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ABSTRACT
Data scientists use table discovery systems to search for relevant
tables in a large data lake. With tasks like compiling training data
for machine learning models, for example, data scientists need to
find tables that are relevant to a table at hand, or a query table.
To address this challenge, we present automated, effective, and
efficient methods for data discovery problems in the large scale of
data lakes. Our approaches aim to solve a general data discovery
problem called table union search and a data discovery problem
for a specific downstream task called table reclamation. Existing
solutions for table union search focus on aligning column semantics
with the query table to find unionable tables, and return tables that
are unrelated to the table context of the query table. We present
approaches that take columns’ relationships and the entire table
context into account when retrieving unionable tables. For the
problem of table reclamation, we present a system that verifies
if a query table can be reproduced from a retrieved set of tables
from a data lake. This validation process allows users to assess the
origins of their query table, as well as the completeness, validity,
and currency of the query table.

VLDBWorkshop Reference Format:
Grace Fan. Table Discovery in Data Lakes. VLDB 2024 Workshop: VLDB
Ph.D. Workshop.

1 INTRODUCTION
The number of datasets stored in data lakes has grown drastically
in the past decade, and continues to grow as more datasets are cre-
ated. These datasets come from a wide range of sources, including
governments, companies, and academic institutions. To search and
analyze these datasets, researchers have built systems for table dis-
covery [12], with techniques for keyword search [2, 6, 7, 21, 30, 34]
and data-driven search [15, 27, 29, 37, 38] that support joinable
table search and unionable table search.

Tabular data in data lakes often have limited or indecipherable
metadata, with missing or inconsistent column names [2, 14, 26, 27].
Thus, we rely solely on table values when finding relevant tables to
a query table. This research focuses on two types of table discovery
tasks – table union search and table reclamation. In table union
search, we search over a data lake for tables that can be unioned
with a given query table and extend it with tuples. We explore
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different ways of preserving the table context of the query table
when retrieving unionable tables from a data lake. In a new problem
called table reclamation, we perform targeted table discovery and
integration by efficiently searching for data lake tables that, when
integrated, can reproduce a given query table.

In the following sections, Section 2 discusses two solutions for
table union search. Section 3 describes a new problem called Ta-
ble Reclamation and discusses our proposed solution. Finally, we
conclude with future work (Section 4).

2 TABLE UNION SEARCH
When data scientists have tables as queries, they often want to find
relevant tables from a table repository, such as a data lake, to their
query tables. One notion of relevance we consider is “unionability”,
where we find data lake tables that can be unioned with a given
query table. Then, data scientists can augment these unionable
tables with their current tables to use as training or testing data for
their machine learning models. In addition, they can use unionable
tables to generalize tuples in their current tables along different
dimensions, such as space and time.

In table union search, the user (e.g., data scientist) provides a
query table and a data lake. From the data lake, we return tables
that contain data that is semantically similar to the data in the
query table, and can thus extend the query table with new tuples.
Formally, given a query table 𝑄 and a data lake 𝐷 , we return the
top-𝑘 unionable tables that, when unioned with the query table,
preserve the query table’s semantics.

2.1 Previous work on Table Union Search
Early work on table union search (e.g., Sarma et al. [29]) first define
unionable tables as entity complements. These are tables that share
similar column headers (schemas) and a subject column, or a column
that contains entities that the table is about, with the query table.
Relaxing the strong assumption that unionable tables share schemas,
Nargesian et al. [27] formally define unionable tables as those that
share attributes from the same domain as the query table. They
propose a data-driven approach that uses probabilistic models to
measure the likelihood that attributes originate from the same
domain. More recently, Bogatu et al. [4], the state-of-the-art method,
also propose an attribute unionability methodology. Their method
extends Nargesian et al. by considering additional similarity metrics
that use the schemas and attribute distributions.

2.2 Relationship-based Table Union Search
We propose a solution called SANTOS [19] that extends the defi-
nition of table union search to finding tables that not only share
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Figure 1: Pipeline of SANTOS. (a) Data lake tables are labeled
with YAGO types, if found, and from the synthesized knowl-
edge base otherwise. (b) Given a query table that we also
annotate with knowledge bases, we query the data lake for
unionable tables.

columns from the same domain, but also share relationships be-
tween columns. Consider an example in which a possible unionable
table from the data lake shares columns “Year” and “City” with
the query table. However, the query table has columns about city
parks and when they were founded, whereas the data lake table
has columns about people, their birthplaces and birthdates. If we
only look at shared columns with the query table, we will falsely
return this table as a unionable table. Instead, we can also look
at relationships between columns, in addition to shared columns.
This way, we can better preserve the query table’s semantics when
finding unionable tables.

To align semantics of the query table with data lake tables,
we need to find semantics of columns and relationships between
columns. First, we label table semantics using a knowledge base.
To do so, we query a knowledge base (e.g., YAGO [32]) by map-
ping columns to classes and column relationships to properties.
Since knowledge bases only consider relationships between two
columns, we find semantics of binary relationships between two
columns. However, open knowledge bases like YAGO tend to have
limited coverage of data lake tables [19]. Hence, we create a novel,
data-driven “synthesized” knowledge base that is made up of table
values from the data lake. This way, we can assess if columns and
their relationships in the query table and data lake tables have sim-
ilar semantics. Putting it all together (shown in Figure 1), we first
take data lake tables and find column and relationship semantics
using an existing knowledge base (YAGO). If semantics are not
found, then we find semantics using our synthesized knowledge
base (Synt. KB). When we are given a query table, we find column
and relationship semantics of the query table in the same way, and
find the top-𝑘 unionable tables that have similar semantics.

In our evaluations, we experiment on the TUS benchmark, an
existing benchmark from Nargesian et al. [27] that consists of 1,530
tables derived from 10 tables fromCanada open data. In addition, we
create two new, publicly available benchmarks, SMALL and LARGE,
with 550 and 11K tables, respectively, from Canada, UK, US, and
Australian Open data [1]. We use SMALL for effectiveness experi-
ments, using the groundtruth that we manually labeled, and LARGE
for efficiency experiments. SANTOS is highly effective in the ex-
periments, outperforming the state-of-the-art method (Bogatu et
al. [4]) by 25-165% in Mean Average Precision@k (MAP@k) across

all benchmarks. To analyze how well the existing and synthesized
knowledge bases work independently and together, we perform
an ablation study in which we measure MAP@k. The synthesized
knowledge base improves MAP@k by 8% on the TUS benchmark
and by 43% on the SMALL benchmark. The best performance comes
from using both knowledge bases, having a MAP@k of 80% on the
TUS benchmark and 93% on the SMALL benchmark. This shows
that the synthesized knowledge base, which stores semantics that
are not found in the existing knowledge base, is needed along with
an existing knowledge base. Finally, in efficiency experiments, we
see that SANTOS’s average query time on the LARGE benchmark
is ∼36 sec, which is 5X faster than the state-of-the-art method [4].

2.3 Context-based Table Union Search
From SANTOS, we see that using the semantics of relationships
between columns, in addition to column semantics, improves the
effectiveness of finding unionable tables. However, SANTOS can
still falsely return unionable tables that have different table seman-
tics from the query table. For example, suppose we have a query
table listing “Years” when business officials took business trips and
“Cities” that they traveled to. A possible unionable table from the
data lake has attributes “Years” and “Cities” that species of birds
were first seen. SANTOS would return this table as unionable since
it finds similar semantics between “Year” and “City” in the two
tables. Thus, we need a solution for table union search that uses the
entire table context to better preserve the semantics of the query
table when finding unionable tables. In a newer work on table union
search called Starmie [13], we see the effectiveness of using the
entire table context when finding unionable tables.

In Starmie, we take a natural language approach in which we
use a language model to capture the table context when encoding
columns. First, we run a pre-trained language model (e.g., BERT,
RoBERTa) over the data lake tables to get column embeddings.
Considering the size and noise of data lake tables, it is difficult to
manually label training data that is needed to run language models
in a supervised manner. Hence, we use a self-supervised technique
from computer vision called Contrastive Learning [8] that allows
us to learn representations without any external labels (shown in
Figure 2). The goal of Contrastive Learning is to connect represen-
tations of unionable columns in their representation space while
separating representations of distinct columns. To create unionable
columns (positive samples), we apply an augmentation operator
that uniformly samples values from a column 𝑋 to generate a se-
mantically preserving view 𝑋aug. Possible augmentation operators
include dropping cells and taking a sample of rows. All distinct
columns (e.g., 𝑋 and 𝑌 ) make up negative samples. To encode table
context into column representations, we use multi-column table
models. We input serialized table values into a pre-trained language
model, which learns contextualized column embeddings.

When we are given a query table, we run model inference to get
column embeddings for the query table. We then use cosine simi-
larity between column embeddings to find the column unionability
score, and create a bipartite matching to find the table unionability
score. Finally, we return the top-𝑘 tables with the highest table
unionability score with the query table. In our effectiveness ex-
periments, we see that Starmie outperforms SANTOS, the current
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Figure 2: Contrastive Learning allows us to learn column
representations in a self-supervised manner.

state-of-the-art method, by 6.8% in both MAP and Recall, with a
MAP of 99.3%. Thus, by encoding the entire table context when
learning column representations, Starmie proves to be very effec-
tive in returning semantically unionable tables.

To improve the efficiency of Starmie, we use indexing over col-
umn (attribute) embeddings to expedite the attribute retrieval from
a data lake. A popular indexing approach that allows for approx-
imate similarity search over high-dimensional vectors is LSH in-
dex [16], a hash-based indexing approach [4, 27, 38].We also explore
a graph-based indexing approach called HNSW index [23]. When
we experiment with different data lake sizes, Starmie with LSH
index times out after the data lake exceeds 10M tables. Using HNSW,
Starmie can scale up to 50M tables with query times of 60ms.

Thus, SANTOS and Starmie both show that contextual infor-
mation of table values can be used to improve the effectiveness of
finding unionable tables.

3 TABLE RECLAMATION
From Section 2, we developed solutions to find unionable tables
to a given query table. In addition to developing solutions for ta-
ble union search, we define a new, but related, problem of Table
Reclamation, for which we propose a method called Gen-T [11].

In Table Reclamation, we are given a query table and a data lake.
From the data lake, we see if we can find a set of originating data
lake tables that, when integrated, can reproduce or reclaim a query
table as close as possible. We return to the user the reclaimed query
table and a discovered set of (originating) data lake tables that can
be combined to reproduce the query table as best as possible. This
data discovery problem allows users to verify if their query table
can be reproduced from a current data lake. More importantly, it
allows users to confirm whether all values in their query table
can be reproduced from a data lake. If there are any discrepancies
between the query table and the output reclaimed table, a user can
analyze the origins of these discrepancies.

Suppose a user has a tabular report from a news article that lists
employee demographics in Top US tech companies from 2021. How-
ever, after accessing a similar report from one of the companies,
she finds contradicting numbers. She discovers that the company’s
report includes US statistics, whereas the news article reports inter-
national numbers. Using table reclamation and her data lake, she
can see if there is a set of originating tables that, when integrated,
recreate the data in the news article. This way, she can verify all
the data in the article with tables in the data lake before using it
further in downstream tasks.

In addition to verifying news articles, a method for Table Recla-
mation can also verify tabular outputs of large language models.
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Figure 3: Gen-T Architecture: Given a query table and a data
lake,Gen-T returns a set of originating tables and a reclaimed
query table.

To do so, the method can verify that tabular data produced by a
model can be reclaimed (reproduced) using a query over tables in
the training date.

3.1 Related Work
Table Reclamation is related to the well-known problem of Data
Provenance [9] that explains where tuples in a query table come
from, along with why and how they were produced. However, in
our problem setting, we have no knowledge of the original query or
set of originating tables that first generated the query table. In fact,
we do not know if the query table can even be reproduced. Query-
by-example methods [3, 17, 33] also aim to reproduce a query table
that is assumed to be a partial table. However, we do not assume
that the query table is partial and aim to reproduce the query table
as closely as possible. Query-by-target method [35] synthesizes a
pipeline used to create a given target table from a given set of tables.
Unlike these methods, we consider more integration operators
when integrating tables to reproduce the query table, namely Select-
Project-Join-Union queries. We also aim to reclaim large tables with
thousands of tuples unlike most Query-by-example approaches.

3.2 Proposed solution for Table Reclamation
We propose a method for the problem of Table Reclamation called
Gen-T (shown in Figure 3). First, given a query table that we want
to reclaim and a data lake, we run existing table discovery methods
(e.g., Starmie) to find related tables, which we call candidate tables.
Next, we prune this set of candidate tables to only contain tables
that, when integrated, produce the query table. Instead of perform-
ing expensive integration operators to perform this pruning, we
simulate table integration by representing them as matrices and
combining matrices. To encode each candidate table as a matrix,
we encode a one if we find a value from the query table. By combin-
ing different sets of matrices, we keep track of how many values
from the query table have been reclaimed. We then find the set of
matrices that, after integration, produce a matrix made up of the
greatest number of ones. The tables with these matrix representa-
tions become our originating tables. Finally, we integrate the set of
originating tables to produce a reclaimed table whose values are as
close as possible to those in the query table.

In our experiments, we compare against the state-of-the-art
methods for query-by-target problem (Auto-Pipeline [35]), query-
by-example problem (Ver [17]), and table integration (ALITE [20]).
We also compare against a variation of ALITE, ALITE-PS, that
performs the same table operators as Gen-T.

In our effectiveness experiments, Gen-T outperforms the best-
performing baseline ALITE-PS by 16% in recall and by 56% in pre-
cision on a large, real data lake with 11K tables. Gen-T is effective
even when we scale up to a large, real data lake that contains up to
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15K tables. Gen-T performs 5X faster than the next-fastest baseline,
ALITE-PS, on a data lake that has an average of 1M rows, achieving
an average query time of 76 sec.

4 FUTURE RESEARCH
We have explored some interesting table discovery problems and
presented solutions for table union search and table reclamation. In
future work, we would like to help users make better use of table
discovery methods by incorporating users’ tasks and intent into the
table retrieval process. In addition, with the rise of generative AI
and large language models, there is a need to verify their outputs
before users use them in downstream tasks [31]. Using our method
for table reclamation, we can verify their outputs and measure the
fairness of data during the validation process.

4.1 Incorporate user intent
While there has been work on incorporating user intent in table
discovery methods [24, 28], an active exploration of tables returned
by table discovery techniques is still understudied. For example,
after SANTOS or Starmie returns the top-k unionable tables, users
can use the results to refine their query table, or annotate the query
columns that they want the returned unionable tables to also have.
Users can also provide feedback on the results, indicating what kind
of unionable tables they are looking for and why certain results are
more desirable than others. Thus, users can benefit from a system
that allows them to actively explore their results and recursively
returns tabular results until users get the data that they need for
their downstream tasks.

4.2 Verifying Generative AI Tabular Results
Gen-T is effective in solving the problem of Table Reclamation and
verifying if tables in a data lake can support the facts in a query
table. In future work, we would like to see howwell Gen-T performs
on downstream tasks, such as verifying tabular outputs of large
language models. We can use Gen-T to find the training data that
the model may have used to create their tabular result, and see
what data in the tabular result cannot be reclaimed. For data that is
not reproducible, we can use the training data to correct potential
errors in the data.

Unlike existing work on using large language models for data
preprocessing tasks like error correction and data imputation [36],
we want to see if tabular outputs of large language models can be
verified with the model’s training data. This way, we can improve
the model’s interpretability by explaining how the model derived
its output. Adopting ideas from data provenance [9], we can see
what tuples from training data witness the model’s output, how
the model produced its output, and where in the training data the
model drew from to produce its output.

4.3 Data Cleaning using Data lakes
In future work, I would like to incorporate some measures of ac-
curacy into dataset discovery methods. For example, we can take
our method for table reclamation, Gen-T, and assess if a query ta-
ble and its originating tables are incomplete or out-of-date. While
there has been work on data cleaning [18], methods for error cor-
rection [10, 22, 25] and data imputation [5] have mainly relied on

external sources such as knowledge bases and models. To the best
of my knowledge, there has yet to be work on using data from
data lakes to fill in incomplete data or correct erroneous data. In
addition, future research on discovering versions of tables can help
update out-of-date data by discovering the most up-to-date version
of table values.

We can also measure fairness of data in a query table and origi-
nating tables. For example, we can examine if any column from a
query table exhibits social biases like gender or racial biases, such
as in salary reporting. If a query table has any social bias, we can
find the data from originating tables that contributed to the bias in
the query table. If no originating table exhibits the same bias, we
can debias the query table using originating tables. We can also use
originating tables to uncover confounding variables that potentially
explain the query table’s biases, or look for different versions of
the originating tables that do not exhibit this bias. In addition, we
can see if tables have biases due to unfair data availabilities, in
which case we can search the data lake to fill in missing data for
underrepresented groups. If data for underrepresented groups are
inaccurate, we can verify unfair information with trusted sources.
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