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ABSTRACT
Jupyter Notebooks are widely spread in modern data science envi-
ronments. They allow data professionals to create models, analyze
data, and build data pipelines. With an increasing focus on research
areas such as explainability and fairness in machine learning, there
is a need to understand the relationship between the data and the
model in ad-hoc project setups. This doctoral research aims to au-
tomate the process of extracting pipelines from Jupyter Notebooks
and deriving data lineage from those pipelines without executing
the notebook. The goal is to develop a set of tools that identify all
datasets, transformations, models, and columns that serve model
training inside a notebook without the need for human intervention
or execution of these pipelines.
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1 INTRODUCTION
With the increasing adoption of artificial intelligence use cases in
highly regulated sectors, such as financial or medical institutions,
and the AI Act [7] of the European Union, there is a growing focus
on the research areas of explainability, fairness, and interpretability
in machine learning [1, 10, 22]. Understanding decision-making
in models requires a deeper comprehension of the relationship be-
tween the data, the transformations it undergoes until it is used for
model training and finally the model itself [13, 19]. For example,
if the transformations result in bias within the training data, the
resulting model will reflect this bias. Further, data transformations
can induce data leakage [23], e.g. by splitting the dataset and ap-
plying different transformations to the training and test datasets,
respectively. Data lineage is essential in understanding such rela-
tionships. Furthermore, the identification of transformation opera-
tions on datasets and their respective relationship to the model can
support the reuse of existing pipelines [15, 28] and data scientists
during data and model engineering [15, 17, 26, 28]. Namaki et al.
find that 82% of their participants consider data lineage tracking
useful for deploying and bringing models to production[19]. Yet,
current systems for extracting pipelines are limited to a set of prese-
lected libraries or knowledge bases [13, 15, 19, 21, 28]. Furthermore,
many systems require notebooks to be executed to obtain data
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flow graphs, which is intractable in an environment with many
notebooks because executing each notebook individually demands
significant computational resources and time. These issues lead in
practice to manual or semi-automatic documentation of data lin-
eage by the data scientist. Further, semi-automatic tools are often
unable to store experiment specific data. Therefore, the goal of this
doctoral research is to develop pipeline extraction techniques for
computational notebooks that overcome these limitations to enable
a flexible approach that can easily incorporate new libraries and
APIs as part of potential pipelines. Further, we aim to deduce data
lineage from pipeline embeddings and to automatically generate
new notebooks without the requirement to alter or execute the code.
To extract pipelines in such a flexible way, we need a numerical
representation of code and data that allows us to detect datasets
and data flow between variables. To this end, I aim to answer the
following research questions (RQs):
RQ1:How can computational notebooks be embedded into a vector
space to encode code structure, and later co-embed data to represent
pipeline structures and data transformations?
RQ2: How can pipeline information be extracted from computa-
tional notebooks based on code structure and method names with-
out being limited to a closed set of libraries or relying on external
knowledge bases?
RQ3: How can computational notebooks be automatically gener-
ated to create pipelines, based on previously encoded pipelines,
using a dataset as input without human supervision?

2 RELATEDWORK
This work is related to lines of research on data lineage, pipeline
generation, representation learning.

2.1 Data Lineage
Data lineage or provenance refers to the process of tracking the
origin, transformations, and final destination of datasets [14]. Lin-
eage can be classified into two subcategories: The first category
concerns the origin of datasets for a given output, known as where-
lineage [5]. The second involves identifying the transformations
applied to an input to produce specific outputs, called how-lineage.
Both subcategories can be categorized further into schema- and
instance-level. Schema-level lineage concentrates on identifying the
datasets required to generate a given output, whereas instance-level
lineage focuses on the individual tuples needed for the output [4].
This research will primarily explore schema-level lineage, aiming
to find both where- and how-lineage of datasets in Jupyter Note-
books. Additionally, instance-level lineage could be deduced from
the results of the system that will be created, provided the input
datasets are available. Ikeda and Widom characterize the problem
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of lineage as having 𝑘 input datasets 𝐼1, . . . , 𝐼𝑘 that are fed into a
directed acyclic graph of 𝑛 transformations 𝑇1, . . . ,𝑇𝑛 , to produce
𝑚 output datasets 𝑂1, . . . ,𝑂𝑚 [14]. However, this framework does
not adequately address the challenges this research aims to tackle.
For purposes of model debugging, fairness and compliance, it is
crucial to document the datasets fed into a model and the model
itself.

2.2 Pipeline Extraction
Pipeline extraction is often referred to as data lineage identifica-
tion within the scope of computational notebooks in the litera-
ture [13, 19, 28]. Nevertheless, most of the papers do pipeline extrac-
tion and deduce the data lineage afterward. Namaki et al. propose
Vamsa, a system for deriving data lineage in Jupyter Notebooks
with pipeline extraction. They analyze abstract syntax trees (ASTs)
and workflow graphs and map concepts to a knowledge base for
extracting and annotating pipelines [19]. They describe the lineage
problem as identifying all triples ⟨𝑀,𝐷,𝐶⟩ within a Jupyter Note-
book, where𝑀 represents the model in the notebook,𝐷 denotes the
datasets used for training these models, and𝐶 refers to the columns
utilized for training. Yet, this definition falls short by ignoring all
transformations (e.g. merging of datasets, normalization, or impu-
tation) on a dataset, which are essential for debugging models and
compliance. Additionally, their system depends on the extent of
which the knowledge base contains information about libraries and
library versions. Without having a specific data science library (e.g.
pandas or scikit-learn) or library version available in the knowl-
edge base, the system is unable to annotate the workflow graph
and falls short in extracting the pipeline. This is problematic be-
cause libraries frequently change their APIs and new libraries are
constantly emerging. Zhang and Ives use data lineage to recom-
mend pipelines or related tables using data lakes while working
in a notebook environment [28]. The authors present various ta-
ble relatedness metrics, one of which is based on shared lineage.
The system constructs a variable dependency graph 𝐺 = (𝑉 , 𝐸, 𝐹 )
using static code analysis to represent an extracted pipeline. Here,
𝑉 represents all variables in the notebook, 𝐹 the set of all func-
tions applied to a variable in 𝑉 , and 𝐸 the dependency between
two variables via a function in 𝐹 . Afterward, a provenance graph
𝑃𝐺 (𝑣) is generated for every variable in the notebook that contains
a dataframe. Although this addresses the problem of extraction and
lineage, one would need to execute the entire Jupyter Notebook
to determine which variable contains a dataframe. Furthermore,
the authors’ implementation is limited to pandas. Various other
systems use similar approaches in extracting pipelines and data
lineage compared to the preceding systems [13, 15, 21]. However,
the problem of limiting the implementation to specific libraries and
also to internal states of those libraries remains.

2.3 Pipeline Generation
Pipeline generation is closely related to the concept of extracting
lineage information. Instead of understanding what happens within
data science pipelines, the generation of pipelines focuses on creat-
ing them. For example, Mustafa et al. use a limited set of lineage
information to generate reproducible pipeline code with the aid of
user-defined metadata [18]. However, the limited set of operations

constrains the system. Dorian is another system for a human-in-the-
loop pipeline generation [20]. It uses previously executed pipelines,
user queries, and a data science task to generate pipelines. Yan and
He propose a system for recommending data preparation steps [25].
Their system uses a dataset of 4 million notebooks and various
heuristics to either predict the next data preparation step based on
all previous user-defined data preparation steps, or to configure a
user-defined data preparation step. Both systems require a user to
define either some steps of the pipeline themselves or to execute a
great amount of pipelines [20, 25].

2.4 Representation Learning
To encode the notebook and its cells into a vector space, we rely
on representation learning. Alon et al. proposed code2vec [3] and
code2seq [2] to encode code snippets in the form of ASTs with a
path-based attention model into a vector space. Their methods are
not directly applicable to Jupyter Notebooks because the structure
of a notebook is different from the structure of a code file. Especially
the heavy use of library methods in notebooks and the resulting
flat AST makes it difficult to encode the structure of a notebook
solely based on its AST. Sui et al. add the concept of data flow in
their flow2vec model to encode the value flow and reachability
between variables [24]. However, flow2vec is also ignoring seman-
tic information (e.g. standardized tokens of data science libraries).
Feng et al. proposed CodeBERT [8] to leverage transformer-based
architectures for learning bidirectional representations of source
code. CodeBERT uses a tokenized form of the code snippet but
ignores the information that can be extracted from the AST. Guo et
al. propose GraphCodeBERT [11], a pre-trained model that is lever-
aging both the code snippet in a tokenized form and the data flow
between variables. However, only encoding the data flow misses
important semantic information like method names. Further, dif-
ferent lines of work try to pre-train or fine-tune large language
models to solve table tasks [16, 27]. Extending these methods to
code tasks can enable an embedding or model to directly encode
transformations.

3 METHODOLOGY
This section introduces the fundamental problems I tackle in my
thesis, explores potential solutions, and discusses methods for eval-
uating them.

3.1 Problem Definition
To support pipeline reusability, debugging, and compliance, through
lineage and pipeline extraction, I propose a library-flexible method
for extracting pipelines from Jupyter Notebooks without requiring
notebook execution. The problem I aim to solve is the automatic
identification and extraction of pipeline components within note-
books to derive data lineage and generate new notebooks. Specifi-
cally, I will extend Namaki et al.’s problem definition of data lineage
in notebooks by including transformations that can be applied to
the set of datasets 𝐷 . Therefore, given a set of Jupyter Notebooks
𝑁 , the overall objective is to identify all tuples ⟨𝑀,𝐷,𝑇 ,𝐶⟩ within
those notebooks. These tuples are a definition of extracted pipelines
and can be used to track the lineage in the notebook. Here,𝑀 in-
cludes one or more models trained in a notebook 𝑛 ∈ 𝑁 .𝑀 can also



Figure 1: Solution overview for research questions (RQs) 1-3

be an empty set in the case that no model is trained in the notebook.
𝐷 consists of one or more datasets used in the notebook 𝑛. The
datasets are used to prepare or enrich data with transformations
𝑇 . Consequently, transformations 𝑇 are linked specifically to their
datasets, hence represented as ⟨𝑡, 𝑑⟩ where 𝑑 ∈ 𝐷 . The training
columns 𝐶 depend on both the model and the dataset, and are thus
defined as ⟨𝑐,𝑚,𝑑⟩ where 𝑐 ∈ 𝐶 ,𝑚 ∈ 𝑀 , and 𝑑 ⊆ 𝐷 . Every model
in 𝑀 can use a subset of columns in a dataset 𝑑 . This set is also
allowed to be empty in case no model is trained. To obtain the
tuples without executing the notebook, it is necessary to encode
the notebook and its cells into a vector space to detect patterns
in the notebooks. Thus, another goal is to create an embedding
function 𝑓 (𝐶) that maps a cell 𝐶 to a fixed-sized vector 𝑣 ∈ R𝑛 ,
where 𝑣 encodes both the structure and the semantic information
of the code snippet.

3.2 Solution Approach
This subsection aims to introduce the solution approach of this
work and its three main components: pipeline extraction, notebook
embedding, and pipeline generation.

3.2.1 Pipeline Extraction (RQ2). Extracting pipelines presents the
challenges of identifying the dataset, recording complex transfor-
mations, and ensuring the scalability of the approach. The main
challenge in solving the problem of identifying and documenting
all tuples ⟨𝑀,𝐷,𝑇 ,𝐶⟩ is detecting the dataset. 7 Without limiting
the implementation to a specific library or knowledge base, the
system must infer this information based on the structure of the

notebook and semantic information, such as method names. 6
Theoretically, each variable defined in the notebook can contain a
dataset. Further, datasets can be loaded in various ways, e.g. using
libraries like pandas or via low-level Python APIs such as open
(filename.csv, ‘r‘). To address the problem of generalizing across
arbitrary libraries and versions, the envisioned system will use the
embedding that utilizes the code (as language feature), extracted
ASTs, and data flow graphs. Figure 1 displays this workflow (RQ1
and RQ2). This work will evaluate a set of graph-based and nat-
ural language processing tools suchs as graph edit distance and
fine-tuned language models for this task. Once the datasets are
located within the notebook, the system can leverage static code
analysis methods to identify the remaining sets 𝑀 , 𝑇 , and 𝐶 . Fol-
lowing the data flow between variables enables the recording of
complex transformations. 7 By analyzing ASTs and code features,
our approach is also applicable to custom scripts. Another problem
is the scalability of the approach. While static analysis is fast, using
a model the size of a large language model to encode cells in a large
number of notebooks requires significant computational effort and
time. Therefore, fine-tuning auto-encoding models [8, 11, 27] will
be preferred to auto-regressive models [16] because they tend to be
significantly smaller in terms of parameter size. Once the pipeline is
extracted, the system can use this information to replay the pipeline
on the dataset to extract the lineage (Figure 1 illustrates an overview
of this process in RQ2). 8 Further, previously extracted pipelines
can be stored to generate new notebooks.

3.2.2 Notebook Embedding (RQ1). Embedding a notebook and its
cells into a vector space (RQ1) has three additional challenges. 4
Unlike code2vec [3] and flow2vec [24], the embedding cannot di-
rectly rely on the AST 1 because the structure of a typical note-
book is different from the structure of a typical code file: it often
relies on heavily using library functions instead of defining these
functions within the notebook. Further, the embedding must also
encode the semantic information of the code snippet. Especially
the method names are of interest here. 2 For example, API func-
tions for loading a dataset often contain the token read as in pan-
das.read_csv, spark.read.csv, or polars.read_csv. Code embeddings
such as code2vec [3] and flow2vec [24] or pretrained models such
as CodeBert [8] and GraphCodeBert [11] ignore this information
in their representation of the code snippet and in data flow graphs.
Additionally to encoding code structure and semantic information,
the embedding will be extended in a second step to also include
datasets. 3 Adding data into the embedding enables a connection
between the code, which includes the transformations on a dataset,
and the data itself. This approach directly encodes instance-level
data lineage. 5 Both embeddings can employ a fine-tuning strat-
egy on an auto-encoding model architecture to leverage already
encoded knowledge [8, 27]. To include code and data into one fine-
tuned model, we will develop a novel approach that will leverage
tasks that includes code, tabular data, and transformations.

3.2.3 Pipeline Generation (RQ3). To solve the problem of pipeline
generation, a search and ranking algorithm will be developed to
get the most suitable pipeline given a dataset. 9 The pipeline
recommendation will be based on dataset similarity. 10 Dataset
similarity can be measured with table-relatedness metrics such as



tuple overlap and n-gram similarity between cells. After finding the
most suitable pipeline, the system will adjust the pipeline to achieve
a user-defined goal, e.g. to minimize the runtime or maximize a
metric like F1. This can be done by using reinforcement learning
(RL) methods that adjust the pipeline to achieve the goal. 11

3.3 Evaluation
Next we will lay out our ideas on how to evaluate the proposed
approach and framework.

3.3.1 Datasets. There is currently no dataset for data lineage and
pipeline extraction. Code4ML contains 8K labelled cells and 20K
Kaggle notebooks and is tailored to pipeline generation. However,
it lacks non-model-training pipelines [6]. Therefore, I will create a
new dataset for evaluating data lineage extraction systems. Data
generators, curated datasets from Kaggle, and the augmentation of
these will aid in generating such a dataset.

3.3.2 Assumptions and Exclusions. This work pragmatically fol-
lows a set of assumptions to obtain a feasible scope for our solution.
We focus on Jupyter Notebooks with code written in Python. Only
10.8% of notebooks contained a different language than Python in
a 2020 study by JetBrains [12]. Another important assumption is
the order of the cells in a Jupyter Notebook. Notebook cells can be
executed in an arbitrary order, but not every sequence of executions
will work or make sense. Thus, we assume that each notebook is
executable from top to bottom. Furthermore, we assume that every
notebook can be executed without throwing exceptions.

3.3.3 Baselines. The baseline for the pipeline and lineage extrac-
tion will be Vamsa, as it is the only system specifically designed for
extracting pipelines and lineage without executing the code [19].
Using the dataset created within this doctoral research, Vamsa and
the envisioned system will be evaluated based on the metrics of
precision, recall, and F1 score for each parameter of a pipeline
⟨𝑀,𝐷,𝑇 ,𝐶⟩. Additional to enabling the envisioned systems, the
benefits of the notebook embedding can be tested against Auto-
Suggest [25] by using the embedding and search to create a stan-
dalone system or by replacing the heuristic part of Auto-Suggest.
Evaluation of the notebook generation system will be done through
the quality of the resulting pipeline on three typical data science
tasks: supervised classification, unsupervised clustering, and regres-
sion. Auto-Suggest [25] and AutoML tools such as Auto-Sklearn [9]
will be the baseline for this experiment.

4 CONCLUSION
This proposal outlines the research plan for my PhD thesis on
developing a notebook embedding that captures relationships be-
tween code structure, semantic information, and transformations
on datasets. First, the notebook embedding will encode cells, code
structure, and method names into a common vector space. We
further expand this embedding to co-embed data to also retain
transformation information. With the help of this embedding, we
develop approaches for pipeline extraction and generation as well
as lineage tracking.
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