

Towards an Integrated Solution for IoT Data Management

Anderson Chaves da Silva

PhD Candidate at the National Laboratory for Scientific Computing

August 16, 2021

The Internet of Things

- IoT Applications: Object Tracking,
 Anomaly Detection, Real time analysis
 and decision making
- Domain Specific Services: Smart Home,
 Smart City, Smart Healthcare, Industry,
 Sports
- Challenges: Processing and analyzing continuous data streams from heterogeneous networks

IoT Challenges

What are the Challenges?

- → Challenge #1: Large Scale IoT Data Management
 - Big Range of Heterogeneous Endpoints
 - Massive Amount of Unstructured Data
 - Space-Time Correlation
- → Traditional solutions cannot fulfill the requirements of IoT data streams
 - Quick Response
 - Scalability
 - Privacy/Security
 - Resource Constraints (Memory, Bandwidth, Energy)

IoT Challenges

- → Challenge #2: Real-time Analysis
 - Online Processing x Offline Processing
 - Lack of integration between the data processing system and ML
 - Concept Drift
- → Problems...
 - Need for Light-weight data mining algorithms
 - ◆ Hard to optimize (Query Planning, Lazy evaluation, etc)
 - ML Models Performance may degrades over time

IoT Challenges

- → Use case Example Extreme Weather Events Monitoring Platform
 - Multiple Sensor Data Sources
 - Streaming data
 - Real Time Weather Monitoring and Analysis

Extreme Events Monitoring Platform

IoT Data Management

Actor Oriented Databases

Dynamic Scalability
Asynchronous primitives
Encapsulation

Big range of Endpoints

Active Databases:

Event Detection Reactive Behavior

Privacy/Security **IOT Data** Management

Array Databases:

Array Algebra Operations
Flexible Storage Format

Space-time correlation

Real-Time Complex Event Processing (CEP)

IoT Data Management

Actor Oriented Databases

Dynamic Scalability
Asynchronous primitives
Encapsulation

Big range of Endpoints

IOT Data Management

Privacy/Security

Array Databases:

Array Algebra Operations
Flexible Storage Format

Space-time correlation

Active Databases:

Event Detection
Reactive Behavior

Real-Time Complex Event Processing (CEP) → No Solution Integrates all three approaches

IoT Data Management and Actor Oriented Databases

- Actor Oriented Programming
 - Simplifies distributed programming
 - Actors as Fundamental programming unity
- Actors...
 - Messages are queued in the recipient's mailbox
 - No shared-memory state between actors
 - Process one message at a time
 - No multi-threaded execution inside an actor

IoT Data Management and Actor Oriented Databases

Actor Frameworks, Languages, Toolkits...

- Actor Oriented Databases
 - Database -> Actors

Actors -> Databases

ReactDB

IoT Data Management and Array Databases

- → Array Databases provide data analysis based on array algebra
- → Especially adequate for multidimensional data applications
 - → Implicit Cell ordination: Quick data access
 - → No need for indexes on dimensions: Smaller storage space
 - → Enable data analysis based on array algebra operations (e.g. Array Slice)

IoT Data Management and Active Databases

on EVENT if CONDITION do ACTION

- The event of an ECA rule determines when the rule should be evaluated
- The condition of an ECA rule determines whether the action should be executed
- The action of an ECA rule determines how to react if the condition is evaluated true

Active Databases and Complex Event Processing

- → Complex Event Processing Techniques
 - → Extend the Logic behind ECA Rules
 - → Real-time stream processing for monitoring and detection of arbitrarily complex patterns in massive data streams
 - → Each data item is abstracted as an event produced by a data source
 - → Multiple simpler events combined to produce more complex ones, that match previously defined patterns

Formal Description:

→ Concept drift: a phenomenon in which the statistical properties of a target variable change over time in an arbitrary way

- → Concept drift: a phenomenon in which the statistical properties of a target variable change over time in an arbitrary way
- → Reasons: Changes in hidden not measured variables
- → Must be taken into consideration in an efficient IoT Data Platform

- → Concept drift: a phenomenon in which the statistical properties of a target variable change over time in an arbitrary way
- → Reasons: Changes in hidden not measured variables

- → Concept drift: a phenomenon in which the statistical properties of a target variable change over time in an arbitrary way
- → Reasons: Changes in hidden not measured variables

- → Concept drift: a phenomenon in which the statistical properties of a target variable change over time in an arbitrary way
- → Reasons: Changes in hidden not measured variables

Research Goals

- Research Goal I: We aim to develop a new Data management solution suitable to IoT environments requirements. By combining the main approaches of active, actor-oriented and array databases, we aim to provide a scalable, reactive and efficient data management and analysis system for IoT.
- Research goal II: We aim to integrate **ML inference** into the data management system, enabling optimizations that would not be possible when treating ML analytics as independent processes.

 Research Goal III: We aim to integrate an adaptive concept drift detection method into our solution that considers the characteristics of IoT data.

Research Goals

System Features		Actor Oriented Databases	Array Databases	Active Databases	Proposed Solution
Actor-Based Programming	Dynamic Scalability	+	-	-	+
	Asynchronous primitives				
	Encapsulation				
Array Based	Array-Based Operations	-	+	-	+
Data Management	Flexible Storage Format				
Complex Event	Event Detection	-	-	+	+
Handling	Reactive Behavior				
Machine Learning	ML as first class operations	-	-	-	+
Support	Concept Drift Handling				

Potential contributions from different models for IoT data management

Solution Design

Future Directions

- → Real Scenarios: The solution should be evaluated on a weather prediction and monitoring scenario
- → Comparative Experiments: Compare the solution to an approach that integrates different already existing data systems
- → Metrics: Measure scalability and performance of the solution when compared to state-of-the-art techniques and systems

Future Directions

- → Real Scenarios: The solution should be evaluated on a weather prediction and monitoring scenario
- → Comparative Experiments: Compare the solution to an approach that integrates different already existing data systems
- → Metrics: Measure scalability and performance of the solution when compared to state-of-the-art techniques and systems