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ABSTRACT
Data in several applications can be represented as an uncertain
graph, whose edges are labeled with a probability of existence.
Currently, most query and mining tasks on uncertain graphs are
based on Monte-Carlo sampling, which is rather time consuming
for the large uncertain graphs commonly found in practice (e.g.,
social networks). To overcome the high cost, in this doctoral work
we propose two approaches. The first extracts deterministic rep-
resentative instances that capture structural properties of the un-
certain graph. The query and mining tasks can then be efficiently
processed using deterministic algorithms on these representatives.
The second approach sparsifies the uncertain graph (i.e., reduces
the number of its edges) and redistributes its probabilities, mini-
mizing the information loss. Then, Monte-Carlo sampling applied
to the reduced graph becomes much more efficient.

1. INTRODUCTION
Graphs constitute an expressive data representation paradigm

used to describe entities (vertices) and their relationships (edges)
in a wide range of applications. Sometimes the existence of the
relationship between two entities is uncertain due to noisy mea-
surements, inference and prediction models, or explicit manipula-
tion. For instance, in biological networks, vertices represent genes
and proteins, while edges correspond to interactions among them.
Since these interactions are observed through noisy and error-prone
experiments, each edge is associated with an uncertainty value [2].
In large social networks, uncertainty arises for various reasons; the
edge probability may denote the accuracy of a link prediction, or
the influence of one person on another, e.g., in viral marketing [10].
Uncertainty can also be injected intentionally for obfuscating the
identity of users for privacy reasons [5].

In all these applications the data can be modeled as an uncer-
tain graph, whose edges are labeled with a probability of exis-
tence. This probability represents the confidence that the relation
corresponding to the edge holds in reality. More formally let G =
(V,E, p) be an uncertain graph, where function p : E → (0, 1]
assigns a probability of existence to each edge. Following the liter-
ature, we consider the edge probabilities independent [18, 8], and
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we assume possible-world semantics [1]. Specifically, the possible-
world semantics interprets G as a set {G = (V,EG)}EG⊆E of 2|E|

possible deterministic graphs, each defined by a subset of E.
As one cannot afford to materialize 2|E| possible worlds, a com-

mon query processing solution is based on Monte-Carlo sampling,
i.e., assess the query on a subset of randomly selected possible
worlds. However, sampling is not always a viable option for large
graphs because: i) sampling a possible world has a non-negligible
cost as it requires generating a random number for each edge
e ∈ E, and ii) processing on every sample may be extremely
expensive, especially for large graphs. For instance, betweenness
centrality, a measure of vertex importance in the graph, involves
all-pairs-shortest-path computations, which cannot be performed
many times (i.e., for each sample) in any graph of moderate size.

Motivated by the above, we propose two approaches that facil-
itate query processing and data mining in uncertain graphs. The
first aims at removing the uncertainty by producing representative
instances of uncertain graphs. Queries can then be processed effi-
ciently on the deterministic instance using conventional graph al-
gorithms. The second approach generates another uncertain graph
with fewer edges, but similar properties in which Monte-Carlo sam-
pling is more efficient. To the best of our knowledge there has not
been previous work on either of the proposed directions.

In order to achieve accuracy, the representative and sparsified
graphs should preserve the expected (underlying) structure of the
original uncertain graph. Starting form the observation that the ver-
tex degree is one of the most fundamental properties of the structure
of a graph [12, 13], we conjecture that by preserving the expected
degree of each vertex, we capture the essence of the underlying
uncertain graph, and thus accurately approximate other properties.
Additionally, we investigate more general structural properties, fo-
cusing on the expected behavior of groups of vertices (e.g. triples).

Regarding the first direction, we propose three methods for gen-
erating representative instances: Average Degree Rewiring (ADR),
Approximate B-matching (ABM) and GAME. ADR involves two
phases: first, it generates an instance with the same average ver-
tex degree as the uncertain graph; then, it randomly rewires edges
if they lead to better approximation of the vertex degrees. ABM
applies b-matching [7] to obtain an initial instance, which then
improves using weighted maximum bipartite matching. Finally,
GAME applies best response dynamics [14] to extract represen-
tatives that preserve the expected structure for groups of vertices.

Regarding the second direction, we propose Backbone Linear
Programming (BLP) algorithm, for sparsifying uncertain graphs.
BLP involves two steps. The first step generates a backbone graph
with the required number of edges. Then, a second step applies Lin-
ear Programming to assign probabilities on the edges of the back-
bone graph, minimizing the discrepancy of the expected degrees



between the original and the reduced graph.
Summarizing, our contributions are:
• We propose two novel frameworks for querying uncertain

graphs, based on the extraction of representatives, and on un-
certain graph sparsification. Both frameworks simplify the in-
put uncertain graph in order to achieve efficiency without sac-
rificing accuracy.

• We investigate the relevant properties of uncertain graphs that
should be preserved by the representative instances and the
sparsified graphs.

• We present ADR , ABM and GAME, for extracting representa-
tives, and BLP for uncertain graph sparsification. These meth-
ods are applicable to massive uncertain graphs of millions of
vertices and edges.

The rest of our work is organized as follows. Section 2 briefly
describes the related work. Section 3 presents our contributions.
Finally, Section 4 contains directions for future research.

2. RELATED WORK
Processing on uncertain graphs can be classified into three main

approaches: i) queries on shortest-path distances and reliability, ii)
pattern mining and graph decomposition, and iii) subgraph search.

Towards the first direction, Jin et al. [9] introduce the distance-
constrained reachability query, which, given two vertices s and t,
and a threshold d, returns the probability that the distance from s to
t is less than d. The authors propose two estimators for the distance-
constrained reachability query that have provably less variance than
naı̈ve Monte Carlo methods. Potamias et al. [18] redefine tradi-
tional nearest neighbor queries by using statistical distance metrics
(e.g. majority, median). These metrics are computed by applying
Dijkstra’s algorithm on possible worlds that are sampled on the fly.

In the second line of research, Zou et al. [20] investigate top-k
maximal cliques in uncertain graphs. Moustafa et al. [15] pro-
pose efficient algorithms for subgraph pattern matching for graphs,
where in addition to edges, vertices are also uncertain. In the
third direction of research, Yuan et al. [19] propose a feature-based
framework for subgraph search. In a rather different type of re-
search Boldi et al. [5], intentionally inject uncertainty in a social
graph in order to obfuscate the identity of its users. Finally, in a
recent work, Li et al. [11] improve the naı̈ve Monte Carlo by per-
forming a smarter sampling that has provably smaller variance.

To the best of our knowledge there is no previous work on either
extraction of deterministic representatives, or sparsification of un-
certain graphs. Concerning sparsification in deterministic graphs,
the related work can be classified into sparsifiers and spanners.
Sparsifiers [6] aim at reducing the size of the graph, mainly for stor-
age purposes, while maintaining properties such as the size of the
cuts, or the energy in the electric equivalent circuits [4]. Spanners,
aim at reducing the graph size for query efficiency, while maintain-
ing the shortest path distances among the nodes [3].

3. CONTRIBUTIONS
Section 3.1 formally defines the problems investigated in the the-

sis, and Section 3.2 presents the proposed algorithms.

3.1 Problem Definitions
Given an uncertain graph G = (V,E, p) and a vertex u ∈ V , the

expected degree of u in G is the summation of the probabilities of
u’s adjacent edges:

[deg(u,G)] =
∑

e=(u,v)∈E

pe

When the uncertain graph is implied, we write for convenience
[degu]. Let G be a deterministic instance of G. We define the
discrepancy dis(u,G) of a vertex u in G ⊑ G as the differ-
ence of u′s degree in G to its expected degree, i.e., dis(u,G) =
deg(u,G)− [degu]. Given the individual vertex discrepancies, we
define the overall discrepancy ∆ of a possible graph G as follows:

DEFINITION 1. Given an uncertain graph G = (V,E, p), the
discrepancy of any possible graph G ⊑ G is defined as

∆(G) =
∑
u∈V

|dis(u,G)| (1)

The first problem we tackle is the following:

PROBLEM 1 (degree-REPRESENTATIVE INSTANCE). Given
an uncertain graph G = (V,E, p), find a possible graph G∗ ⊑ G
such that:

G∗ = arg min
G⊑G

∆(G).

Going a step further, we generalize the notion of vertex degree to
the concept of n-clique cardinality of a vertex u, i.e., the number
of cliques of size n that contain u. In particular, the degree of a
vertex u is equivalent to its 2-clique cardinality (i.e., the number of
cliques of size 2 that contain u), whereas u’s triangle connectivity
corresponds to its 3-clique cardinality. The notion of n-clique is
extended naturally to n > 3. Intuitively, this generalization aims at
capturing the expected structure of neighboring vertices.

Formally, given an uncertain graph G, an integer n ≥ 2 and a
vertex u ∈ V , the expected n-clique cardinality of u is:

[γn(u)] =
∑

c∈Qn(u)

∏
i<j∈c,
e=(i,j)

pe (2)

where Qn(u) is the set containing all cliques of size n that involve
vertex u in G. The notion of discrepancy of Definition 1 is extended
accordingly:

DEFINITION 2. The discrepancy disn(u,G) of a vertex u in an
instance G ⊑ G is the difference of u’s n-clique cardinality in G
to its expected n-clique cardinality, i.e., disn(u,G) = γn(u,G)−
[γn(u,G)].

DEFINITION 3. Given an uncertain graph G = (V,E, p) and
an integer n ≥ 2, the discrepancy ∆n(G) of a possible graph
G ⊑ G is defined as

∆n(G) =
∑
u∈V

|disn(u)| (3)

The second problem we tackle in this work is the following:

PROBLEM 2 (clique-REPRESENTATIVE INSTANCE). Given
an uncertain graph G = (V,E, p) and two integers 2 ≤ l ≤ n,
find a possible graph G∗

l,n ⊑ G such that:

G∗
l,n = arg min

G⊑G

n∑
m=l

∆m(G)

Problem 2 aims at extracting an instance that, in addition to the
vertex degree, preserves the m-clique connectivity of the vertices,
within given range of [l, n]. Intuitively, Problem 2 captures the
neighborhood connectivity of the vertices. Problem 1 is a special
case of Problem 2, where l = n = 2.



In the second direction, uncertain sparsification aims at produc-
ing an uncertain graph with fewer edges, but similar properties to
the original one. Formally, given an uncertain graph G = (V,E, p)
and an integer k < |E| our goal is to produce another uncertain
graph G′ = (V,E′, p′) with |E′| = k such that the expected de-
gree of each vertex is preserved. We first extend the notion of vertex
degree discrepancy, to uncertain graphs:

DEFINITION 4. The discrepancy dis(u,G′) of a vertex u in
an uncertain graph G′ is the difference of u’s expected degree in
G′ to its expected degree in G, i.e., dis(u,G′) = [deg(u,G′)] −
[deg(u,G)]. Accordingly, the overall discrepancy of G′ is ∆(G′) =∑

u∈V dis(u,G′).

Thus, the third problem we aim at solving is:

PROBLEM 3 (SPARSIFICATION). Given an uncertain graph
G = (V,E, p) and an integer k < |E|, find an uncertain graph
G′ = (V,E′, p′) such that:

G∗ = argmin
G′

∆(G′), with |E′| = k

Problem 3 can be also generalized to capture properties for
groups of vertices (n-cliques). In [17] we conjecture Problem 1
to be NP-Hard. Similarly, Problems 2 and 3 are expected to be NP-
Hard. Therefore, we focus on approximate algorithms. A bench-
mark solution for all problems is based on the Most Probable (MP)
graph. Specifically, for Problems 1 and 2, MP consists of the edges
whose probability is at least 0.5. For Problem 3, MP contains the k
uncertain edges with the highest probability.

3.2 Algorithms
Regarding Problem 1, in [17] we propose ADR and ABM, which

generate approximate solutions that can yield accurate answers
for a variety of tasks including clustering coefficient, between-
ness centrality and shortest path distances. ADR involves two
phases: 1) it creates an instance G0 = (V,E0) of the uncertain
graph that preserves the average vertex degree [deg(G)] by choos-
ing P = V

2
· [deg(G)] probable edges and 2) it iteratively improves

G0 by rewiring, i.e., replacing edges in E0, so that the total dis-
crepancy is reduced.

We illustrate the application of ADR on the uncertain graph of
Figure 1(a), where edge probabilities are denoted with italics, and
the expected degree is shown next to each vertex. Initially, ADR
computes P = 4.4 and rounds it to the closest integer ⌊P⌉ = 4.
Then, it picks the 4 most probable edges of the graph and forms the
set E0 = {(u2, u3), (u2, u5), (u2, u9), (u7, u8)}. Figure 1(b) de-
picts the edges of E0 with bold lines, and shows the resulting node
discrepancies. The value of the total discrepancy at this stage is
∆ = 3.8. Next, ADR starts the second phase. Assume that at iter-
ation 0 the algorithm randomly considers the replacement of e1 =
(u2, u5) ∈ E0 with e2 = (u3, u4) ∈ E \E0. Since such a replace-
ment improves the overall discrepancy, the edges are swapped. In-
tuitively, the swapping reduces the overall discrepancy while main-
taining the average expected degree [deg(G)]. The discrepancy of
the new instance E1 = {(u2, u3), (u2, u9), (u3, u4), (u7, u8)} is
∆′ = 3.5.

ABM also involves two phases. The first performs rounding of
the expected vertex degrees to the closest integers, and computes
a maximal b-matching [7] using the rounded values as capacity
constraints. Specifically, this phase considers all edges in random
order and includes in the representative those that do not violate any
constraint (i.e., no vertex has degree greater than its capacity). The
second phase, partitions the vertices according to their discrepancy
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Figure 1: ADR example

and adds edges that improve the total discrepancy ∆, by performing
a weighted bipartite matching.

Figure 2 applies ABM on the uncertain graph of Figure 1(a). Fig-
ure 2(a) shows the vertex degrees after rounding. Phase 1 considers
in turn edges (u2, u3), (u7, u8), which are added to the represen-
tative. After that, no other edge can be included because it would
cause a capacity violation. Figure 2(b) contains the node discrep-
ancies after the termination of Phase 1, with respect to their original
(i.e., before rounding) degree.

u2

u1u5

u3

u6
u4

1

0.3

1

0.4 0.3 0.30.45

u7

0.2

3 2

0 0 0 0

u8

0.9

1

0.1

0.45

u9

0 u2

u1u5

u3

u6
u4

-0.4

u7

-1.6
-0.9

-0.45 -0.4 -0.3 -0.3

u80

u9

-0.45

(a) rounded graph G (b) result of Phase 1
A B

u2

u3

u1

u5

u4

u6

u7

0.8

0.9

0.8

0.6

0.4

0.4

u9
0.9

-1.6

-0.9

-0.4

-0.45

-0.45

-0.3

-0.3

-0.4

u2

u1u5

u3

u6
u4

u7

u8

u9

0.55

0.55 -0.4

0.4

-0.3

0.1

0.6

0

-0.3

(c) input of bipartite (d) G∗ of ABM

Figure 2: ABM example

Based on their discrepancies, Phase 2 partitions the vertices
into three groups A, B and C. A contains nodes with discrepancy
dis(u) ≤ −0.5, B the nodes for which −0.5 < dis(u) < 0,
and C the rest, i.e., nodes with dis(u) ≥ 0 . The partition-
ing is complete (i.e., A ∪ B ∪ C = V ) and there is no overlap
(i.e., A ∩ B ∩ C = ∅). In our running example the groups are
A = {u2, u3}, B = {u1, u4, u5, u6, u7, u9} and C = {u8}. Only
edges connecting vertices of groups A and B can improve the over-
all discrepancy.

Figure 2(c), illustrates the second phase of ABM i.e., the approx-
imate bipartite matching among vertices of groups A and B. First,
it picks the heaviest edge (u2, u5) and adds it to the result. Then,
it updates the discrepancy of u2 to dis(u2) = −1.6 + 1 = −0.6;
since −1 < dis(u2) < −0.5, the weights of edges adjacent to
u2,

(
i.e., (u2, u1), (u2, u7) and (u2, u9)

)
must be updated as well.

Edges (u2, u1) and (u2, u7) yield a negative weight, and are dis-
carded. Similarly, edges (u2, u9) and (u3, u7) are added (see [17]
for more details). Figure 2(d) shows the final output of ABM, which
combines the edges added during the two phases. The discrepancy
of the extracted graph is 3.2.



ADR and ABM focus explicitly on vertex degrees. In order to
solve Problem 2, we propose GAME, a game theoretic framework
that can efficiently extract representatives preserving the expected
n-clique cardinality for n ≥ 2. In our game, the players are the
edges of the uncertain graph, which compete on the discrepan-
cies of the vertices that belong to the same n-clique as their end-
points. Each edge e has two strategies: either to participate or not
to participate in the deterministic representative. GAME applies
best response dynamics, an iterative procedure during which every
edge chooses selfishly its best strategy. The process stops when
no player has incentive of changing its strategy, at which point the
game has reached a Nash Equilibrium. The game is an exact po-
tential game and always reaches an equilibrium, independently of
the initial conditions. Our framework is generic and can be directly
applied to extracting representatives G∗

n with arbitrary values of n.
However, the complexity of finding n-cliques of a vertex is expo-
nential to the value of n [16]. Thus, we focus on small clique sizes.

Regarding Problem 3, we propose BLP algorithm. BLP first
generates a backbone graph that includes the k most probable edges
covering all vertices. Then, these k edges absorb the probabilities
of the eliminated ones by transforming Problem 3 to a Linear Pro-
gram. Specifically, Theorem 1 describes this transformation.

THEOREM 1. For any graph represented by an incidence ma-
trix A of size |V | × |E′| and expected degree vector d of size
|V | × 1, an optimal solution to Problem 3 is given by the following
Linear Program:

max 1Tx

s.t. Ax ≤ d

x ∈ [0, 1]|E|

Figure 3 illustrates the application of BLP in the running exam-
ple of Figure 1(a) for k = 8. Figure 3(a) depicts the edges of the
backbone graph with bold lines. Figure 3(b) shows the probabil-
ity assignment of LP next to each edge, and the resulting degree
discrepancies next to each vertex. For instance, the probability of
edge (u7, u8) increases from 0.9 to 1, to compensate for the elimi-
nation of edge (u3, u8). Similarly, edge (u3, u7) is increased from
0.2 to 0.36. The overall discrepancy ∆ becomes 0.4. Note that this
assignment is optimal for the backbone graph of Figure 3.
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Figure 3: BLP example (k = 8)

In [17], we show that the representatives generated by ADR and
ABM significantly outperform MP in terms of accuracy for sev-
eral queries, including clustering coefficient, betweenness central-
ity and shortest path distance. In turn, GAME yields even lower
error for neighborhood based queries (e.g., clustering coefficient),
especially in dense graphs with high edge probabilities. Similarly,
BLP generates a sparse uncertain graph, whose average vertex dis-
crepancy is many times lower than that of MP. Note that the ex-
traction of representatives or sparsified graphs is a one time effort

that can be performed offline. Even for large graphs (tens of mil-
lions of edges), the execution time of all algorithms is in the order
of minutes, which is a small fraction of the processing cost of most
queries using Monte Carlo sampling.

4. FUTURE DIRECTIONS
This thesis facilitates uncertain graph processing and mining us-

ing (i) representative deterministic instances and (ii) sparsified un-
certain graphs. In the future we intend to extend our work on both
directions. For representative instances we plan to investigate ad-
ditional properties that maybe of interest for specialized tasks. It
will also be interesting to generate and combine multiple represen-
tatives for better approximation. Our involvement with the sparsi-
fication problem is rather recent. Accordingly, we will study alter-
native algorithms for generating backbone graphs and reassigning
probabilities to edges. It is also possible to devise diverse algorith-
mic solutions e.g. based on combinatorial or game theoretic ap-
proaches. Finally, we aim at extending our methods to alternative
uncertain settings such as, time dependent or streaming graphs, at-
tributed graphs etc., where the extraction of representative or sparse
models is even more challenging.
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