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Motivation of ML4DB

O Machine Learning gets more practical. And “.

4

empirical databases meet bottlenecks.

machine learning
A

N

unsupervised supervised reinforcement

O Various ML models are available. It is g e e
C ¥

N 4
SER:
N

challenging to select proper ML models.

8% ~
N
g

O Rigorous requirements for ML in databases, Q/ _>\°
e.d., performance, robustness, interpretable. \c/
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Database Problems

Machine Learning for Databases
0 Database Core

Database Configuration

Knob Tuner View Advisor Index Advisor

O Query Rewrite

Database Partition

O Cost/Cardinality Estimation

Query Optimization
Cardinality Cost Plan
D JO| Nn Order Selection Estimator Estimator Enumerator

End-to-End Learned Optimizer

Database Design

D IndeXN iew AdVlS or Learned Indexes Learned KV Storage
. Transaction Prediction Transaction Scheduling
O Knob Tuning
. g Database Diagnosis Database Securit
O Workload Prediction . .
Performance System Data Access SQL
Prediction Diagnosis Discovery Control Injection

Autonomous Databases Systems

Paloton SegaDB openGauss

[0 Database Configuration



Overview of ML4DB

Problom

Offline NP Optimize an NP-hard Knob Tuning
Obtimizati problem with large search Index/View Selection

PHmization Space Partition-key Selection

Online NP Optimize an NP-hard Query rewrite

problem with large search

imizati . Plan E ti
Optimization space (instant feedback) an =nimeraton
Determine the relationship Cost/Cardinality Estimation
Regression between one dependent  |pgex/view Benefit Estimation
variable and a series of
other independent variables Latency Estimation
o Forecast the likelihood of a Trend Forecast
Prediction

particular outcome Workload Prediction & Scheduling
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Overview of NP-hard Problems

Search | Training

Gradient

based Local search Small Huge

Continuous space

Offline Optimization

Deep Learning (DL) Large Huge

(knob tuning, view approximation
selec’slc.)n, Index selef:tlon, Meta Learning Sha;\jreI con_nrﬂton Various g
partition-key selection) modéel weights spaces
Reinforcement .
Learning (RL) Multi-step search Large -
: A EPY MCTS(Monte Carl :
Online Optimization Tree S(ea::h‘)iDaLr ° Multi-step search Large Huge
(query rewrite, plan
enumeration) Multi-armed Multi-step search Small Small
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Overview of Regression Problems

Feature Training

Classic ML (e.g., tree-
ensemble, gaussian,
autoregressive)

Sum-Product Network

Deep Learning

Graph Embedding

VLDB'21 Tutorial

cost estimation, Small
view/index benefit
estimation

cost estimation Small
cost estimation, Large
benefit estimation,

latency estimation

benefit estimation, Large

latency estimation

Continuous Huge

Discrete Small

Continuous Huge

Continuous Huge



Overview of Prediction Problems

Clustering Algorithm Trend High accuracy Huge
Forecast

Reinforcement Learning Workload High --
Scheduling performance

VLDB'21 Tutorial



Optimizing NP-hard Problems

O Offline Optimization vs Online Optimization
» Model Selection

« E.g., Offline is model-free and online is model-based
» Overhead

« Online requires instant feedback and offline is insensitive
» Performance

* Generally offline has better performance

action pre-train ... action
Agent Environment Agent Environment
\_/ "”u,. ‘,‘4

train
VLDB’21 Tutorial Offline Optimization Online Optimization



Offline Optimizing NP-hard Problems

VLDB'21 Tutorial



Offline Optimization for Knob Tuning

1 Motivation:

0 DBMSs have different optimal knob settings, which significantly

affect the query performance and resource utilization

0 DBMSs have numerous runtime metrics. Classic ML models

cannot efficiently select knobs based on all the metrics

O DBMSs have numerous system knobs to choose from, which

makes it harder to find optimal knobs

VLDB'21 Tutorial 10



Offline Optimization for Knob Tuning

0 Problem Definition

Consider a database with different workloads, the target is to find the
optimal knob settings, i.e., satisfying SLA or resource requirements
under several constraints (e.g., over 5% throughput improvement).

knobs knobs

agent @

Knob Tuning
> @ Value?

= s B v

ISHRCHERCHERLCY
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Offline Optimization for Knob Tuning

O Existing Works
(1) Gradient-based Methods

Dana et al. SIGMOD 2017], [Kunjir et al. SIGMOD 2020]
Cereda et al. VLDB 2021]

(2) Deep Learning Method [Tan et al. VLDB 2019]
(3) Meta Learning Method [Zhang et al. SIGMOD 2021]

(4) Deep Reinforcement Learning Methods
[Zhang et al. SIGMOD 2019], [Li et al. VLDB 2019]

VLDB'21 Tutorial
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(1) Gradient-based Method for Database Tuning

0 Feature Extraction
« Characterize Workload Behaviors -
« Extract and Prune Runtime Metrics (e.g., #-page- y
read, #-page-write) P55 007 0a2 00
 lIdentify Important Knobs -
« Estimate the knob correlations by minimizing the square errors

0 Model Construction
« Search Optimial Knobs based on the Runtime Metrics -

« Gaussian Process: (1) Approximate the knob-performance relations
with numerous historical data; (2) Recommend knobs based on the
most similar historical workload

Dana Van Aken, Andrew Pavlo, et al. Automatic Database Management System Tuning Trough
VLDB’21 Tutorial Large-scale Machine Learning. In SIGMOD, 2017.
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(1) Gradient-based Method for Spark Tuning

[0 Feature Extraction

« Spark tuning considers knobs at different levels 2>
« Empirically estimate execution profiles at resource/APP/VM levels

Eam— x. Tested knob setting
E o Memorv Efficiency: x L M; + m¢ M;: Code overhead value
-g., Memory EHiciency. q: min(mx mX) m.. Required cach storage
D25 m,: GC settings

[0 Model Construction

« Gaussian Process is black-box and requires much training data 2>

 Guided Gaussian Process: (1) Enhance tuning with the estimated
execution profiles as inputs; (2) Use GP to fit existing tuning data

Mayuresh Kunjir, Shivnath Babu. Black or White? How to Develop an AutoTuner for Memory-
VLDB’21 Tutorial based Analytics. SIGMOD 2020. 14



(2) Deep Learning for Buffer Tuning

[0 Feature Extraction

« Buffer Pool is critical resource in cloud databases 2>
« Only tune the buffer_pool_size knob for higher resource utilization

 Many Metrics affect the response time besides buffer_pool_size -
« Database metrics: logical-read, io-read, QPS, CPU usage, historical RT

[0 Model Construction
« Tune buffer size that maximizes resource utilization under SLAs >

* (1) Select buffer sizes for databases with similar database metrics; (2)
Design a neural network to estimate SLA as tuning feedback

J. Tan, T. Zhang, F. Li, et al. iBTune: Individualized Buffer Tuning for Large-Scale Cloud Databases.
VLDB’21 Tutorial VLDB 2019. 15



(3) Meta Learning for Knob Tuning

[0 Feature Extraction

« Characterize the common features of workloads -
« Meta-Features: Reserved words in the SQLs

» Cluster historical workloads (random forest) and
learn a base learner (meta-features as inputs) for t e fy

each workload cluster »‘ e
0 Model Construction —
Meta-Learner 2
w;fj

 Boost tuning for new instances - | f=

Performance —

* (1) Learn meta-learner based on the weighted sum of the base learners;
(2) Fine-tune the meta-learner on the new instance;
(3) Recommend promising knobs

Xinyi Zhang, Hong Wu, and et al. ResTune: Resource Oriented Tuning Boosted by Meta-Learning for Cloud
VLDB’21 Tutorial Databases. SIGMOD, 2021. 16




(4) Reinforcement-learning for Knob Tuning

O Challenge:

[0 Basic ML models tune a small part of knobs. It is challenging

to support more knobs with complex correlations.

O High-quality training samples are hard to obtain, especially in

real-world scenarios

VLDB'21 Tutorial

17



(4) Reinforcement-learning for Knob Tuning

O Feature Extraction
 Map knob tuning into an RL problem -

<Agent>

CDBTune
Agent The tuning system e Network
Environment DB instance Throughput

Latency
State Internal metrics SLAs
Action>
Reward <Reward> <
Performance change Y o

Action Knob configuration Change
Policy Deep neural network

xact_commit — effective_cache_size

blk reads/hit . checkpoint timeout
Met
uple_fetche CHICS o / I0_concurrency

conflicts %’
N

. Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System
VLDB’21 Tutorial Using Deep Reinforcement Learning. SIGMOD 2019.

18



(4) Reinforcement-learning for Knob Tuning

[0 Model Construction

 Many Continuous system metrics and knobs -

* Value-based method (DQN) Discrete Action X
— Replace the Q-table with a neural network

— Input: state metrics; Output: Q-values for all the actions

* Policy-based method (DDPG) Continuous State/Action v
— (actor) Parameterized policy function: a; = p(s¢|6#)

_ (critic) Score specific action and state: Q(st,a:[0%)

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li et al. An End-to-End Automatic Cloud Database Tuning System
VLDB’21 Tutorial Using Deep Reinforcement Learning. SIGMOD 2019. 19



Summarization of Knob Tuning

Optimizastion Loss/Reward Training | Adaptive
Target Function Data (workload)

Gradient-based
[SIGMOD 2017]
[SIGMOD 2020]

Deep Learning
[VLDB 2019]

Meta Learning
[SIGMOD 2021]

Deep
Reinforcement

Learning
[SIGMOD 2019]
[VLDB 2019]

VLDB'21 Tutorial

The weighting coefficients are equal
Performance to the mean estimates of the target  High --
values

l(e)I(e >0
Resource L3 ey ) = { /\(l()e)(l(e_< >0)

> High -
Utilization I(e): mean square error; A: Control <
the impact of overestimating
Resource The loss is the number of misranked High v
Utilization pairs the model predicted 9
{ (14 Ars0)® = DIL+ ArsroilArsg > 0 (RI':%W v
- 1= Arso)® = D1 = Arspmi]Arp < O 0es - i
Performance ( oS = i ot e | (P IERE
r: the reward; AT ;4/ AT . the prepared 2 duery
performance change data) model)
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Take-aways of Knob Tuning

O Gradient-based method reduces the tuning complexity by filtering out
unimporant features. However, different scenarios may have different key
features, which makes it hard to train a generalizable tuning model.

O Deep learning method considers both query performance and resource
utilization. And they work better for resource-sensitive scenarios.

O Reinforcement learning methods take longest training time, e.g., hours,
from scratch. However, it only takes minutes to tune the database after well
trained and gains relatively good performance.

O Learning based methods may recommend bad settings when migrated to
a new workload. Hence, it is vital to validate the tuning performance.

0 Open problems:
» Predict workload execution performance for knob tuning
» One tuning model fits multiple databases

» Utilize empirical knowledge
VLDB'21 Tutorial 21



Offline Optimization for View Selection

1 Motivation:

0 Materialized Views (MVs) optimize queries

- Share common subqueries

O Space-for-time trade-off principle
« Materialize hot data (MVs) within limited space
 How to estimate the MV utilities
O The number of potential MVs grows exponentially

» Greedy/Genetic/other-heuristics work bad
VLDB’21 Tutorial
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Offline Optimization for View Selection

O Problem Definition
Given a workload Q and a space budget, select optimal subqueries to

materialize (MVs), including (i) candidate MV generation; (ii) MV Selection.

Queries

VLDB'21 Tutorial
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Views

]

- View Selection
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Views

=

MV?

MV?

MV?

MV?
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Offline Optimization for View Selection

O Two sub-problems
® Benefit estimation

B Estimate the benefit of materializing a view

€ Cost(q) - Cost(q,v), q is a query and v is a view

® View selection
® Select views from a large number of possible

combinations to maximize the benefit within a budget

VLDB'21 Tutorial
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Offline Optimization for View Selection

[0 Existing Works

(1) Hybrid View Selection
[Ahmed et al. VLDB 2020]

(2) DRL for View Selection
[Yuan et al. ICDE 2020]

(3) Encoder-Decoder for View Benefit Estimation
[Han et al. ICDE 2021]

VLDB'21 Tutorial
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DRL for View Selection

0 Feature Extraction
 Numerous common subqueries among workload queries -
« Cluster equivalent queries and select the least overhead ones

as the candidate; <Agent>

RLView Ecia
O Model Construction T 2Rieet o ain
» Numerous combinations of [ =Reward AN S
candidate subqueries - ST PrE—

* (1) Solve MV Selection with
Q-learning: (2) Estimate the
MV utility with a deep

Z = {zj}:zjis a 0/1 variable indicating whether to materialize the subquery s,
neu ral netwo rk Y = {yij }:yi;is a 0/1 variable indicating whether to use the view v, for the query g;

H. Yuan, G. Li, L. Feng, and et al. Automatic view generation with deep learning and
VLDB'21 Tutorial reinforcement learning. In ICDE, 2020. 26



Offline Optimization for Index Selection

1 Motivation:

[ Indexes are essential for efficient execution

» SELECT c_discount from bmsql customer where ¢ w_id = 10;

» CREATE INDEX on bmsqgl_customer(c_w_id);

1 Select from numerous indexable columns

» Columns have different access frequencies, data distribution

O Redundant indexes may cause negative effects

» Increase maintenance costs for update/delete operations

VLDB'21 Tutorial

27



Offline Optimization for Index Selection

0 Problem Definition

Given a workload and constraints (e.g., disk limit), find an index
set, such that the performance is optimal with the constraint.

Queries Candidate Indexes Indexes

% h Create?
ES
£
VLDB’21 Tutorial El

Index Selection

| %

h Create?

e oo
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Offline Optimization for Index Selection

O Two sub-problems
® Benefit estimation

B Estimate the benefit of creating an index

& Cost(q) - Cost(q, index), q is a query

® Index selection
® Select indexes from a large number of possible

combinations to maximize the benefit within a budget

VLDB'21 Tutorial
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DRL for Index Selection

O Feature Extraction
Rule 1: Construct all single-attribute indexes by using the attributes
> Map candidate indexes  nJ, EQ, RANGE.
: . Rule 2: When the attributes in O come from the same table, generate
with empirical rules

the index by using all attributes in 0.
Rule 3: If table a joins table b with multiple attributes, construct

indexes bv using all ioin attributes.

[0 Model Construction

» Map the index selection problem into a reinforcement learning model

_ o large space
State: Information of current built indexes > DQN Model
i . . discrete space ode
Action: Choose an index to build P >
Reward: Cost reduction ratio after building the index
VLDB’21 Tutorial H. Lan, Z. Bao, Y. Peng. An Index Advisor Using Deep Reinforcement Learning. CIKM, 2020. 30



Take-aways of View/Index Selection

[0 Learned selection is more robust than heuristics

[0 Learned selection works well in online service, but takes
much time for model training (cold start)

O Query encoding models need to be trained periodically
when data update

0 Open problems:
» Benefit prediction for future workload
» Cost for future updates

» Support updates/eviction

VLDB'21 Tutorial
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Offline Optimization for Database Partition

1 Motivation:

» A vital component in distributed database

» Place partitions on different nodes to speedup queries

« Trade-off between data balance & access frequency

» Database partition problem is NP-hard

« Combinatorial problem: 61 TPC-H columns, 145 query

relations, 2.3 x 1018 candidate combinations

VLDB'21 Tutorial

32



Offline Optimization for Database Partition

0 Problem Definition

Raw

Tables
meitem

VLDB'21 Tutorial

2 13
Distbute by HASH

c_custkey ¢_nationkey

1
2
3
4

(c_custkey)

4 4
e > Node 0 lineitem_p_00
64 15

13

4

1 15
1 orderkey 1 suppkey 3 :
197 15 . Node 1
69 13 197 15
161 1 69 13
64 15 161 1

SELECT * FROM customer,lineitem WHERE c_nationkey = |_suppkey and c¢_nationkey < 4;

33



Heuristic Method for Offline Co-Partition

O Select from foreign-key relations between tables 2>
> 1 Data-locality: Maximum spanning tree for each query

Schema Graph G4 Maximum Spanning Partitioning
(with weights): |:> Tree MAST: |:> Configuration:
1.5m
PREF
(O=—() e? (=—(L) =
PREF PREF
G e on O G e on L
25 25
PREF
m on C Q
» | Data-redundancy: Enumerate selected partitions with DP
Maxi Spanni Merged MAST Merged MAST
T?:::ms;?gn;ng |:> (E;’i‘: Phase):s |:> (S::cgazd Phase;

150k 1.5m PREF PREF PREF PREF

Q, O PREF S £
on_S o kI‘lD ‘S
10k = PREF  PREF
o
Q; Q3®'_@ 3 l  on S on_N =k
T =
25 a & Q.4
Q, Q, + g
By} Q.
PREF sp o Q
on N =
a

Erfan Zamanian, Carsten Binnig, Abdallah Salama. Locality-aware Partitioning in Parallel
VLDB’21 Tutorial Database Systems. SIGMOD 2015.



Hybrid Methods for Partition-Key Selection

O Combine exact and heuristic algorithms to find good
partition strategies

* The partitioning performance is affected by the join queries 2

- Build a weighted undirected graph, where the nodes are tables and
edges are join relations.

« Key Selection on the graph is a maximum weight matching problem -

* Provide both exact (i.e., each table uses a column, and turn into a
integer programming problem) and heuristic (i.e., select the table
columns whose edge weights are maximal) algorithms; and apply the
appropriate algorithm under the time budget.

P. Parchas, et al. Fast and Effective Distribution-Key Recommendation for Amazon
VLDB’21 Tutorial Redshift. Proc. VLDB Endow, 2020. 35



DRL for Offline Partition-Key Selection

[0 Feature Extraction
« Typical OLAP Workloads contain complex and recursive queries -

« State Features: [ tables, query frequencies, foreign keys ]

Agent

[0 Model Construction

Q-leaning

« To select from enumerous Siote Action A

partition-key combinations
= Reward: minimizes the run time
and Support new querles 9 3(Q) = [fisuntm) for the workload mix

Activate/de-activate
edges between tables

- (1) Use DQN to partition or | [ =€)
replicate tables; (2) Pre-train

Select one key at a time

Environment <

a cluster of RL models.

Benjamin Hilprecht, Carsten Binnig, Uwe R6hm. Towards learning a partitioning advisor with

VLDB’21 Tutorial deep reinforcement learning. SIGMOD 2019. 36



Takeaways of Database Partition

O Learned key-selection partition outperforms heuristic partition

[0 Learned key-selection partition has much higher partition

latency for model training

0 Open Problems:

» Adaptive partition for relational databases
» Partition quality prediction

» Improve partition availability with replicates

VLDB'21 Tutorial 37



Online Optimizing NP-hard Problems

VLDB'21 Tutorial
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Online Optimization for Query Rewrite

1 Motivation:

O Many queries are poorly-written
» Terrible operations (e.g., subqueries/joins, union/union all) ;

» Looks pretty to humans, but physically inefficient (e.g., take
subqueries as temporary tables);

O Existing methods are based on heuristic rules

» Top-down order may not be optimal (e.g., remove
aggregates before pulling up subqueries)

> No evaluation of different rewrite orders

O Trade-off in SQL Rewrite
> Best Performance: Enumerate for the best rewrite order
» Minimal Latency: SQL Rewrite requires low overhead (milliseconds)

VLDB'21 Tutorial
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VLD

Online Optimization for Query Rewrite

0 Problem Definition

Given a slow query and a set of rewrite rules, apply the rewrite rules
to the query so as to gain the equivalent one with the minimal cost.

Input SQL Query
“SELECT
MAX ( DISTINCT L1 coll)
FROM lineitem L1
WHERE L1 coll = ANY
(
SELECT MAX
(C.coll ) m _key
FROM customer C,
lineitem L2 -
WHERE C.coll =L2 coll
AND  ((
C col2<2
AND C col3<2)
OR (
C col2<2
AND L2 col2>5))
GROUP BY
C.coll);”

B24-Tutorial—

Logic Query Tree

&) Aggregate Q
max(distinct(L1.col1))

__________

max(C.col1)

Join
C.col1=L2.col1

]
]
]
]
]
]
]
]
]
]
]
1
]
]
]
]
H Aggregate
]
]
]
i
]
]
]
]
]
]
]
]
]
]
]
]
]

[lineitem] [Iineitem] [customer]

Rewrite in Top Down Order

Aggregate
max((L1.col1))

Aggregate

max((L1.col1))

Performance

Planning: 0.341 ms
Execution: > 20 min

Planning: 0.172 ms
Execution: 1.941 s

f

Q2
. Filter
2 1 (C.col3<2 or
I 1 L2.col2>5)

I
57 5)|
I | ©)
g C.col2<2

40



Online Optimization for Query Rewrite

O Challenge:

» The rewrite space is large
« Exponential to the number of rewrite rules

» Search rewrite space within time constraints
* Rewrite within milliseconds;

» Estimate rewrite benefits by multiple factors

* Reduced costs after rewriting
« Future cost reduction if further rewriting the query

VLDB'21 Tutorial
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MCTS for Query Rewrite

0 Feature Extraction 0 Model Construction
* A slow query may have various * To select from enumerous
rewrite of different benefits > rewrite orders ->
* Policy Tree Model * (1) Policy Tree Search Algorithm
 Node v;: any rewritten que In(F (v
- any query Uwr) = (C(o0) + Clwn) + y\/ L aC)
* CT(v;): previous cost reduction F(vi)
« Cl(»)): subsequent cost reduction * (2) Multiple Node Selection
| MCTS for Query Rewrite |
Subsequent Cost Estimaiton Utility Update :
Query — n.>< = T‘Z"oel)ct:;:"’ll I
vV, Encoding || Rule Embedding fov)+1 V3 |
v v Vv nxh
J;>{r1>~arn}* En?ﬁjﬁng — Rule1 Selj:ctilon hO.][Df(V’)“ @ ) () ) :
dataset— 'I\Eﬂfézgf:; ~ Cost Estimation J |
I

VLDB’21 Tutorial A Learned Query Rewrite System using Monte Carlo Tree Search.



Take-aways of Query Rewrite

O Traditional query rewrite method is unaware of cost, causing
redundant or even negative rewrites

[0 Search-based rewrite works better than traditional rewrite for
complex queries

0 Rewrite benefit estimation improves the performance of simple
search based rewrite

O Open Problems
» Balance Rewrite Latency & Performance
» Adapt to different rule sets/datasets

» Design new rewrite rules
VLDB’21 Tutorial 43



Plan Enumerator

1 Motivation:

[0 Planning cost is hard to estimate

» The plan space is huge

O Traditional optimizers have some limitations
» DP gains high optimization performance, but causes great latency;

» Random picking has poor optimization ability
[0 Steer existing optimiers can gain higher performance
» Hint join orders; Hint operator types

VLDB'21 Tutorial
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Join Order Enumerator

0 Problem Definition

Given a SQL query, select the “cheapest” join ordering (according to
the cost model).

Dynamic programing

L] e ©® .‘. I
L Y oooo
® 00 ® o oooo
LI PO oo
ooca
Genetic optimizer
® o 0 o0 Cost Model
°
o0, ®
® 0o ® o
LI PR
Quick-pick

VLDB'21 Tutorial



Join Order Enumerator

[0 Method Classification

O Offline Optimization Methods.
» Characteristic: given Workload, RL based.

» Key idea: Use existing workload to train a learned optimizer, which predicts the
plan for future queries.

O Online Optimization Methods.

» Characteristic: No workload, but rely on customized Database.

> Key idea: The plan of a query can be changed during execution. The query can
switch to another better plan. It learns when the database executes the query.

VLDB'21 Tutorial
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Offline Optimization for Join Order Enumerator

O Map into RL Models (DQ, ReJOIN) [1.4] TR T Initial State

T1 a=T2a
Select *

» Agent : optimizer From T1,T2,T5,T4
. . Intermediate state

Where T1l.a=T2.a

» Action: join and T1o-T5.0 m .

» Environment: Cost model, database I
> Reward: Cost Latency Lo

» State : join order @®@

Termination State
Ei Agent l
stale reward action

S, R, A
Roaidl ;

S., | Environment J<

\.

1. Marcus R, Papaemmanouil O. Deep reinforcement learning for join order enumeration
VLDB’21 Tutorial 2- Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning 47



Feature Encoding for Join Order Enumerator

[0 Feature Extraction

The structural information of the execution plan is vital to

join order selection -

 Encode the operator relations
and metadata features of the

query

 Embed the query features with
Tree-LSTM; Decide join orders
with RL model

VLDB'21 Tutorial

Query q:

Select *

From T1,T2,T3,T4

Where T1.h>30
and T1.h < 50

R(((Ty x To) x T3,Ty),q)
(XXXIXX)

<
R(MixT)xT5,T) (@ @ @) DO @ 0

and Tl.a=TR.a
and T2b = T3.0 [@ @ @ @J [ chidsam ] F@
and Tl.c=T4.c (T, T1)(T1,T2) ... (T4,T3)(T4,T4)

(A) Query Representation for input query

R((T\ x T;) ® T3) @ R(Ty)

8 =N
g O
M = > < g @)
(22 Q Q B
X "“?‘7’€3\~i VN @ g . R(Tz.b) R(st) R(T3)
RT.b) (@ O 000 —+P— Er® I N-ary
® @
...... v => - :
oYoy Y= N
PSSR TENR RT,) R(.a RT,a AT,
A (T OO0 D)— ATy 4 W e

(B) Table and column representation (C) Join tree and join state representation

X. Yu, G. Li, and C.C. et al. Reinforcement learning with tree-Istm for join order selection. In ICDE, 2020. 48



Online Optimization for Join Order Enumerator

0 Update execution orders of tuples on the fly

« Update the plan on the fly and preserve the execution state 2>

* Tuples flows into the Eddy from input relations
(e.g9., R, S, T);

 Eddy routes tuples to corresponding operators
(the order is adaptively selected by the
operator costs);

 Eddy sends tuples to the output only when the
tuples have been handled by all the operators.

, . Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query Processing. SIGMOD, 2000.
VLDB’21 Tutorial 49



® Support online reorder with MCTS -
> Do not require pre-training

» Time Slides: 0.001s
> Learn during runtime

> Customize Database
> Switch Plan in Low Latenc

VLDB'21 Tutorial

MCTS for Join Order Enumerator

—_

Time

SELECTION EXPANSION SIMULATION BACKPROPAGATION

11/21 11/21 0
- y AN a0 - A )

) ® @ © - v @ e
0/3 ) 3/8 710} 1 0/3 ) | 3/8 ) | 7/10 0/3 3/8 0/3
@ © ¢ @ & @ @ 0 ©
/2 2':; V[ 2/3 2/4 ) i,(; (12 ) [ 2/3 \]FJ:; | _’x (176 } /2 ."'.i .2‘. 2/4
=) (23) oY @ 7>
() () () () () () () ()

Monte Carlo tree sea;ch (MCTS).

Trummer, et al Skinnerdb: Regret-bounded query evaluation via reinforcement learning. In SIGMOD, 2019.

3/8
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Join Order Enumerator

Qualit Training Adaptive Adaptive
uality Cost (workload) (DB Instance)

Traditional Methods _
[Genetic algorithms] Low Low v High
[Dynamic Programming]

Offline Optimization

Methods High High X Medium
[NEO VLDB2019]

[RTOS ICDE2020]

Online Optimization

Methods

[Eddies SIGMOD2000]
[SkinnerDB SIGMOD2019]

Medium Low v Low

VLDB'21 Tutorial



Online Optimization for Plan Hinter

O Enhance query optimization with minor changes €60l  BQ2s  mmm Postgresql
§ B PostgreSQL (no loop join)
O E.g., Activate/Deactivate loop join for different queries 2 40-
& 20- 19.7s
O Model Plan Hinter as a Multi-armed Bandit Problem g
O - 0.4s
O Model each hint set HSet; as a query optimizer R Eeery

HSet; : Q —» T

O For a query q, it aims to generate optimal plan by

selecting proper hint sets, which is dealed as a regret F Om +—>

SQL ™

D - 2
| ExecuionEngne |
: v

[ - [

[[] User provided
[ Query plan

minimization problem:

2
R = (P(B(q)(q)) —minP (Hseti(q)))

@ External component
@ Bao

VLDB’21 Tutorial Ryan Marcus et al. Bao: Making Learned Query Optimization Practical. In SIGMOD, 2021. 52



Take-aways of Plan Enumerator

O Learning based algorithm usually gives the plan with low time complexity,
especially for large queries.

O Offline learning methods use the sampled workload to pretrained the model. It
will give good plans for the incoming queries.

O A new database (updates) will lead to model retraining.

O Online-learning methods do not need previous workload and can give good
plans. But it needs the customized engine and is hard to be applied in existing
databases.

O Open Problems
» Raise the generalization performance of offline learning methods for unseen queries.
» Ensure the plan given by learned model is robust (explicable).
» Speed up the model training time, e.g. transferring previous knowledge.
» Make the model aware of the data update.
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Regression Problems
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Regression Problems

Database estimation problems can be modeled as regression
problems, which fit the high-dimension input variables into target features
(e.g., cost, utility) and estimate the value of another variable.

O Cardinality/Cost Estimation aims to estimate the cardinality of a
query and a regression model (e.g., deep learning model) can be used.

0 Index/View Benefit Estimation aims to estimate the benefit of
creating an index (or a view), and a regression model can be used to
estimate the benefit.

O Query Latency Estimation aims to estimate the execution time of a
query and a regression model can be used to estimate the performance
based on query and concurrency features.

VLDB'21 Tutorial
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Automatic Cardinality/Cost Estimation

1 Motivation:

O One of the most challenging problems in databases
» Achilles Heel of modern query optimizers

O Traditional methods for cardinality estimation
» Sampling (on base tables or joins)
» Kernel-based Methods (Gaussian Model on Samples)
» Histogram (on single column or multiple columns)

O Traditional cost models
» Data sketching/data histogram based methods
» Sampling based methods

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. How
VLDB’21 Tutorial good are query optimizers, really? In VLDB, 2015.
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Categories of Cardinality Estimation

) (T o ) (T =
PQLs SQLsg& Card ¥QLs SQLsg& Card ¥ SQLs
Query Feature Extractor Query Parser Query Parser Détaset
Predictes*& Cardinalities Predicte‘& Cardinalities ‘
Query Encoder Data Sampling Data Sampling
Query#ncoding Values/Tupled Encoding Values/TuplesjlEncoding
Query Model Data Model Data Model
+Cardinality 3 + Cardinality z * Probabilities§
Parameters Optimizer Parameters Optimizer Parameters Optimizer
(1) Supervised Query Methods (2) Supervised Data Methods (3) Unsupervised Data Methods
» Multi-set Convolutional network » Gaussian kernel » Autoregressive
» Tree-based ensemble » Uniform mixture model » Sum product network
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1 Supervised Query Methods for Cardinality Estimation

[0 Problem Definition

A regression problem: learn the mapping function between query
Q and its actual cardinality

Well-Trained
Query Model

Queries —»

Queries Cards

VLDB'21 Tutorial
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1.1 Deep Learning for Cardinality Estimation

[0 Model Construction

e Multi-set Convolutional Neural

Network
» Linear Models for different part of

SQL (table, joins, predicates)

» Pooling Varying-sized
representations (avg pooling)

» Concatenate different parts

~

Cardinality prediction w;

-
Sigmoid
Linear
RelLU
Average Linear Concatenate
output of each
over set \ J
I __—~ setmodule
\ Concat
[
Avg. pool Avg. pool Avg. pool
J/A Jiil /N
ff I” \\ F/ ll I W\ . I“ \\
( N 4 ) 4 N
RelLU RelLU RelLU
Linear Linear Linear
RelLU RelLU RelLU
Linear Linear ’ Linear
\_ _J \ J) \_ )/
Table set Tq Join set Jq Predicate set Pq

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating
correlated joins with deep learning. In CIDR, 2019.

VLDB'21 Tutorial
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1.2 Tree-Ensembling for Cardinality Estimation

[0 Model Construction

« Challenge: Traditional cost estimation methods assume column independency
» Any conjunctive query on columns C can be represented as:

(Cl <Ilbh < CQ) VAN (63 < ub1 < 64) VAN (C5 < uby < 66)

> Tree-based ensembles: pass query encoding vectors through the traversal of
multiple binary trees

2 hidden layers Input vector
Input vector

‘ “A\\:llp Output |ay€|’
\ KX /
KK

. SER) O
‘ "‘"‘/
‘ Output|aggregation
(a) Neural network with 2 hidden layers (b) Tree-based ensembles with 2 trees

A. Dutt, C. Wang, A. Nazi, S. Kandula, V. R. Narasayya, and S. Chaudhuri. Selectivity estimation
VLDB’21 Tutorial for range predicates using lightweight models. PVLDB, 2019. 60



2 Supervised Data Methods for Cardinality Estimation

0 Problem Definition

A density estimation problem: learn a joint data
distribution of each data point

i1 Supervised Model Training | Cardinality Estimation i
[ ] [ } [ }tuples[ ]
— —
/ \ R N 1 Card
. uery
(Synthgtlc) Dataset Dataset [ ]
Queries

VLDB'21 Tutorial
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2.1 Kernel-Density for Cardinality Estimation

[0 Model Construction

« Support point queries on single

tables = Query oCil_lefy w Plan )( D::ali)::e Result
> Sample rows from the table and a [ PR & J ?

I A I
. g . - . 1) transfer | ransfer 11 7) transfer
initialize the bandwidth (distance query bounds | ;"ifuma{e || query feedback
| A | 8) update i Al
from the true distribution) of the [l PR 2 cocre BB« | Graphics
kernel density model. | b S | Card
| o Py i
. : : : | s ey :
» Pick optimal bandwidth via . i w@] . [ee i e
. . compu e X 2H’ :
stochastic gradient descent. g vy NG o > (E0E) * K®
E de/r(:sc'/'(;/(es e : 7 9) update .
» Estimate the cardinality based F(s) 29Q) sp@— ouality —>IERE
. H om0 | i R
on the kernel density model. — e Partial .
results gradients
Estimator Model Update Sample Quality Tracking

M. Heimel, M. Kiefer, and V. Markl. Self-tuning, gpu-accelerated kernel density models for
VLDB’21 Tutorial multidimensional selectivity estimation. SIGMOD, 2015. 62



2.2 Mixture Model for Cardinality Estimation

g

[0 Model Construction

« Support Range Queries 2

Generates points
using
predicate ranges

\

» Sample points within each history queries.

» Generating subgroups for the points.

» Learn the weights of all the Uniformity Mixture
Models for range queries.

Predicate ranges

[ ]
S
el
1 ]
@I:IIIIE

4

o‘. .. °° .'.. °®

L) .. ';s'.
4:2 as® o
;. .%';\" .c

Workload-aware points

Creates ranges
that cover
the points

; T I
LT ]
1

(a) Case 1: Highly-overlapping query workloads

Generates points
using
predicate ranges

3

VLDB'21 Tutorial

Predicate ranges

4

e °
.

. ® &
L]

Creates ranges
that cover
the points

v

Subpopulation ranges

v

o
s

TR

Workload-aware points

Subpopulation ranges

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with

mixture models. SIGMOD 2020
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3 Unsupervised Data Methods for Cardinality Estimation

[0 Problem Definition

A regression problem: learn a probability function
for each data point

tuples BLETERTE T Card

—p

Training

er

I I

Query

Sampled Tuples
Dataset
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3.1 Autoregressive for Cardinality Estimation (single table)

[0 Model Construction

* Learn the joint probability
distribution over columns
i Data Autoregressive
for range queries 2> S OLITEE Model

» Use Autoregressive Model to <l Tuples x; f. . P(x))
fit the joint probability of IR SN Selectivity
, ‘ P Y Table —> % J7-. < Vs P(x2|x1) estimates
different columns IR X
. X3 * B P(x3|x1, x7)
> Support range query with ~— 3 |
Progressive Sampling unsupervised loss

(maximum likelihood)

1. S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. Deep Learning Models for
Selectivity Estimation of Multi-Attribute Queries. In sigmod, 2020.
2.Z.Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein, S. Krishnan, and I. Stoica.
VLDB’21 Tutorial Deep Unsupervised Cardinality Estimation. PVLDB, 13(3): 279-292, 2019. 65



3.2 Autoregressive for Cardinality Estimation (multi-tables)

[0 Model Construction

 Deep AR models can only handle single tables, and
we need to learn from join correlations 2

> Learn a single autoregressive model for Autoregressive Learned Inf
all the tables (joined) et Distribution o s
p,(all tables) &

, : . * tuples from join
» Join Sampler provides correct training ,
Join Sampler

data (sampled tuples from join) by using Indexes Unbiased

unbiased join counts Sampler
Join Count Tables

. [ b
> Doyvn s.ampllng some tuples when preEpare :Qiﬁﬁid T tj;ees
estimating query with only a subse.t of ein Tables
tables according to the fanout scaling. Schema
Tl Tn

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and lon Stoica. NeuroCard:

One Cardinality Estimator for All Tables. PVLDB, 14(1): 61-73, 2021
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3.3 Sum-Product Network for Cardinality Estimation

[0 Model Construction

c.age c._region

- Different data distributions over e o | B
the tables, which are independent 2 0 BU 2 |BU
from each other > Lo 7 -

. . . 998 20 ASIA 20 ASIA
> Split data table into multiple 998 25  EU 25 | EU
. 999 30 ASIA 30 ASIA
segments and columns in each 1000 70 ASIA 70 | ASIA
segment are near independent. (a) Example Table (b) Teaming with Bow/Cel-
umn Clustering
. . P(Cregion: Cage)
> SPN: Sum for different filters and ool -
Product for different joins. ' ' o .

80% (()15% (}10% ()20%

» RSPN is for AVG aggregation,
NULL values support, non_key EUASIA 20 100 EUASIA 20 100  EUASIA 20 100 EUASIA 20 100
attributes modeling and updatability. (c) Resulting SPN (d) Probability of European

Customers younger than 30

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and
VLDB’21 Tutorial Carsten Binnig. DeepDB: Learn from Data, not from Queries! PVLDB 13, 13(7): 992-1005, 2020 67



The Relations of Card/Cost Estimation

[0 Task Target

« Cost estimation is to approximate the execution-time/ resource-

consumption;

[0 Correlations

« Cost estimation is based on cardinality

O Estimation Difficulity

« Cost is harder to estimate than cardinality, which considers multiple

factors (e.g., seq scan cost, cpu usage)

VLDB'21 Tutorial
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Tree-LSTM for Cost Estimation

[0 Model Construction

 Traditional cost estimation uses estimated card, which is inaccurate

without predicate encoding =

SELECT MIN(mc.note) AS production_note,
MIN(t.title) AS movie_title,
MIN(t.production_year) AS movie_year

FROM company_type AS ct,

info_type AS it,
movie_companies AS mc,
movie_info_idx AS mi_idx,
title AS t
WHERE ct.kind = 'production companies'
AND it.info = 'top 250 rank'
AND mc.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%'
AND (mc.note LIKE '%(co-production)%')

Predicate

Estimatiory Layer

'%(as Metro-
Goldwyn-Mayer
Pictures)%'

OR mc.note LIKE '%(presents)%")
AND t.production_year >2010
AND ct.id = mc.company_type_id
AND t.id = mc.movie_id
AND t.id = mi_idx.movie_id

mc.note

'%(presents)%'

mc.note LIKE

LIKE
'%(co-production) %'

AND mc.movie_id = mi_idx.movie_id
AND it.id = mi_idx.i id;

Encoded Query Plan

Nested Loop1

Representation Layer

zZ <
Hash Join Index;Scan Model Model
L 2 e e GoRo =77 WGeRe TN
57 7 : Representation | ! Representation | TGu Ro
Hash Join Hash Join | ! : Model : : Model :

Z N | o eRA T Wem Wer
4 5 7 8| ! !iRepresentation: : Representation

Seq Scan Seq Scan Seq Scan Seq Scan Model Model

dewyg ejdwes
. uopeiedo

]
'
'
L ’
| ¥
: Il l’ A 1 '
| ’ % v s - : !
: i ; Predicate | / '
] / A p ‘
| i '
1 [mcmta LKE '%(Dmsen(s)%') O ( me.note LIKE '%(co-prodiion)’ ] '
: o '
i
O O ( me.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%" ) {

J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307-319, 2019.

X + >
P [tanh ]
k; K
5 O 2O, ,
Tt 1
) ][0 J[wn ][0 ] :
LR
E, 2 '
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Tree-LS

TM for Cost Estimation

[0 Model Construction

» The representation layer learns an embedding of each subquery (global vector

denotes the subquery, local vector denotes the root operator)

» The estimation layer outputs cardinality & cost simultaneously

SQL Query

SELECT MIN(mc.note) AS production_note,
MIN(t.title) AS movie_title,
MIN(t.production_year) AS movie_year

FROM company_type AS ct,

info_type AS it,
movie_companies AS mc,
movie_info_idx AS mi_idx,
title AS t
WHERE ct.kind = 'production companies'
AND it.info = 'top 250 rank'
AND mc.note NOT LIKE '%(as Metro-Goldwyn-Mayer Pictures)%'
AND (mc.note LIKE '%(co-production)%')
OR mc.note LIKE '%(presents)%')

mc.note NOT LIKE | |
'%(as Metro-

Goldwyn-Mayer

Pictures)%'

AND t.production_year >2010
. . .note LIKE mc.note LIKE
AND ct.id = mc.company_type_id el i ' 5 : '
AND t.id = me.movie_id % (presents)% % (co-production)%
AND t.id = mi_idx.movie_id
AND mc.movie_id = mi_idx.movie_id
AND it.id = mi_idx.info_type_id;
Encoded Query Plan ] Representation Layer |
Nested Loop : §’ o
L - pezsosescesecetec : B
2 7 9 P ! Representation | e %—
Hash Join Index;Scan i i Model - =

\
\

1 . GoRo T < - !
3 H { Representation | { Representation | TGoRu
Hash Join Hash Join | ! . : Model ; | Model :
AN i . enX X L .7 A

Seq Scan 4 Seq Scan 5 Seq Scan 7

8 UiRepresentationi iRepresentationi iRepresentationi iRepresentation§§

Seq Scan

VLDB’21 Tutorial J. Sun and G. Li. An end-to-end learning-based cost estimator. PVLDB, 13(3):307-319, 2019.
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Take-aways

O Data-driven methods are more effective for single tables.

O Query-driven methods are more effective for multiple tables.

O Query-driven methods are more efficient than Data-drive methods.
O Data-driven methods are more robust than Query-driven methods.
O Training queries are vital to Query-driven methods.

O Samples are crucial to Data-driven methods.

[0 Estimators based on neural network are more accurate than
statistic-based estimators.

O Statistic-based query model is the most efficient.
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Deep Learning for Benefit Estimation

O Challenge

[0 The index/view benefit is hard to evaluate

» Multiple evaluation metrics (e.g., index benefit, space cost)

» Cost estimation by the optimizer is inaccurate

O Interactions between existing data structures

» Multiple column access, Data refresh

» Conflicts between MVs

VLDB'21 Tutorial
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1 Deep Learning for Index Benefit Estimation

O Model Construction > Training Data: Workloads and execution feedback
from customers

0 Motivation: It is critical to
» Well-trained Evaluation Model: Predict the index

compare execution costs of oerformance

plans_and decide index » Use the evaluation model to create indexes with
benefits > performance gains

Qi O D :: Pcurrent

. .
Application ) Est Cost: 20 m
g Est Rows: 200
workloads E \
vV =
< ' [ | . Index Scan T, Index Scan T,
S > cee =

Est Cost: 60 Est Cost: 30 —

\\
I
[\ | [\ | I )
, ; \ ]
- = - o Est Rows: 2000 Est Rows: 1000 X
M y ~-'<\\\:f B Combine Feature Vectors
Aggregate '

: o NeW  Est Cost: 50 oNested Loop
execution stats D.gploy Est Rows: 200 /
PRV Jnodel
=
Cross-database |~ |~

offline model (}O Est Cost: 15 Est Cost: 30
............ Est Rows: 500 Est Rows: 1000

. Bailu Ding, Sudipto Das, et al. Al meets ai: leveraging query executions to improve index
VLDB’21 Tutorial recommendations. In SIGMOD, 2019. 73



2 Encoder-Decoder for View Benefit Estimation

0 Feature Extraction
* Previous work take candidate views as fixed length -
 Encode various number and length of queries and views with an
encoder-reducer model, which captures correlations with attention

O Model Construction E(ty)  E(ti}) E(slnv2d) E(eiorvs))

* Itis hard to jointly consider f
MVs thatmay have conflicts & |Encoder

* (1) Split the problem into sub- MVs
steps that select one MV; (2)
Use attention-based model to | query
estimate the MV benefit -

Y. Han, G. Li, H. Yuan, and J. Sun. An autonomous materialized view management system
VLDB’21 Tutorial with deep reinforcement learning. In ICDE, 2021. 74



Take-aways of Benefit Estimation

O Learned utility estimation is more accurate than traditional empirical
methods

O Learned utility estimation is also accurate for multiple-MV
optimization

O Query encoding models need to be trained periodically when data
update

0 Open problems:
» Benefit prediction for future workload

» Cost of initialization and future updates

VLDB'21 Tutorial
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Deep Learning for Query Latency Estimation

[0 Model Construction

 Performance prediction of
single queries >

» Represent each operator with a neural unit

» Each neural unit predicts the execution time
of its operator

» Construct a network that matches the
query structure to predict the query latency

> Take effects of concurrent queries as
parallel operators (e.g., gather, parallel join)

A4 4

*E Afih
- it 333
= e ??}

A

—~

information from query
plan

_ R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance prediction.
VLDB’21 Tutorial Proc. VLDB Endow., 2019. 76



Graph Embedding for Query Latency Estimation

[0 Model Construction

* Performance prediction of concurrent queries =2

» Represent concurrent queries with a graph model

» Embed the graph with graph convolution network and predict the latency of all

the operators with a simple dense network

i Network Graph Embedding : | Graph Prediction |
Workload : Input Network g Network :

Graph - '
P (S Graph Layer PN Graph Layer : I| 3-Layer :

| <~ . T

4 | % |- Hy, -~ -._+ Ferecqton Predicted |
— = : : H, o B O -»| HY ReLU : I Performance :
Uiy ' > | anes - P :
Pl . 1H0E- 00)|
'/'\\ - Wz ’ o : | &
.‘/.“\ " | \U:]/ = E D2E > O > E D2E -l_‘ ! ' . I
V7 b lme e - startup execution |
—y I T gemes I I time time !
I Ao P :

|

VLDB’21 Tutorial  X. Zhou, J. Sun, G. Li, et al. Query Performance Prediction for Concurrent Queries using Graph Embedding. VLDB, 2020. 77
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Prediction Problems

[0 Motivation

O Effective Scheduling can Improve the Performance
» Minimize conflicts between transactions

O Concurrency Control is Challenging
» #-CPU Cores Increase

O Transaction Management Tasks
» Transaction Prediction
» Transaction Scheduling

VLDB'21 Tutorial
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Learned Transaction Prediction

0 Predict the future trend of different workloads =2

> Pre-Processor identifies query templates and the arrival-rate
from the workload;

» Clusterer combines templates with similar arrival rate patterns

» Forecaster utilizes ML models to predict arrival rate in each cluster

Pre-Processor Clusterer Forecaster
T TRawsol T T emplae. T T 7 ———— 11 |RIKR | RNN |
| SELECT * FROM foo WHERE id = [§]||:>|SELECT * FROM foo WHERE id =[] {1 A { ®
[N !
| |

Arrival Rate History

|

1

1

|

> °5® :

1 Minute Interval 1 Hour Interval oo :
SELECT * FROM foo WHERE id = I§| 4% "\j\f\‘ A A i
1 |

1

1

[}

|

|

1

|
[oeLere From foo where id - B AT\ AT o
I
| :
| Template Clusters KD Tree E :Prednct /\/\/\j
1 t

UPDATE foo SET value =[] 4m> ‘m»
Lin Ma, Dana Van Aken, and et al. Query-based Workload Forecasting for
Self-Driving Database Systems. In SIGMOD, 2018.

b o - -
o—— - - -
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Learned Transaction Scheduling

O Learn to schedule queries to minimize disk
access requests -2

DB Engine

» Collect requested data blocks Query Quete "
(buffer hit) from the buffer pool: Y BN Pool
Buffer State
Query (cached blocks)
. State Action
» State Features: buffer pool size, (block Reward I (0, to execute)
(buffer hit ratio)

requests) ;
Q-Learning DNN Action Selection

data block requests, ;
Q value for Q;

Q value for Q,

» Schedule Queries to optimize N
global performance with Q-learning

Q value for Q,

State Hidden Action

Layer Layers Layer

Chi Zhang, Ryan Marcus, and et al. Buffer Pool Aware Query Scheduling via Deep
Reinforcement Learning. In VLDB, 2020.
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Summarization of ML4DB Techniques

Database Problem Method Performance | Overhead Training Data | Adaptivity
gradient-based [1, 18, 47] | High High High -
knob space exploration | dense network [37] Medium High/Medium | High - / instance
: DDPG [23, 46] High High Low/Medium query
Offline . . . .
NP Problem index selection q-learn%ng [19] - H%gh Low -
T q-learning [43] Medium High Low -
DDON [9] High High Low query
partition-key selection | g-learning [11] - High Low -
q-learning [27] High High Low -
Online join order selection DON [26, 42] High High Low query
NP Problem MCTS [38] Medium Low Low instance
query rewrite MCTS [21, 49] - Low Low query
cost estimation tree-LSTM [35] High High High query
tree-ensemble [7] Medium Medium High query
carifinaliy esfimation autoregressive [41] High High/Medium | Low data
dense network [16] High High High query
Regression sum-product [12] Medium High Low data
Problem index benefit estimation | dense network [5] = High High query
view benefit estimation | dense network [9] - High High query
latetiepptedetion dense network [28] Medium High High query
graph embedding [50] High High High instance
learned index dense network [3] - High High query
Prediction | trend prediction clustering-based [24] - Medium Medium instance
Problem transaction scheduling | q-learning [44] = High Low query

VLDB'21 Tutorial
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Classical ML Methods

O Techniques
« Gradient methods (e.g., GP); Regression methods (e.g., tree-
ensembling, kernel-density estimation)
O Advantages
* Lightweight; Easier to interpret than DL
O Disadvantages
« Hard to extend to large data; Complex feature engineering

O ML4DB Applications

 Knob Tuning; Cardinality Estimation
VLDB'21 Tutorial
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Classical ML Methods

O Application Difference

_ Feature Engineering Model Selection

Knob * Reduce the knob space with ¢ Gaussian Process: Search local-
Tuning linear regression like Lasso; optimal settings within the selected
* Reduce redundant metrics knob space
with factor analysis and * Reuse the historical data by matching
clustering like k-means; workloads by their metric values
Cardinality * Assumptions like column * Query-based: Define input space as
Estimation independency or linear conjunction of the query ranges on
relations between columns data columns (Tree-Ensemble)
* Determine supported queries ¢ Data-based: Partition data into
like range queries indpendent regions (Sum-Product) or

learn column correlations (AR)
VLDB’21 Tutorial 85



Classical ML Methods

O How to apply to a new problem?

O Problem Modelling: As a regression or gradient-based
optimization problems

O Feature Engineering: Determine the input with feature
engineering techniques

0 Model Construction: Select proper classic ML models, collect
sample data, and learn the mapping relations

O Additional Requirements: Reuse classic ML models in limited

scenarios (e.g., similar workloads)
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Reinforcement Learning Methods

O Techniques

 Model-based (e.g.,, MCTS+DL);

 Model-free (e.g., value-based like Q-learning, policy-based like DDPG)
O Advantages

 High performance on large search space; No prepared data
O Disadvantages

 Long exploration time; Hard to migration to new scenarios

O ML4DB Applications

 Knob Tuning, View/Index/Partition-key Selection, Optimizer, Workload

Scheduling
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Reinforcement Learning Methods

- Input Features RL Method Reward Design | Estimation Model

Knob ¢ Knobs Values <+ DDPG for both ¢ Performance * Design a dense

Tuning < Innter Metrics continuous Improvements network as the
* Workloads state and over last tuning estimation (critic)
continuous action model
actions * Performance
Improvements
over first tuning
action

VLDB21 Tutorial 88



Reinforcement Learning Methods

- Input Features RL Method Reward Design | Estimation Model

View
Selection

Index
Selection

Partiton-
key
Selection

VLDB'21 Tutorial

e (Candidate Views

Built Views
Workload

Candidate
Indexes
Built indexes

Workload

Columns
Tables
Query templates

* DON for
continuous
state and
discrete
actions

» Utility increase

on creating the
VIEWS

Utility increase
on creating the
indexes

Estimated costs
beofore/after
partitioning

Encoder-decoder

for inputs;
Nonlinear layers
for utility
estimation

Design a dense
network as the

estimation model

Design a dense
network as the

estimation model
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Reinforcement Learning Methods

- Input Features RL Method Reward Design | Estimation Model

Query
Rewrite

Join
Order
Selection

Plan
Hinter

VLDB'21 Tutorial

Logical Query
Rewrite Rules
Table Schema

Physical Plan
Candidate
Joins

Table Schema

Physical Plan
Hint Sets

e MCTS for
tree search

* DON for
continuous
state and
discrete
actions

 (Contextual

Multi-armed
for limited
actions

Utility increase °
for future
optimal queries

Saved costs .

Saved costs .

Multi-head
attention for
rules, query, data

Design a dense
network as the
estimation model

Traditional
Optimizer
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Reinforcement Learning Methods

O How to apply to a new problem?

O Problem Modelling: Map to the 6 factors in a RL model

(state, action, reward, policy, agent, environment)

O Feature Characterization: Select target-related features as the
state of the RL problem

O Model Construction: Select proper RL models (e.g., MCTS,
DQN, DDPG), design the networks and the reward function

O Additional Requirements: E.g., encode the query costs with

Deep Learning; encode the join relations with GNN
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Deep Learning Methods

O Techniques
 Dense Layer ((non)-linear); Convolutional Layer; Graph
Embedding Layer; Recurrent Layer
O Advantages
 Approximate the high-dimension relations
O Disadvantages
« Data-consuming

O ML4DB Applications

« Cost Estimation; Benefit Estimation; Latency Estimation
VLDB'21 Tutorial

92



Cost
Estimation

Benefit
Estimation

Latency
Estimation
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Deep Learning Methods
T luput Features | Feature Encoding | Model Design

Physical Plan * Encode operators

with LSTM

Encode actions
like Encoder-
Decoder for Views
and linear layer for

Physical Plan .
Optimization
Actions (e.g.,

views. indexes)

Indexes
Physical Plan * Encoder query
Query Relations correlations with
DB State graph covolutions

e Plan-structured
Neural Network

* Design a dense
network as the
estimation model

* Design a K-layer
graph embedding
network for K-hop
neighbors
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Deep Learning Methods

O How to apply to a new problem?
O Input Features: Select features that affect the estimation
targets (e.g., latency, utility)
O Encoding Strategy: Encode based on the feature structures
(e.g., Graph embedding for query relations)
O Model Design: Design the network structures (e.g., layers,
activation functions, loss functions) based on the input

embedding (e.g., fixed-length or varied-length)
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Open Problems of ML4DB
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Open Problem #1: Reduce Model Training Overhead

O Lightweight Model Training

» Featurization: Some features are not available in real-word scenarios, e.g.,
by privacy constraints;

> Data Collection: Costly to collect data on different datasets/ databases,
e.g., high collection latency, overhead;

» Model Migration&Application: ML models trained on small datasets are
hard to generalize to large datasets

O Possible solutions: few-show learning; from data-driven to
knowledge-driven; super-large pre-trained model

VLDB'21 Tutorial
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Open Problem #2: Validate Learning-based Models

[0 Model Validation

» Whether a model is effective?
» Whether a model outperforms existing ones?

» Whether a model can adapt to new scenarios?

VLDB'21 Tutorial
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Open Problem #3: One Model Fits Various Scenarios

O High Adaptability
» Workloads: query operators; plan structures; underlying data access

> Datasets: tables; columns; data distribution; indexes / views; data updates

» DB Instances: state metrics (DB, resource utilization): hardware

configurations

» DBMSs: MySQL,; PostgreSQL; MongoDB; Spark

O Possible Solutions: common knowledge extraction; meta

learning

VLDB'21 Tutorial
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Open Problem #4: Automatic Learned Model Selection

[0 Automatic Database Assembling

» Automatically select ML models/algorithms for different tasks
» Evaluate the overall performance

saL

Catcgory_| Method

Supervised Linear Regression
Learning Logistic Regression

Oplmn/.er( ()phm]ygr( imi « .
Decision Tree

Deep Learning
Haldware Hardware Hardware g Hardwe ] Hardware
(CPU) (ARM) (AD) (NVM) (SSD)

Database Assembling The Stack of ML Algorithms

Unsupervis K-Means Clustering
ed Learning Association Rules
Reinforcement Learning

Descriptive  Count-Min Sketch
Statistics Data Profiling
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Open Problem #5: Unified Database Optimization

O Arrange Multiple Database Optimization Tasks

O Multiple Requirements: (1) Optimizer can produce good plans with not very
accurate estimator; (2) Creating indexes may incur the change of optimal knobs

O Hybrid Scheduling: Arrange different optimization tasks based on the database
configuration and workload characters

O Optimization Overhead: Achieve maximum optimization without competing
resources with user processes

v' Challenges: various task features; correlations between tasks; trend changes
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Traditional Methods and Problems

O Manual-based Methods (e.g., knob tuning)

 [tis costly and time-comsuming for DBAs to optimize components

O Heuristic Search/Equations/Rules (e.g., cost/view/index estimation)

* Produce sub-optimal solutions; cannot learn from historical data; fail to handle

complex scenarios

O Optimal algorithms (e.g., join order selection, view selection)

« Assumptions may not be satisfied in most scenarios



ML Models for Optimization Problems

Gradient-based
Methods

Contextual Multi-
armed Bandit

Deep Reinforcement
Learning

Monte Carlo Tree
Search

VLDB'21 Tutorial

Approximate the data
distribution with gaussian
functions, and select the
optimal point by the guidance
of gradients

Maximize the reward by
repeatedly selecting from a
fixed number of arms

Learn the selection (actor) or
estimation (critic) policy with
neural networks

Repeated iterations of four
steps (selection, expansion,
simulation, back-propagation)

until termination

====target function

prediction

20 credible region

1 L

training data

Recommendation
(arm)
(environment) i

L@ User features (context) J

Implicit feedback such as click
(reward)

2. Expansion

4. Back-propagation
Default propeg

policy 3. Monte Carlo
simulation

I__]<— State evaluation

Knob Tuning; Cardinality
Estimation

Plan Hint; Knob Tuning; MV
Selection; Index Selection;
Database Partition; Join Order
Selection; Workload Schedule

Query Rewrite; Online Join
Order Selection
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ML Models for Regression Problems

Build a regression model to
approximate real
distribution based on
sampled data

Statistical ML

Learn distributions with
Sum-Product Network Sum for different filters and
Product for different joins

Learn the mapping relations

Deep Learning (e.g.,
DNN, CNN, RNN)

from the input features to
the targets by graident
descent
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Ry

Anomaly

Value

Time

5%

0.3 0.7
12% 2%
80% 15%

10% ()20%
| |
EUASIA 20 100 EUASIA 20 100

Cardinality prediction w,,;

Concatenate
output of each
set module

| Avg. pool

Cardinality Estimation; Trend
Prediction

Cardinality Estimation

Knob Tuning; Cardinality
Estimation; Cost Estimation
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Generative Model
(e.g., Encoder-
Decoder)

Graph Convolutional
Network

Meta Learning

VLDB'21 Tutorial

ML Models for Others

" Wiwemod | beserton | bample | baTae
*ew

Encode varied-length input
features into fixed-length
vector with mechanisms like
multi-head attention

Encode graph-structured
input features with
convolutions on the vertex
features and their K-hop
neighbor vertices

Use the base models to form
the target model based on
the task similarity and the

prediction accuracy during
usage

Decoder

Encoder

B

........

A4

Ao

S

Seen

Unseen

!

- v

MV Selection

Query Latency
Prediction

Knob Tuning
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