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ABSTRACT
Living in the world of big data, we are challenged by how to process
the high volume of data efficiently. Running time and space usage
are the two main challenges preventing many existing solutions
from running on large real-world data. Parallel algorithms and
efficient data structures are the keys to solving the challenges. With
the prevalence of multi-core CPUs, designing efficient algorithms
and software is now of huge practical relevance and significant
theoretical interest. However, programming in a parallel setting
is much harder than that in a sequential setting. We summarized
four main challenges in designing efficient parallel algorithms. We
explain the challenges and howwe overcome themwith examples of
popular data science problems, such as Influence Maximization (IM)
and graph traversal algorithms (Strongly Connected Component
(SCC), Bi-Connectivity (BCC)). Compared with the state-of-the-art
implementations on a 96-core machine with 1.5 TB main memory,
our SCC and BCC are 2.7 × and 3.1 × faster than the best existing
baseline on average, respectively. Our IM algorithm is the first one
that can process the ClueWeb graph with 978M vertices and 75B
edges in about 2 hours. The techniques we proposed in the paper
are not limited to specific problems but potentially work with a
large range of problems in data science.
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1 INTRODUCTION
Graph algorithms are fundamental to various applications, includ-
ing social network analysis, bioinformatics, and geographical infor-
mation systems. As the volume of data continues to grow, there is a
pressing need for scalable and efficient algorithms that can handle
massive graphs. Parallel computing is essential for handling the
increasing size and complexity of modern datasets. The core idea
is to let multiple processors work together to reduce computation
time. However, programming in a parallel setting is much harder
than that in a sequential setting. Four challenges that are commonly
faced in parallelizing sequential algorithms are listed here:

Challenge 1: The iterative essence of sequential algorithms.
Many nice algorithmic ideas work iteratively. How can we paral-
lelize them if all operations logically depend on the previous?
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Challenge 2: Data structures are more complicated. Many
classic data structures only considered sequential algorithms and
interfaces. How can data structures benefit parallel algorithms as
they do in the sequential setting?

Challenge 3: Algorithms sacrifice space for parallelism.
Parallel algorithms need more space to avoid data race or deal with
other issues, but large space limits solvable problem size.

Challenge 4: Thread synchronization is expensive. Thread
synchronization cost (usually not reflected in theory) is expensive,
which may make parallel algorithms run even slower than sequen-
tial algorithms in some cases.

These challenges are very common in designing scalable parallel
algorithms. I take three concrete problems as examples: Influence
Maximization (IM), Strongly Connected Component (SCC), and
Bi-Connectivity (BCC). Challenge 1 is observed in IM et al. [10, 14].
Challenge 2 is observed in IM and SCC. Challenge 3 is observed in
BCC and IM. Challenge 4 is observed in SCC and BCC. My research
work revolves around overcoming these challenges. PaC-IM [24]
trades off between space usage and running time for the prepro-
cessing step and parallelizes the iterative seed selection step, taking
advantage of parallel data structures. PASGAL-SCC [11, 25] im-
proves the performance of existing SCC on large-diameter graphs.
We propose the Vertical Granularity Control (VGC) idea to reduce
global synchronizations and use parallel hash bags to implement
it. PASGAL-BCC [11, 12] solves the synchronization-efficient chal-
lenge by improving theoretical bounds, and it is efficient in practice.
Note that some techniques proposed in concrete algorithms can be
extended to other algorithms with similar challenges. For example,
the technique for parallelizing iterative seed selection in IM can
be extended to other iterative algorithms for solving optimization
problems if the problem has the submodular property, and the VGC
and hash bags proposed in SCC can be used in other graph tra-
versal algorithms to improve their performance on large-diameter
graphs. I will introduce PaC-IM , PASGAL-SCC, and PASGAL-BCC
in detail in Sec. 3 to 5. Then, I will discuss future work in Sec. 6 and
summarize the paper in Sec. 7.

2 PRELIMINARIES
We use the fork-join parallelism [7], and the work-span analysis [4].
We assume a set of threads that access a shared memory. A thread
can fork two child software threads to work in parallel. When
both children complete, the parent process continues. A parallel
for-loop can be simulated by recursive forks in logarithmic lev-
els. The work of an algorithm is the total number of instructions,
and the span is the length of the longest sequence of dependent
instructions. We can execute the computation using a randomized
work-stealing scheduler [2] in practice. We use an atomic operation
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WriteMax(𝑡, 𝑣new) to write value 𝑣new at the memory location 𝑡 if
𝑣new is larger than the current value in 𝑡 . We use compare-and-swap
to implementWriteMax.

3 INFLUENCE MAXIMIZATION
Influence Maximization (IM) is a crucial problem in data science.
The goal is to find a fixed-size set of highly influential seed vertices
on a network to maximize the spread of influence along the edges.
For example, in viral marketing, the company may choose to send
free samples to a small set of users in the hope of triggering a large
cascade of further adoptions through the “word-of-mouth” effects.
Given a graph𝐺 = (𝑉 , 𝐸) and a stochastic diffusion model to specify
how influence spreads along edges, we use 𝑛 = |𝑉 |,𝑚 = |𝐸 |, and
𝜎 (𝑆) to denote the expected influence spread on 𝐺 using the seed
set 𝑆 ⊆ 𝑉 . The IM problem aims to find a seed set 𝑆 with size 𝑘 to
maximize 𝜎 (𝑆).

Although IM is NP-hard, a greedy algorithm can achieve (1−1/𝑒)-
approximation [16]. Given the current seed set 𝑆 , the greedy algo-
rithm selects the next seed as the vertex with the highest marginal
gain, where Δ(𝑣 | 𝑆) ← 𝜎 (𝑆 ∪ {𝑣}) − 𝜎 (𝑆). However, the challenge
lies in estimating the influence of a seed set 𝜎 (·).

Existing work either uses a simulation-based or a memoiz-
ing-based approach to compute 𝜎 . The simulation-based approach
uses Monte-Carlo (MC) experiments by simulating 𝑅′ rounds of
influence diffusion [16, 17], but the solution quality relies on a high
value of 𝑅′ (usually around 104). This method is very expensive
in time. To avoid MC simulations, the memoizing-based approach
uses sketches by pre-storing 𝑅 sampled graphs as the results of MC
experiments and/or memorizing auxiliary information to accelerate
influence computation, such as connectivity or strong connectivity.
An existing study [6] shows that using 𝑅 ≈ 200 sketches achieves a
similar solution quality to 𝑅′ = 104 MC experiments. This method
is very expensive in memory usage.

3.1 Sketch Compression
Our first contribution is a compression scheme for sketches
on undirected graphs, which allows for user-defined compression
ratios (𝛼). Similar to existing work, PaC-IM memoizes connected
components (CC) of the sketches but avoids the 𝑂 (𝑅𝑛) space to
store per-vertex information. Our idea is a combination (and thus a
tradeoff) of memoization and simulation. The idea is to memoize
the CC information only for centers 𝐶 ⊆ 𝑉 , where |𝐶 | = 𝛼𝑛, and
𝛼 ∈ [0, 1] is a user-defined compression ratio.Whenwe evaluate the
spread of a vertex, we average the size of CC that the vertex belongs
to on 𝑅 sketches. On a certain sketch, a local simulation from the
vertex will retrieve the CC size by either encountering a center (the
CC size is the same as the center), or traversing the whole CC (the
CC size is the search size). As such, the sketch saves the space by a
factor of 𝛼 at the cost of increasing the work by 𝑂 (min{𝑇, 1/𝛼}),
where 𝑇 is the number of reachable vertices in a full simulation.
The parameter 𝛼 provides a trade-off between the simulation and
memorization: when 𝛼 = 0, it is a simulation-based algorithm; when
𝛼 = 1, it is a memorization-based algorithm. The comparison of our
algorithm and existing algorithms in space and time complexity
is shown in Tab. 1. The influence of 𝛼 for sketch-construction is
shown in Fig. 1. Win-Tree and P-tree are two IM algorithms that

Ours Simulation Memoization
space 𝑂 ( (1 + 𝛼𝑅)𝑛) O(n) O(Rn)

work for 𝜎 (𝑅 · min(1/𝛼,𝑇 ) ) 𝑂 (𝑅𝑇 ) 𝑂 (𝑅)
parameter 𝛼 ∈ [0, 1] 𝛼 = 0 𝛼 = 1

Table 1: Compare the complexity of different approaches to estimat-
ing influence by R spread experiments. Our algorithm can trade-off
between simulation (running time) and memorization (memory usage) by a
parameter 𝛼 . The existing pure simulation way and memorization way can
be viewed as the extreme case when 𝛼 is 0 and 1, respectively.

use different data structures for seed selection, but both use the
same sketch compression algorithm for preprocessing (and store
the same sketch information). As the 𝛼 decreases (compress more),
the memory usage for both decreases.

3.2 Seed Selection Parallelization
Even with sketch compression, the Greedy algorithm itself is ex-
pensive because it needs to re-evaluate all the vertices to select one
seed. Many SOTA solutions use the CELF [17] optimization to re-
duce the number of calls for re-evaluation. In a nutshell, CELF is an
iterative approach that lazily evaluates the marginal gain of vertices
in seed selection, one at a time. While laziness reduces the number
of vertices to evaluate, CELF is inherently sequential because the
current round relies on the results of the previous round. Therefore,
CELF is hard to parallelize, and existing parallel solutions ([13, 19])
only parallelize the computation for re-evaluating one vertex but
still re-evaluate vertices one by one.

Our second contribution is two new parallel data structures to
reduce running time for seed selection. To overcome this challenge,
we proposed two novel solutions that achieve high parallelism for
CELF. The challenge is evaluating more vertices in parallel while
avoiding unpromising vertices as in CELF. Our first approach gives
a theoretically efficient solution based on the P-tree [3] (a parallel
balanced BST), and the work- and span-efficiency is approached
by a prefix-doubling scheme. More formally, we have a sophisti-
cated analysis to show that the P-tree solution evaluates no more
than twice as many vertices as sequential CELF but brings in high
parallelism. Our seed selection based on P-tree will select the same
seed set as CELF with 𝑂 (𝑛 log𝑛 +𝑊𝐶𝐸𝐿𝐹 ) work and �̃� (𝑘𝐷Δ) span,
where 𝑘 is the number of seeds,𝑊𝐶𝐸𝐿𝐹 is the work (time complex-
ity) by CELF, and 𝐷Δ is the span to evaluate one vertex. To further
improve the practical performance, we showed our second solution,
referred to as Win-Tree, based on a winning tree (aka. tournament
tree) that does not keep the total ordering of the objects as in the
BSTs, and thus avoids the 𝑂 (𝑛 log𝑛) work term for sorting. It is
highly asynchronous and has lower space usage compared with P-
tree, leading to slightly better overall performance. However, due to
the asynchrony, Win-Tree does not have strong worst-case bounds
as P-tree. The comparison between P-tree and Win-Tree in memory
usage can be found in Fig. 1. Win-Tree always has smaller memory
usage than P-tree.

We tested the scalability of systems and baseline algorithms:
Infuser ([13]) and Ripples ([19]). Our algorithm scales well, and
we run faster when the number of cores increases. The baseline
algorithms run even slower than the number of cores increases
because they did not parallel the seed selection well. When the
number of cores increases, the improvement brought by parallelism
is limited and can not overcome the increased parallelism overhead.
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Figure 1: The influence of compression rate 𝛼 in memory usage, and
the comparison between P-tree and Win-Tree in memory usage. The
𝑥-axis represents the 𝛼 . The 𝑦-axis shows the total memory usage. The gray
horizontal line represents the basic memory we need to load the graph.
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Figure 2: The scalability for different IM algorithms on graph SLDT.
The 𝑥-axis shows core counts, and the 𝑦-axis shows running time.

Note that the two parallel seed selection solutions based on P-
tree and Win-Tree work on both directed and undirected graphs
and most diffusion models. They are also potentially extendable to
many other iterative algorithms for optimization problems (if they
have the submodular property).

4 STRONG CONNECTIVITY
Given a directed graph 𝐺 = (𝑉 , 𝐸), we denote 𝑛 = |𝑉 | and𝑚 = |𝐸 |,
and use 𝐷 as the diameter of 𝐺 . We say 𝑣 is reachable to 𝑢 if there
is a path from 𝑣 to 𝑢. Two vertices 𝑣 and 𝑢 are strongly connected
if 𝑣 is reachable to 𝑢 and 𝑢 is reachable to 𝑣 . An SCC is a maximal
set of vertices in 𝐺 that are strongly connected.

As a fundamental graph algorithm, SCC is widely studied. Se-
quentially, Kosaraju’s algorithm [1] and Tarjan’s algorithm [22] can
compute SCC in 𝑂 (𝑚) cost. Although there exist many parallel im-
plementations, most of them are optimized for graphs having a low
diameter and/or one large SCC. When either of the assumptions
is not satisfied, these algorithms may have unsatisfactory perfor-
mance. In our experiments, we found that existing algorithms on
a 96-core machine can even be slower than Tarjan’s sequential
algorithm on many 𝑘-NN and lattice graphs (see Fig. 3 (c)). Unfortu-
nately, they have many applications. For example, the 𝑘-NN graphs
are used in unsupervised learning and lattice graphs are used in
computational chemistry.

Most existing parallel SCC algorithms are based on reachability
search. Existing implementations use Breadth-First Search (BFS) for
reachability, which needs 𝑂 (𝐷) rounds of synchronization, where
𝐷 is the diameter of the graphs. The synchronization cost is high
and is not shown in the theory bound. We propose a novel idea to
reduce rounds of synchronization in reachability searches and thus
reducing the parallelism overhead. The novel idea is referred to as
vertical granularity control (VGC) optimization. Furthermore, to
maintain the frontier more efficiently (and correctly) in VGC, we
propose a novel data structure called the parallel hash bag. It sup-
ports efficient insertion and extract-all operations for an unordered
set structure and dynamic resizing in an efficient manner.

4.1 Vertical Granularity Control (VGC)
For the reachability queries, unlike parallel BFS, which only visits
the direct neighbors of the vertices in the frontier, we maintain a
local queue to do “local BFS” from each vertex in the frontier until
𝜏 edges have been touched. Such optimization effectively works as
a granularity control: each thread is guaranteed to perform a reason-
ably large amount of work, which hides the scheduling overhead.
Therefore, each round likely pushes the frontier by more than one
hop, which reduces the overall number of rounds. This approach
saves the number of synchronization rounds by 3-200× than BFS,
and improves the performance, especially on large-diameter graphs
(up to 14.7× speedup).

4.2 Parallel Hash Bag
When knowing the upper bound of the element size (𝑛 for reacha-
bility), our hash bag supports current insertion with 𝑂 (1) cost in
expectation and listing all inserted elements (packing the vertices
in the frontier together) with 𝑂 (𝑠) work and 𝑂 (log 𝑠) span, where
𝑠 is the size of inserted elements. By supporting hash bags to main-
tain frontiers, our new algorithm avoids visiting the edges for the
second time, and improves the performance of the existing GBBS
([9]) implementation by 1.5-4.3×.

We tested the scalability of our algorithm and baseline algorithms
(GBBS [9], iSpan [15], MultiStep [21]). The results are shown in
Fig. 4. We find that our algorithm is better than existing algorithms
mainly because we have better scalability. On large diameter graphs,
such as SQR’, GL5, and COS5, the speedup of existing algorithms
does not increase and even decreases as the number of cores in-
creases.

Our techniques, VGC and parallel hash bags, have the potential
to improve the performance of all the traversing-based algorithms
on large-diameter graphs. We extend them to LE-List, Connectivity
search, and BFS. The performance of BFS compared to other baseline
algorithms is shown in Fig. 3(a). We implemented a series of graph
traversal algorithms, including SSSP, BFS, SCC, BCC, and so on. We
publish them in the open-source library PASGAL[11].

5 BI-CONNECTIVITY
Even though the techniques VGC and parallel hash bags are efficient
in practice for many graph traversal algorithms, such as SCC, BFS,
and Connectivity, they do not improve the theory bound of the
algorithms. For the Bi-connectivity (BCC) problem, we proposed
an algorithm that is efficient in theory and practice.

Graph biconnectivity is one of the most fundamental graph prob-
lems. Given an undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 | vertices
and 𝑚 = |𝐸 | edges, a connected component (CC) is a maximal
subset in 𝑉 such that every two vertices in it are connected by a
path. A biconnected component (BCC) (or blocks) is a maximal
subset𝐶 ⊆ 𝑉 such that𝐶 is connected and remains connected after
removing any vertex 𝑣 ∈ 𝐶 . In this paper, we use BCC (or CC) for
both the biconnected (or connected) component in the graph and
the problem of computing all BCCs (or CCs). BCC has extensive ap-
plications such as planarity testing [5], centrality computation [20],
and network analysis [18].

The performance bottleneck of previous BCC algorithms either
comes from the use of BFS that requires 𝑂 (𝐷) rounds of global
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Figure 3: The 𝑦-axis shows speedup over the sequential algorithm. Greater is better. Figure 4: Scalability of SCC. The 𝑦-axis shows speedup
over the sequential algorithm.

synchronizations (e.g., GBBS [8]), or requires 𝑂 (𝑚) auxiliary space
and does not scale to large graphs (e.g., Tarjan-Vishkin [23]). We re-
designed the BCC algorithm to avoid the used of BFS. Our algorithm
creates a skeleton graph based on any spanning tree of the input
graph. The key idea is to carefully identify some fence edges, which
indicate the “boundaries” of the BCCs. Our FAST-BCC achieves
𝑂 (𝑛 +𝑚) work (total number of operations), polylogarithmic span
(longest parallel dependency chain), and 𝑂 (𝑛) auxiliary space. We
carefully analyze the correctness of our algorithm, which is highly
non-trivial. The comparison of BCC with other baselines is shown
in Fig. 3 (b). FAST-BCC is the fastest on all tested 27 graphs. On
average (geometric means), FAST-BCC is 3.1× faster than the best
existing baseline on each graph.

6 FUTUREWORK
There are numerous interesting directions for future work. 1) Par-
allelize other Influence Maximization algorithms. Instead of the
forward sketch-based algorithm we parallelized, another backward
sketch-based algorithm can sample sketches adaptively for different
graphs and generalize to both directed and undirected graphs. 2)
Parallelizing multi-source BFS algorithms and their applications.
In many applications, we need to run more than one single BFS.
In addition to exploiting thread-level parallelism, multi-BFS can
exploit bit-level parallelism. We need to carefully design so that
both of them can be fully utilized and simple to adapt to different
real-world applications.

7 SUMMARY
The papers highlight several common challenges and innovative
solutions in parallel graph algorithms, which are parallelizing it-
erative algorithms, space efficiency, parallel data structures, and
synchronization efficiency. By addressing these themes, researchers
can contribute to the development of more efficient and scalable al-
gorithms on data science problems, such as Influence Maximization
and finding Strong Connectivity, enhancing the ability to analyze
and interpret large-scale datasets.
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