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ABSTRACT
Given a Knowledge Base that records millions of relations of the
form Barack Obama is the president of USA, how can we auto-
matically learn new synonyms and enhance the Knowledge Base?
Imagine now measuring the brain activity of a person while read-
ing words that appear in this Knowledge Base; how can we relate
information processing in the brain, and information found on the
World Wide Web? Can we use both pieces of data in order to en-
hance knowledge extraction in both scenarios? On a third, seem-
ingly unrelated, application, consider having different views of a
social network, e.g. observing who is calling whom, who sends
e-mails to whom, and who texts whom; can we use this rich in-
formation towards community and anomaly detection? What if we
also have demographic information about the people of the net-
work? Can we further enhance our analysis? The key underlying
theme behind all the above applications is the multi-aspect nature
of the data, with the ultimate question being: how can we take ad-
vantage of all different aspects? And if so, can we analyze sets
of multi-aspect data jointly? Finally, can we automatically, and in
a mostly unsupervised setting, filter out aspects of the data which
are redundant or not beneficial for the task at hand? In this thesis,
we develop fast, scalable, and interpretable algorithms (with spe-
cific emphasis on Tensor Analysis), and we apply them to a wide
variety of multi-aspect data problems.

1. INTRODUCTION
In an ever increasing number of real world applications, data pro-

duced come in different views or aspects, often describing a com-
mon underlying phenomenon. Such a phenomenon can be, for in-
stance, the way that knowledge is manifested on the Web. Consider
a Knowledge Base (KB) such as NELL [1] that reads the web every
day and learns new facts about the world. This KB is expressed in
millions of (subject, verb, object) triplets, like Barack Obama is the
president of USA; essentially subject, verb, and object are the three
aspects of the data, and our aim is to use all three jointly in order
to learn new synonyms and ultimately enhance the KB. Suppose
now, that for words that exist in that KB, we measure a person’s
brain activity while reading each word. How can we come up with
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effective, structured, and principled ways of relating the informa-
tion as it is manifested on the KB and the Web on the one hand,
and the signals of the human brain in the presence of that informa-
tion? Furthermore, how can we improve knowledge extraction and
understanding of both processes, by using both sides of the data?

Another domain which is inherently multi-aspect, is the one of
social networks, especially with the proliferation of online social
networks such as Facebook. Different means of communication
yield different views of a social network: for instance, the social
network of people who call each other and the social network of
people who e-mail or message each other are different aspects of
the same underlying social interaction on that set of people. How
can we use these different aspects in order to better understand the
social interactions of the underlying network? Suppose now that
we also have rich side information about the people of the network.
How can we incorporate this side information in our analysis, in
order to further improve our results?

The unifying theme behind the above, seemingly unrelated ap-
plications, is the multi-aspect nature of the data. In this thesis, we
work towards in two different thrusts:

Algorithms: we develop multi-aspect analysis models and scal-
able algorithms, with specific emphasis to Tensor Analysis, that are
able to efficiently extract knowledge from multi-aspect data. Our
motivating questions are how can we take advantage of all differ-
ent aspects? And if so, can we analyze sets of multi-aspect data
jointly? Finally, can we automatically, and in a mostly unsuper-
vised setting, filter out aspects of the data which are redundant or
not beneficial for the task at hand?

Applications: we apply our algorithms to a variety of multi-
aspect data problems, with specific emphasis on linking knowledge
extraction from the Web and the brain, as well as analyzing multi-
aspect social networks.

2. PRELIMINARIES
Our methods have a specific emphasis on Tensor analysis. Thus,

here, we provide a very brief, high level overview of how Tensors
can be used as an exploratory analysis tool, using as a motivating
example that of a Knowledge Base. Tensor analysis is by no means
a new area, however, our on-going and proposed work is novel in
the context of the applications that we are interested in, as well as
the new models and algorithms that we develop.

Matrices record dyadic properties, like “people recommending
products”. Tensors are the n-mode generalizations, capturing 3-
and higher-way relationships. Effectively, Tensors can be seen as
a multi-dimensional extension of matrices. For example “subject-
verb-object” triplets naturally lead to a 3-mode tensor. In this overview
we focus on three mode tensors, however, everything we mention
extends directly to higher modes
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Figure 1: Pictorial example of a KB tensor and the interpretation of its
PARAFAC decomposition into sparse factors. The shaded part of the vector
corresponds to non-zero values. For the first component, the non-zeros cor-
respond to subjects like “Obama” and “Merkel”, and the respective objects
and verbs of that component collectively describe a latent group of “lead-
ers”. Accordingly, the F -th component is a latent group about cars and
racing.

Tensor decomposition as soft clustering:. For instance,
given a “subject-verb-object” tensor, one may decompose it into a
sum of a (usually) small number of triplets of vectors; intuitively,
each one of these triplets corresponds to a different concept, e.g.,
“politicians”, “countries”, and “tools”. Each vector of this triplet
may be viewed as a soft clustering indicator: suppose that a,b, c
are the vectors of the “politicians” triplet that correspond to the
“subject”, “verb” and “object” dimensions (or modes) respectively.
Then, a will indicate the membership of all the subjects to the
“politicians” cluster, and b and c will do so for all the verbs and
objects.

For example, see Figure 1. The triplet of vectors a1, b1, c1
will correspond to the first concept (e.g., “leaders-organizations”);
subjects (rows) with high score on a1 will be the leaders, like
“obama”, “merkel”, “eric-schmidt”, objects (columns) with high
score on b1 will be organizations, like “usa”, “germany”, “google”,
and verbs (fibers) with high score on c1 will be verbs, like “lead”,
“is-president-of”, and “is-CEO-of”.

The PARAFAC decomposition [5] of X into F components is

X ≈
F∑

f=1

af ◦ bf ◦ cf , where [a ◦ b ◦ c](i, j, k) = a(i)b(j)c(k).

Coupled Tensors. Sometimes, two tensors, or a matrix and a
tensor, may have one mode in common; for example, we may
have a ’subject-verb-object’ tensor and a ’subject-category’ matrix
(which encodes the categories where each of the subjects belongs
to). In this case, we say that the matrix and the tensor are coupled
in the ’subjects’ mode.

Why Tensors & Coupled Tensors?. There is a number of
reasons why we prefer using higher-order structure rather than ag-
gregating/collapsing into a matrix: 1) Tensor decompositions (and
in particular the PARAFAC decomposition) are provably unique
and identifiable, in contrast to the majority of matrix factorizations.
Identifiability implies recovery of the true latent factors (e.g. in the
case of NELL the cluster assignments of noun-phrases to concepts),
without distortions and ambiguities 2) Consider a 10 × 10 × 10
tensor. If we aggregate the third mode into a 10× 10 matrix or un-
fold the tensor into a 10 × 100 matrix there is no way that we can
extract more than 10 components uniquely, even though our data
might have more structure; in the tensor case this is possible. 3)
In the case of coupling, the benefit is twofold: a) additional infor-
mation from the matrix helps “fill in the blanks” of the tensor (e.g.

cold-start problem in recommendation systems), b) decomposing
the matrix by itself is (albeit widely studied) a less well behaved
problem; coupling the matrix with the tensor, guides the decompo-
sition into a solution which is more likely to be more well behaved
in terms of indeterminancies.

3. COMPLETED & ON-GOING WORK
3.1 Applications

Here, we provide a concise overview of the Applications that we
have been tackling using our proposed techniques.
Neurosemantics: Consider the following experimental setting, where
human subjects are shown a concrete English noun, and in the
meanwhile, we measure their brain activity as they read and try
to understand that noun. Our goal is to come up with models that
may improve our understanding of how the human brain stores and
processes semantic information.

In [12], we coupled fMRI measurements of the above experi-
ment with semantic features (in the form of simple questions, such
as Can you pick it up?) for the same set of nouns; in our analysis,
we were able to compute a joint low-rank embedding of the brain
measurements and the noun semantic features, discovering seman-
tically similar nouns and coherent brain regions that respond when
these nouns are seen. An example of our analysis can be seen in
Figure 2(a), where all the nouns are small objects, the correspond-
ing questions reflect holding or picking such objects up, and most
importantly, the brain region that was highly active for this set of
nouns and questions was the premotor cortex, which is associated
with holding or picking small items up. In a similar experimen-
tal setting, where the human subjects are also asked to answer a
simple yes/no question about the noun they are reading, in [11] we
define a simple yet effective model that is able to capture the func-
tional connectivity of the brain for the particular task; the functional
connectivity is a graph between different regions of the brain that
interact with each other (and are not necessarily directly physically
connected), while the brain processes the semantic information. An
example of our derived functional connectivity, which corresponds
to Neuroscientific ground truth, is shown in Figure 2(b)
Knowledge Base: A second major application, as also motivated
in the previous section is the analysis and expansion of a Knowl-
edge Base, such as the one of the Never Ending Language Learner
(NELL) of the Read the Web project at CMU. The ability to rep-
resent such Knowledge Base data as a three-mode tensor enables
the analysis of the data into low-rank embeddings that promote the
discovery of synonyms. In the case of a (subject, verb, object)
tensor, the low rank embeddings of the corresponding aspects will
be A,B,C. As we illustrate in the Introduction and Fig. 1, the
columns of these low-rank embeddings can serve as soft-clustering
indicators, for semantically similar triplets of (subjects, verbs, ob-
jects). Furthermore, using those embeddings, we can discover con-
textually similar nouns, such as the ones shown in Figure 2(c). We
have done preliminary work on Knowledge Base mining in [13, 8],
however, as we point out in the proposed work, there is still a lot to
be done.
Multi-Aspect Social Networks: As mentioned in the Introduction,
consider multi-aspect measurements of a social network; differ-
ent aspects can be time or different views of the network. In [10]
we show that, in general, having different views of a particular
social network (e.g. who-texts-whom, who-emails-whom etc) is
able to do better community detection than the single view ap-
proach, where all types of interactions are aggregated into a single
graph/matrix. In [10], we also provide a data mining case study on
the REALITYMINING dataset. This dataset was introduced in [4]
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equation in its matrix form:

Y� −
�
A B

� �Y
S

�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

�Y� −
�
A B

� �Y
S

�
�2

F

and solve for
�
A B

�
by (pseudo)inverting

�
Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

�
A B

�
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.

Real and predicted MEG brain activity
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Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n×n] connectivity matrix between neurons (or neuron regions)
C[m×n] summarization matrix (neurons to voxels)
B[n×s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n × 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n×n] × x(t) + B[n×s] × s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m×n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n×n] × x(t) + B[n×s] × s(t)

y(t) = C[m×n] × x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:
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Fig. 17. Results for FACEBOOK using s = 100, r = 10, F = 15. Subfigure (a): FACEBOOK “anomaly”: One Wall, many
posters and only one day. This possibly indicates the birthday of the Wall owner. Subfigure(b): FACEBOOK “normal” activity:
Many users post on many users’ Walls, having a continuous daily activity

and the third column contains the context phrase that connects these two noun-phrases. We observe
that the concepts extracted are coherent and meaningful.

Table III. NELL: Potential synonym discovery

Noun-phrase Potential Contextual Synonyms
computer development
period day, life
months life
facilities families, people, communities
rooms facilities
legs people
communities facilities, families, students
company community, life, family
groups people, companies, men
life experience, day, home
data information, life, business
people members, companies, children
countries people, areas, companies
details part, information, end
clients people, children, customers
ability order, life, opportunity

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: January YYYY.

(c)!

Figure 2: Overview of results: (a) Semantically similar nouns and activated brain regions, (b) Computing the functional connectivity of the human brain, (c)
discovering contextually similar noun-phrases from the Read the Web Knowledge Base.

and contains data collected by the MIT Media Lab, including sub-
jects (undergraduate and graduate CS and business students) whose
interactions were monitored by a pre-installed piece of software on
their mobile devices. The different views offered by the dataset per-
tain to the means of interaction between a pair of subjects. Namely,
CALL view refers to subjects calling each other, DEVICE view
contains Bluetooth device scans, SMS view is constructed based
on text message exchanges, and FRIEND view contains friendship
claims. In Fig.3, we show all four views of the dataset as clus-
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Figure 3: Results on the four views of the REALITYMINING multi-graph.
Red dashed lines outline the clustering found by GRAPHFUSE.

tered by GRAPHFUSE where R = 6. Qualitatively, we see that
the algorithm’s output concurs with the communities that appear to
be strong on the spy-plots of each view. For example, cluster 2 is
a community of business school students that are mostly isolated
from the rest of the graph. Another example is cluster 6 of size
1, which contains a single subject with many incoming calls and
many outgoing SMSs.

In [8], we analyze a time-evolving snapshot of Facebook, where
we record users posting to other users’ “Wall” ; the temporal aspect
is very important in this case, since it helps differentiate types of
behavior. For instance, one of the patterns that our Tensor analysis
was able to uncover was behavior that looked like a singular event,
such as the Wall owner’s birthday, where many people posted on the
Wall on a single day; ignoring or aggregating the temporal aspect
would have made discovery of such events much more difficult, if
not impossible.

3.2 Algorithms
With the vast amounts of potential data that can be analyzed us-

ing these techniques (and producing beneficial results for the re-
spective applications), major challenges such as efficiency and scal-
ability arise. We need algorithms that are able to work on data that
spill beyond the main memory of a single machine. In [13] we
develop the first scalable algorithm for tensor decompositions on
Map/Reduce; at the time of publication, [13] was able to decom-
pose problems larger by at least two orders of magnitude than the
state of the art. Subsequently, in [2], we developed a Distributed

Stochastic Gradient Descent method for Map/Reduce that is able
to scale to billions of parameters.
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Figure 4: The main idea behind PARCUBE: Using biased sampling, extract
small representative sub-sampled tensors, decompose them in parallel, and
merge the final results into a set of sparse latent factors.

Not necessarily being restricted to the Map/Reduce framework,
in [8] we propose PARCUBE, a novel, approximate, parallelizable
algorithm for tensor decomposition which is able to analyze very
big tensors on a single, potentially multi-core, workstation. The
main idea behind PARCUBE is the following

1. Get a biased sample of indices of X in all three modes. Bi-
ased sampling gives priority to denser regions in the data.
Every time we do that, we get a smaller sub-tensor, indexed
by the set of sampled indices, as shown in Figure 4. Usu-
ally the sampled indices per mode are one or more orders of
magnitude smaller in size than the original dimension.

2. For each of the smaller sub-tensors, we run the decomposi-
tion in parallel. In this step we may use any solver for the
sub-problem, as long as the solver guarantees a locally opti-
mal solution for the problem.

3. We merge the partial factors coming from the decomposi-
tions of the sub-tensors. Notice in Fig. 4 that indices that
were not sampled, are shown in white in the final result, in-
dicating that they are exactly equal to 0.

In [8] we describe in detail how we can do that correctly, and
obtain a decomposition in the original, un-sampled space, that ap-
proximates the full decomposition. The power behind PARCUBE
is that, even though the tensor itself might not fit in memory, we
can choose the sub-tensors appropriately so that they fit in mem-
ory, and we can compensate by extracting many independent sub-
tensors. Due to space limitations, we encourage the reader to read



[8] for a detailed experimental evaluation. In a nutshell, we ob-
serve that for a small number of repetitions of PARCUBE, there
is an understandable gap between the ideal approximation error of
PARAFAC and the approximation PARCUBE gives, but as we run
more repetitions, we explore the data more effectively, converging
to the same approximation error. In [12], we extend the idea of [8],
introducing TURBO-SMT, for the case of Coupled Matrix-Tensor
Factorization (CMTF), achieving up to 200 times faster execution
with comparable accuracy to the baseline, on a single machine. An
important aspect of both PARCUBE and TURBO-SMT is that they
can serve as meta-algorithms that can boost any already highly op-
timized state of the art solver for PARAFAC and CMTF; this is be-
cause, as illustrated in Fig. 4, each of the smaller sampled pieces
of the data can be decomposed by any solver.

4. PROPOSED WORK
Given the spectrum of Applications and Algorithms that we con-

sider, the space of possible extensions that one could explore is
promisingly rich and interesting. In the next few lines, we describe
some key future directions of our work:
Unsupervised Quality Assessment:. For the most part, our
analysis is unsupervised, in the sense that we don’t have labelled
data or ground truth for the knowledge that we wish to extract;
in other words, our analysis is largely exploratory. However, we
would like to have ways of assessing the quality of our results in
absence of ground truth. A particular example where this is of
paramount importance is the following: given different views of a
social network, how can we automatically detect whether a partic-
ular view is offering useful information or is merely noise? There
exist heuristics in the literature [3] which are able to do well in
determining the number of hidden components in a tensor (even
though this has been shown to be a very hard problem). However,
these heuristics have been specifically designed for fully dense, rel-
atively small datasets, where the fitting is done under the Frobenius
norm. As a first step, we propose to extend these intuitive heuristics
to scale and be able to work for very large and sparse datasets (such
as social networks). We have recently published preliminary algo-
rithmic work on this [7], where we are able to work on three orders
of magnitude larger data than the state of the art. Secondly, we
may consider applying the Minimum Description Language (MDL)
principle in order to characterize the quality of a decomposition, as
well as approximate the true number of hidden components.
Robust Knowledge Base Completion & Synonym Dis-
covery:. Triplets of a Knowledge Base reflect what the Knowl-
edge Base already knows about the world. Triplets that are missing
from the Knowledge Base could be missing for more than one rea-
sons: they could either be unobserved but plausible (e.g. horses
eat hay) or unobserved but implausible (e.g. horses eat cars). If we
treat all unobserved values as missing (and thus, suitable for com-
pletion), our results will likely suffer from this ambiguity. We plan
to investigate robust ways of overcoming this real world problem.
Location Based Social Networks. Location Based Social
Networks (LBSNs) are services such as Foursquare, that are pri-
marily focused on facilitating location sharing among their users.
Such a location sharing involves a user “checking-in” at a specific
venue. Venues can be businesses, public places, even a user’s home.
Check in activity is sometimes associated with rewards from spe-
cific businesses, like restaurants, thus there is incentive by users
to increase their number of check-ins at a place that offers a spe-
cific discount in fraudulent ways. We have applied our algorithms
in detecting anomalies in various scenarios [8, 6], and we propose
to investigate how our algorithms can be applied in order to detect
fraudulent check-ins in LBSNs, as they evolve over time.

In addition to fraud detection, location information which is an
integral part of LBSNs provides very rich information that can be
used for user modelling. More specifically, given a user’s check-
in activity, we may be able to provide better recommendations for
places to visit, as well as better friendship recommendations, based
on similar preferences in terms of, say, restaurants, coffee shops
and bars. We propose to model a LBSN as a tensor of (users, loca-
tions/venues, time) and a matrix of user friendships that can serve
as additional information. Using our proposed algorithms, we can
then jointly analyze these two pieces of data, into a comprehensive
user model that takes into account time, location and friendship re-
lations. Our very preliminary results were presented as a poster in
WWW 2014 [9].
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