

35

40

2.16 2.16 2.16 2.16 2.16

2.22 2.22 2.22 2.22 2.22

2.27 2.28 2.28 2.28 2.28

2.31 2.33 2.33 2.33 2.33

2.31 2.34 2.34 2.34 2.34

2.31 2.34 2.34 2.34 2.34

4 6 8 10 12

15

20

25

30

35

40

1.62 1.63 1.64 1.65 1.65

1.70 1.75 1.78 1.81 1.84

1.75 1.80 1.84 1.87 1.90

1.77 1.84 1.89 1.92 1.95

1.78 1.85 1.90 1.94 1.96

1.78 1.85 1.90 1.94 1.96

4 6 8 10 12

15

20

25

30

35

40

Max cols Max cols Max cols

M
ax

 r
ow

s

TPC-H GDelt DBText

Figure 9: The effect of varying the number of rows and columns in the lookup table on the resulting compression ratio.

6 8 10 12 14

60

65

70

75

Dataset
TPC-H

GDelt

DBText

Max row combinations

Th
ro

ug
hp

ut
 (G

B/
s)

Figure 10: The effects on overall throughput of changing the
maximum number of columns, as a consequence of lower
occupancy.

approximate 2 percent increase in compression ratio for machine-
readable data.

7.2 Accelerated compression throughput and
ratio

The goal of this compressor is to accelerate the original FSST algo-
rithm beyond what a multi-threaded CPU application can achieve
and at least match PCIe throughput, while maintaining FSST’s ex-
cellent compression ratio on string data. We performed a parameter
sweep to determine the optimal work division and throughput,
which we will elaborate on more in Section 7.3.

Figure 11 compares the achieved compression throughput and
ratio of our compression pipeline to the state-of-the-art. We use
2GB files for all our datasets to ensure there is enough work to
process, while ensuring that none of the compressors run out of
memory.

We can make some observations from these results. In terms of
compression, we outperform ANS, Bitcomp, Cascaded, and GPULZ
consistently for all datasets. For TPC-H and DBText, we achieve
slightly higher compression ratios than LZ4 and Snappy, while they
have a higher compression ratio for the GDelt location data.

When considering overall compression throughput, we outper-
form GPULZ and all nvCOMP compressors with the exception of
ANS, Bitcomp, Cascaded, and all compressors generated with the
LC framework. This ranges from a 2.8x increase when compared to
Snappy to a 7.9x increase when compared to ZSTD.

Overall, our compressor is part of the Pareto front for every
dataset, meaning we push the state-of-the-art further towards ideal
compression.

We also added the results for the original FSST paper to the
graph to compare overall compression ratios. We achieve nearly
identical compression ratios, except for the machine-readable data
as explained in Section 7.1, while achieving a speedup of 50.27x.
Even when compared to a multithreaded CPU implementation, we
achieve a 7.43x speedup.

7.3 Performance analysis per stage
Our pipeline consists of several stages, most notably the encoding
and the compaction stage, which consists of gathering data from all
thread blocks and then filtering out interleaved padding. Remember
that we apply tiling to achieve parallelism, which influences the
amount of data per thread and therefore has a significant effect on
the overall throughput.

First, more data per thread results in fewer data blocks (and
thread blocks) overall. This is beneficial for the compaction stage,
since fewer blocks mean fewer, but larger, device-to-device copies.
This is also the case when increasing the number of warps per
thread block, as the compaction stage initiates a single copy per
thread block.

On the contrary, the encoding stage needs a certain number of
thread blocks to operate at full throughput. When the number of
active thread blocks is too low, the occupancy of the kernel is low,
and several Streaming Multiprocessors will be idle.

10

1 2 3 4

1

2

5

10

2

5

100

2

5

2 4 6 1 1.5 2 2.5

ans
bitcomp
cascaded
snappy
lz4
deflate
gdeflate
zstd
gpulz-fast
gpulz-avg
gpulz-comp
LC-1
LC-2
LC-3
Our Compressor
FSST
FSST (MT)

Compression Ratio Compression Ratio Compression Ratio

Th
ro

ug
hp

ut
 (G

B/
s)

TPC-H GDelt DBText

Figure 11: We compare our proposed compression pipeline to the nvCOMP compressors, GPULZ, compressors generated
with the LC framework with a different number of stages, and the original FSST algorithm, regarding compression ratio and
throughput. All benchmarks were completed on the same machine (RTX 4090 with a Ryzen 9 9950X) and used the same 2GB
files. Our compressor, marked with an orange star, is a Pareto point in all datasets.

Overall, the tile size influences both the occupancy and the ef-
ficiency of the compaction stage, so we expect to see opposite
behaviour in terms of performance between these two stages. Fig-
ure 12 shows the throughputs of the two stages and the combined
overall throughput. This figure confirms our reasoning.

This means that, ideally, the tile size dynamically grows with
the input file size to always have the highest overall throughput.
Furthermore, more warps per thread block have a positive effect on
the compaction stage, but a negative effect on the encoding stage
due to increased shared memory pressure. It might be possible
to avoid the negative effects and further increase performance by
using cooperative groups3.

7.4 GPU memory consumption
As we mentioned in Section 6.3, we also considered memory usage
to be an important aspect of a GPU compressor, as memory is a
scarce resource and excessive usage can significantly reduce overall
performance and the ability to handle large datasets [15].

To measure the memory usage for every compressor, we ran
the provided benchmark code for each and measured the memory
consumption for the process using nvidia-smi. We then subtract
the size of the input and output buffer to get the memory used by
the compressor itself.

3https://docs.nvidia.com/cuda/cuda-c-programming-guide/#cooperative-groups

104.89

113.22

116.56

114.43

102.01

85.72

52.68

85.35

146.85

219.49

296.26

367.16

424.00

456.64

44.31

58.81

69.11

74.15

72.12

65.02

44.39

1280 2560 5120 10240 20480 40960 81920
0

50

100

150

200

250

300

350

400

450 Stage
Encoding
Compacting
Overall

Tile size (bytes)

Th
ro

ug
hp

ut
 (G

B/
s)

Figure 12: The throughput for the twomajor stages (encoding
and compaction) and how they are influenced by the tile size.

Our compressor re-uses buffers several times to minimize mem-
ory consumption, and the results of that effort can be found in
Figure 13. We use significantly less memory than all other compres-
sors, as we only require a single additional buffer in addition to
some working memory for metadata and temporary header storage.

11

1.66

2.22

2.22

2.23

2.29

2.38

2.56

4.67

1.30

6.38

6.61

2.56

4.07

4.06

4.07

4.18

4.37

4.73

8.91

2.22

12.37

12.84

3.51

5.92

5.91

5.92

6.10

6.37

6.91

13.16

Our Compressor

Bitcomp
Cascaded

LZ4 GPULZ (Avg)

Snappy
ANS

ZSTD
LC-Framework (3 stage)

GDeflate

Deflate

0

2

4

6

8

10

12

Input size
1GB
2GB
3GB

Ad
di

tio
na

l m
em

or
y

us
ag

e
(G

iB
)

Figure 13: Memory usage, measured with nvidida-smi, ex-
cluding input and output buffers of our compression pipeline,
compared to other state-of-the-art compressors. The com-
pressors are sorted based on their memory usage, and empty
columns indicate that a compressor ran out of memory or
failed to compress the file.

8 CONCLUSION AND FUTUREWORK
In this paper, we introduce a GPU-accelerated compressor based
on the FSST table generation algorithm. By optimizing both the
encoding kernel and the overall compression pipeline, we efficiently
exploit the massive parallelism of GPUs. Our results show that we
achieve compression ratios comparable to LZ-based algorithms,
while significantly improving throughput over existing GPU im-
plementations. While some GPU-native compressors like ANS,
Bitcomp, and other floating-point compressors like SPspeed still
achieve considerably higher throughputs, we offer a higher com-
pression ratio for textual data.

This positions our compressor as a Pareto optimal compressor
that can be used in GPU-accelerated database systems and other
areas where large amounts of textual data need to be efficiently
compressed with competitive compression ratios.

In the future, we would like to fully incorporate the GSST de-
compressor to provide full end-to-end measurements and perform
a complete evaluation.

Also, as mentioned in Section 7.3, it would be ideal to scale the
tile size with input size. In this version of the pipeline, a static size
is used, which limits the performance portability for different file
sizes. Furthermore, cooperative groups might prove to be useful to
further increase the throughput of the compaction stage, without
negatively affecting the encoding performance.

REFERENCES
[1] Azim Afroozeh and Peter Boncz. 2023. The fastlanes compression layout: Decod-

ing> 100 billion integers per second with scalar code. Proceedings of the VLDB
Endowment 16, 9 (2023), 2132–2144.

[2] Azim Afroozeh, Lotte Felius, and Peter Boncz. 2024. Accelerating GPU Data
Processing using FastLanes Compression. In Proceedings of the 20th International
Workshop on Data Management on New Hardware. 1–11.

[3] Noushin Azami, Alex Fallin, Brandon Burtchell, Andrew Rodriguez, Benila Jerald,
Yiqian Liu, and Martin Burtscher. 2024. LC Git Repository. https://github.com/
burtscher/LC-framework

[4] Noushin Azami, Alex Fallin, and Martin Burtscher. 2025. Efficient Lossless Com-
pression of Scientific Floating-Point Data on CPUs and GPUs. In Proceedings of
the 30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1. 395–409.

[5] Markus Billeter, Ola Olsson, and Ulf Assarsson. 2009. Efficient stream compaction
on wide SIMD many-core architectures. In Proceedings of the conference on high
performance graphics 2009. 159–166.

[6] Peter Boncz, Thomas Neumann, and Viktor Leis. 2020. FSST: fast random access
string compression. Proceedings of the VLDB Endowment 13, 12 (2020), 2649–2661.

[7] Jianyu Chen, Maurice Daverveldt, and Zaid Al-Ars. 2021. Fpga acceleration of
zstd compression algorithm. In 2021 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 188–191.

[8] Jian Fang, Jianyu Chen, Jinho Lee, Zaid Al-Ars, and H Peter Hofstee. 2019. Refine
and recycle: A method to increase decompression parallelism. In 2019 IEEE
30Th international conference on application-specific systems, architectures and
processors (ASAP), Vol. 2160. IEEE, 272–280.

[9] Shunji Funasaka, Koji Nakano, and Yasuaki Ito. 2015. Fast LZW compression us-
ing a GPU. In 2015 Third International Symposium on Computing and Networking
(CANDAR). IEEE, 303–308.

[10] GDELT. [n.d.]. The GDelt project. https://www.gdeltproject.org/
[11] Jens Glaser, Felipe Aramburú, William Malpica, Benjamín Hernández, Matthew

Baker, and Rodrigo Aramburú. 2021. Scaling SQL to the Supercomputer for
Interactive Analysis of Simulation Data. In Smoky Mountains Computational
Sciences and Engineering Conference. Springer, 327–339.

[12] Jens Glaser, Josh V Vermaas, David M Rogers, Jeff Larkin, Scott LeGrand, Swen
Boehm, Matthew B Baker, Aaron Scheinberg, Andreas F Tillack, Mathialakan
Thavappiragasam, et al. 2021. High-throughput virtual laboratory for drug
discovery using massive datasets. The International Journal of High Performance
Computing Applications 35, 5 (2021), 452–468.

[13] Maya Gokhale, Jonathan Cohen, Andy Yoo, WMarcus Miller, Arpith Jacob, Craig
Ulmer, and Roger Pearce. 2008. Hardware technologies for high-performance
data-intensive computing. Computer 41, 4 (2008), 60–68.

[14] ELLPACK Group. 1985. ELLPACK - Software for Solving Elliptic Problems. https:
//www.cs.purdue.edu/ellpack/ellpack.html

[15] Laiq Hasan, Marijn Kentie, and Zaid Al-Ars. 2011. DOPA: GPU-based protein
alignment using database and memory access optimizations. BMC research notes
4 (2011), 1–11.

[16] Benjamín Hernández, Suhas Somnath, Junqi Yin, Hao Lu, Joe Eaton, Peter
Entschev, John Kirkham, and Zahra Ronaghi. 2020. Performance evaluation
of python based data analytics frameworks in summit: Early experiences. In
Driving Scientific and Engineering Discoveries Through the Convergence of HPC,
Big Data and AI: 17th Smoky Mountains Computational Sciences and Engineering
Conference, SMC 2020, Oak Ridge, TN, USA, August 26-28, 2020, Revised Selected
Papers 17. Springer, 366–380.

[17] David Meirion Hughes, Ik Soo Lim, MarkW Jones, Aaron Knoll, and Ben Spencer.
2013. Ink-compact: In-kernel stream compaction and its application to multi-
kernel data visualization on general-purpose gpus. In Computer Graphics Forum,
Vol. 32. Wiley Online Library, 178–188.

[18] Jeff Johnson. 2022. DietGPU: GPU-based lossless compression for numerical data.
https://github.com/facebookresearch/dietgpu

[19] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. Ndzip-gpu: Efficient
lossless compression of scientific floating-point data on gpus. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–14.

[20] Fangzheng Lin, Kasidis Arunruangsirilert, Heming Sun, and Jiro Katto. 2023.
Recoil: Parallel rans decoding with decoder-adaptive scalability. In Proceedings
of the 52nd International Conference on Parallel Processing. 31–40.

[21] Li Lu and Bei Hua. 2019. G-Match: a fast GPU-friendly data compression algo-
rithm. In 2019 IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart City; IEEE
5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
IEEE, 788–795.

[22] NVIDIA. [n.d.]. nvCOMP library. Retrieved March 17, 2025 from https://
developer.nvidia.com/nvcomp

[23] NVIDIA. 2024. nvCOMP performance. Retrieved March 18, 2025 from https:
//web.archive.org/web/20240225035645/https://developer.nvidia.com/nvcomp

[24] NVIDIA. 2024. Nvidia Blackwell Architecture Technical Overview. Retrieved
March 17, 2025 from https://resources.nvidia.com/en-us-blackwell-architecture

[25] Adnan Ozsoy. 2014. Culzss-bit: A bit-vector algorithm for lossless data com-
pression on gpgpus. In 2014 International Workshop on Data Intensive Scalable
Computing Systems. IEEE, 57–64.

[26] Adnan Ozsoy and Martin Swany. 2011. CULZSS: LZSS lossless data compression
on CUDA. In 2011 IEEE International Conference on Cluster Computing. IEEE,
403–411.

[27] Adnan Ozsoy, Martin Swany, and Arun Chauhan. 2012. Pipelined parallel LZSS
for streaming data compression on GPGPUs. In 2012 IEEE 18th International
Conference on Parallel and Distributed Systems. IEEE, 37–44.

12

https://github.com/burtscher/LC-framework
https://github.com/burtscher/LC-framework
https://www.gdeltproject.org/
https://www.cs.purdue.edu/ellpack/ellpack.html
https://www.cs.purdue.edu/ellpack/ellpack.html
https://github.com/facebookresearch/dietgpu
https://developer.nvidia.com/nvcomp
https://developer.nvidia.com/nvcomp
https://web.archive.org/web/20240225035645/https://developer.nvidia.com/nvcomp
https://web.archive.org/web/20240225035645/https://developer.nvidia.com/nvcomp
https://resources.nvidia.com/en-us-blackwell-architecture

[28] Adnan Ozsoy, Martin Swany, and Arun Chauhan. 2014. Optimizing LZSS com-
pression on GPGPUs. Future Generation Computer Systems 30 (2014), 170–178.

[29] Jeongmin Park, Zaid Qureshi, Vikram Mailthody, Andrew Gacek, Shunfan Shao,
Mohammad AlMasri, Isaac Gelado, Jinjun Xiong, Chris Newburn, I-hsin Chung,
et al. 2023. CODAG: Characterizing and Optimizing Decompression Algorithms
for GPUs. arXiv preprint arXiv:2307.03760 (2023).

[30] Ritesh A Patel, Yao Zhang, Jason Mak, Andrew Davidson, and John D Owens.
2012. Parallel lossless data compression on the GPU. IEEE.

[31] Anil Shanbhag, Bobbi W Yogatama, Xiangyao Yu, and Samuel Madden. 2022.
Tile-based lightweight integer compression in GPU. In Proceedings of the 2022
International Conference on Management of Data. 1390–1403.

[32] K Shyni and Manoj Kumar KV. 2013. Lossless LZW data compression algorithm
on CUDA. (2013).

[33] Evangelia Sitaridi, Rene Mueller, Tim Kaldewey, Guy Lohman, and Kenneth A
Ross. 2016. Massively-parallel lossless data decompression. In 2016 45th Interna-
tional Conference on Parallel Processing (ICPP). IEEE, 242–247.

[34] Adam Thompson and CJ Newburn. 2019. GPUDirect Storage: A Direct Path
Between Storage and GPU Memory. Retrieved March 17, 2025 from https://
developer.nvidia.com/blog/gpudirect-storage

[35] TPC. [n.d.]. TPC-H Version 2 and Version 3. https://www.tpc.org/tpch/
[36] Robin Vonk, Joost Hoozemans, and Zaid Al-Ars. 2025. GSST: Parallel string

decompression at 191 GB/s on GPU. In Proceedings Workshop on Challenges and
Opportunities of Efficient and Performant Storage Systems (Rotterdam, Nether-
lands). ACM.

[37] Zheng Wang, Chenxi Wang, and Lei Wang. 2023. Dpubench: An application-
driven scalable benchmark suite for comprehensive dpu evaluation. BenchCouncil
Transactions on Benchmarks, Standards and Evaluations 3, 2 (2023), 100120.

[38] Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Martin Swany, Dingwen
Tao, and Franck Cappello. 2023. Gpulz: Optimizing lzss lossless compression
for multi-byte data on modern gpus. In Proceedings of the 37th International
Conference on Supercomputing. 348–359.

[39] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on information theory 23, 3 (1977), 337–343.

[40] Yuan Zu and Bei Hua. 2014. GLZSS: LZSS lossless data compression can be faster.
In Proceedings of Workshop on General Purpose Processing Using GPUs. 46–53.

13

https://developer.nvidia.com/blog/gpudirect-storage
https://developer.nvidia.com/blog/gpudirect-storage
https://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Background
	2.1 FSST
	2.2 GSST
	2.3 GPU development

	3 Acceleration potential of FSST
	4 Memory-efficient encoding table
	4.1 Data properties
	4.2 Modifying the hashtable
	4.3 Efficient short symbols

	5 Encoding kernel design
	5.1 Applying tiling
	5.2 Inter-block dependencies
	5.3 Sliding window
	5.4 Output packing
	5.5 Ensuring coalesced writes

	6 Compression pipeline
	6.1 Gathering data
	6.2 Improving output format
	6.3 Optimized pipeline
	6.4 Ensuring compatibility with GSST

	7 Evaluation
	7.1 Encoding table performance
	7.2 Accelerated compression throughput and ratio
	7.3 Performance analysis per stage
	7.4 GPU memory consumption

	8 Conclusion and future work
	References

