
GPU-accelerated join-order optimization

Andreas Meister
Supervisor: Gunter Saake

University of Magdeburg, Germany

andreas.meister@ovgu.de

ABSTRACT
Join-order optimization is an important task during query
processing in DBMSs. The execution time of different join
orders can vary by several orders of magnitude. Hence, ef-
ficient join orders are essential to ensure the efficiency of
query processing. Established techniques for join-order op-
timization pose a challenge for current hardware architec-
tures, because they are mainly sequential algorithms. Cur-
rent architectures become increasingly heterogeneous by us-
ing specialized co-processors such as GPUs. GPUs offer
a highly parallel architecture with a higher computational
power compared to CPUs. Because join-order optimization
benefits from parallel execution, we expect further improve-
ments by using GPUs. Therefore, in this thesis, we adapt
join-order optimization approaches to GPUs.

1. INTRODUCTION
When a query contains several joins (e.g., Query 5 of the

TPC-H benchmark), the execution time can differ by sev-
eral orders of magnitude depending on the join order [20], see
Figure 1. Therefore, join-order optimization is an essential
step within query processing. So far, proposed join-order
optimization approaches were almost exclusively sequential.
This poses a challenge, because sequential algorithms can-
not fully utilize the potential of current hardware architec-
tures. Current architectures make increasingly use of par-
allelism to satisfy the ever increasing application require-
ments. Hence, current architectures integrate highly paral-
lel co-processors such as Graphical Processing Units (GPUs).
Based on the higher parallelism compared to Central Pro-
cessing Units (CPUs), GPUs offer an higher computational
power [9]. Because join-order optimization can be improved
by parallelization [11], we expect further improvements for
join-order optimization using GPUs by increasing the eval-
uated search space or reducing execution times. Further-
more, GPU-accelereated join-order optimization approaches
enables us to schedule query processing and optimization

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org.
Proceedings of the VLDB 2015 PhD Workshop

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

2200.0

2400.0

2600.0

2800.0

3000.0

random query plans [sorted by runtime]

ru
nt

im
e 

[m
s]

Figure 1: Execution times of different join orders
for query 5 of TPC-H taken from [20]

tasks to different processors and, hence, the parallel execu-
tion of query processing and optimization.

Therefore, in this thesis, we adapt join-order optimization
approaches to GPUs to further improve the quality of the
results of different approaches for join-order optimization.

The remainder of this paper is structured as follows. In
Section 2, we discuss the properties and benefits of GPUs. In
Section 3, we present the problem of join-order optimization
and existing approaches to solve this problem. In Section 4,
we present our research plan and summarize in Section 5.

2. GPU-ACCELERATION
Traditionally, Database Management Systems (DBMSs)

only use CPUs to optimize and execute queries. However,
current system architectures change from single-core CPU
systems to multi-core CPU systems supported by multi-
ple dedicated or coupled co-processors [13]. Different co-
processors such as GPUs exist providing different features
based on their specialized architectures. Because GPUs
offer a parallel architecture with one of the highest per-
formance per dollar ratio and C-like programming inter-
faces [21], GPUs are the most widespread co-processors used
to accelerate a variety of approaches.

2.1 Challenges in GPU-acceleration
Although GPUs are used in a variety of diverse applica-

tions, GPU-acceleration is not applicable to every approach.
Approaches must fully utilize the specialized architecture of

1



Overall Query 4.2
0%

50%

100%

43.8

85.1

14.9

32.4

U
ti

li
za

ti
o
n

Compute Memory Bandwidth

Figure 2: Average utilization of a Tesla K20M run-
ning a star schema benchmark (SF=10) on Co-
GaDB. Overall, less than half of the compute re-
sources are used.

Deterministic Randomized

Hybrid

Exhaustive search

Transformation
Sampling

Genetic algorithms

Greedy

Figure 3: Categories of join-order optimization ap-
proaches

GPUs to benefit from GPUs. This poses several challenges
for adapting existing approaches.

For example, the parallel execution of tasks is only possi-
ble if branching is avoided within the calculations.

Besides the flow of operations, for calculations on GPUs
also the data has to be available on the GPU cores. There-
fore, data needs to be transferred from the main memory to
the GPU device memory. Especially for processing larger
sizes of data, this transfer bottleneck must be considered,
because GPUs offer only a limited capacity of memory.

Furthermore, we need to use the different memory types
of GPUs. Before the data is processed, the data needs to be
transferred efficiently from the large but slow device mem-
ory to the small and fast on-chip or cacheable memory via
coalesced memory access to achieve peak performance.

Whether we can avoid these challenges within an imple-
mentation depends on the properties of the approaches.

2.2 Query Processing vs. Optimization
In DBMSs, approaches can be roughly categorized in two

different groups: Query processing and optimization. In the
past, database researchers mainly used GPU-acceleration for
query processing [12].

Query processing is mainly data-bound. Therefore, the
transfer bottleneck and small storage space of GPUs limit
the applicability of query processing on GPUs. For ex-
ample, in CoGaDB [6], query processing can only utilize
less than 45% of a Tesla K20M in average while process-
ing the star schema benchmark, see Figure 2. In contrast
to query processing, optimization in DBMSs is compute
and not data-bound, because optimization in DBMSs uses
small-sized statistics to solve complex optimization prob-
lems. Hence, query processing and optimization can be ex-
ecuted in parallel on GPUs to exploit the unused computa-
tional power of GPUs.

Optimization of DBMSs consists of several independent
sub tasks. Plenty of these sub tasks, such as selectivity es-
timation or join-order optimization, benefit from a parallel
execution and, hence, would also benefit from GPUs. Unfor-
tunately, we are only aware of GPU-accelerated approaches
for selectivity estimation [2, 3, 4, 14]. Although for join-
order optimization the benefits of parallelism were already
proven [11], the execution on GPUs is still not evaluated.

3. JOIN-ORDER OPTIMIZATION ON GPUS
Given an arbitrary number of relations, which should be

joined, the task of join-order optimization is to determine an
optimal or efficient order in which the joins of the relations
should be performed. Because the execution time of differ-
ent join-orders can vary by several orders of magnitude [20],
a high quality of results of join-order optimization is essen-
tial for efficient query processing. Hence, join-order opti-
mization is one of the most critical optimization problems
in DBMSs. Join-order optimization is an NP-hard prob-
lem [23]. Therefore, the computation of efficient join orders
is a challenging task, especially if the problem size increases.

In order to reduce the complexity of join-order optimiza-
tion, different heuristics to prune the search space were pro-
posed, such as restricting the tree form [1] or postponing
Cartesian products [28]. Unfortunately, pruning the search
space may lead to non-efficient solutions [25]. Hence, an-
other approach is needed to efficiently determine efficient
join-orders: parallelization.

Current architectures offer high computational power by
using parallel (co-)processors. Unfortunately, so far, mainly
sequential algorithms were proposed, which cannot fully uti-
lize this parallelism. The benefits from parallelization for
join-order optimization were already proven for multi-core
CPUs [11]. Because current specialized co-processors such
as GPUs offer even higher parallelism, we expect further
improvements for join-order optimization using GPUs.

The improvement of join-order optimization will depend
on the category of the join-order optimization approach. In
Figure 3, we show the three categories of join-order opti-
mization approaches: deterministic, randomized, and hybrid
approaches.

3.1 Deterministic Approaches
Given the same input, deterministic approaches provide

the same result for multiple repetitions. We can further
divide deterministic approaches into two categories: greedy
and exhaustive search approaches.

Greedy approaches iteratively construct the result by join-
ing at each step one relation to the partial result. The next
joinable relation will be selected by using heurisitics, such
as join selectivity [27], to minimize the overall costs. Al-
though using heuristics reduce the complexity of join-order
optimization, greedy approaches can stuck in local optima.
Hence, greedy approaches cannot guarantee an optimal so-
lution [19]. Because greedy approaches only apply simple
rules to determine the same result for one specific input,
even for multiple repetitions, we do not expect that greedy
approaches will exploit the potential of GPUs except for
batch-processing multiple queries.

In contrast to greedy approaches, exhaustive search ap-
proaches guarantee an optimal solution, but can only be ap-
plied on a small problem size.The optimal solution can either

2



be constructed in top-down or bottom-up manner. Bottom-
up approaches, such as Dynamic Programming (DP) [24],
iteratively construct the final result by using partial results.
In contrast to bottom-up approaches, top-down approaches
can avoid unnecessary operations by using multiple enhance-
ments, such as prioritization and branch-and-bound prun-
ing, which are not applicable for bottom-up approaches [8].

For parallelizing top-down approaches, a limiting factor
might be the memoization. If the data structure for mem-
oization is accessed in parallel, these accesses have to be
synchronized, if the same item is accessed.

3.2 Randomized Approaches
Greedy approaches cannot guarantee an efficient result

and deterministic approaches are limited to a small prob-
lem size. Hence, several randomized approaches were pro-
posed to ensure an efficient but not optimal solution for
bigger problem sizes. We can categorize randomized ap-
proaches into three different groups: transformation-based
approaches, sampling, and Genetic Algorithms (GAs).

Transformation-based approaches, such as simulated an-
nealing [15], randomly select transformation rules to create
new join trees. Based on the approach, only improvements
or also deterioration of the corresponding costs are consid-
ered.

In addition to transformation-based approaches, random
sampling was proposed [10]. Based on an enumeration of
all possible join trees, join trees are uniformly selected, con-
structed and evaluated.

In contrast to sampling, GAs iteratively improve the qual-
ity of results by using the concept of evolution [5]. Starting
with a randomized initial population, new individuals are
iteratively created by combining features of existing indi-
viduals (crossover) or by randomly changing single features
of existing individuals (mutation). In order to converge to
an efficient solution, at each iteration existing and created
individuals are rejected by a selection process.

3.3 Hybrid approaches
Since deterministic and randomized approaches for join-

order optimization have both different advantages and dis-
advantages, hybrid approaches were proposed, such as Iter-
ative Dynamic Programming [17]. Hybrid approaches can
adapt their execution based on the complexity of the op-
timization problem. For simple problems, proposed algo-
rithms work like an exhaustive search, whereas for complex
problems, heuristics are used to simplify the optimization
process and apply the exhaustive search only for subspaces
of the whole search space.

3.4 Benefits of GPUs
In this section, we presented different categories for avail-

able join-order optimization approaches. The benefit of GPU-
acceleration will depend on the category of the join-order
optimization approach. On the one hand, GPU-accelerated
deterministic approaches will be applicable to more com-
plex problems by reducing the execution time. The parallel
execution of the DP on multi-core CPUs increased the ap-
plicability from 12 to 25 joins. By using GPUs, we hope to
increase applicability to 50 joins. On the other hand, GPU-
accelerated randomized approaches will provide more effi-
cient plans by evaluating an greater search space in the same
execution time. For example, the result quality of GAs can

be increased by up to 20% [22]. Because exhaustive search
approaches benefit from parallelism, hybrid approaches can
shift the threshold for using heuristics and, therefore, can
provide optimal solutions for more complex problems using
GPUs.

4. TOWARDS GPU-ACCELERATED JOIN-
ORDER OPTIMIZATION

By exploiting the highly parallel architecture of GPUs, we
expect to improve the join-order optimization, see Section 3.

Therefore, in this thesis, we will evaluate the effects of
GPUs on different join-order optimization approaches. In
order to evaluate the effects of GPUs on join-order optimiza-
tion, we will implement a standalone query optimization
framework similar to Opt++ [16]. In contrast to Opt++,
our main goal of the optimization framework is not to pro-
vide an efficient extensibility, but a comprehensive compar-
ison of different parallelization strategies for join-order op-
timization approaches. Therefore, we will implement differ-
ent versions of multiple join-order optimization approaches
within the framework by using different parallelization strate-
gies such as single-threaded, multi-threaded execution on
CPUs, and the execution on GPUs. Applying different par-
allelization strategies for multiple optimization approaches
within one framework enables us to easily measure the ef-
fects on run time and quality of results of the different
parallelization strategies for the join-order optimization ap-
proaches. Because single and multi-threaded CPU versions
are already available for DP, we will start evaluating DP
and continuously extend the framework by integrating fur-
ther join-order optimization such as GA.

Although join-order optimization is depended on the qual-
ity of cost estimations [18], the cost estimation is not the
focus of this thesis. In order to provide accurate cost es-
timations, we can use available GPU-accelerated selectivity
estimations [2, 3, 4, 14]. This enables us to evaluate the ef-
fects of the quality of cost estimations on GPU-accelerated
join-order optimization. In order to exclude the effects of
selectivity estimation, we could determine the selectivity of
operators beforehand and perform the join-order optimiza-
tion with the exact operator selectivities.

Because join-order optimization is not an end in itself but
performed to accelerate the query processing, we will in-
tegrate our planned optimization framework into existing
DBMSs. Thus, we will also be able to evaluate the ef-
fects of query processing using GPU-accelerated join-order
optimization. We will integrate the implemented frame-
work into CoGaDB [6] and Postgres [26] to obtain generally
valid results. CoGaDB is a GPU-accelerated, main-memory
column-store [6], whereas Postgres is a disk-based row-store.

The integration of our planned join-order optimization
framework into CoGaDB is especially interesting, because
CoGaDB already uses GPUs for query processing. There-
fore, we need to find an efficient way to schedule the op-
timization and processing tasks in a way so that the opti-
mization does not affect the query processing on GPUs. Co-
GaDB already offers HyPE, a framework to schedule tasks to
different (co-)processors [7]. Furthermore, HyPE manages
memory and required data transfer dependent on schedul-
ing decision automatically. By adapting HyPE to schedule
optimization as well as query processing tasks, we will be

3



able to efficiently perform query processing and optimiza-
tion tasks on different (co-)processors in parallel.

In order to evaluate the benefits of GPUs for join-order-
optimization, similar to Han et al. [11], we will use an arti-
ficial data set using star-shaped queries, typical for OLAP
queries. This enable us to compare our results with already
published evaluation results.

5. SUMMARY
In this paper, we presented our planed research on GPU-

accelerated join-order optimization. We presented a brief
overview of existing join-order optimization approaches. Fur-
thermore, we discussed which optimization approaches should
benefit from GPUs and what advantages we expect from a
GPU-accelerated join-order optimization. In addition, we
elaborated a research plan for evaluating the effects of GPU-
acceleration on join-order optimization within our planned
GPU-accelerated query optimization framework.

6. REFERENCES
[1] R. Ahmed, R. Sen, M. Poess, and S. Chakkappen. Of

Snowstorms and Bushy Trees. volume 7, pages
1452–1461. VLDB Endowment, 2014.

[2] D. R. Augustyn and L. Warchal. GPU-Accelerated
Query Selectivity Estimation Based on Data
Clustering and Monte Carlo Integration Method
Developed in CUDA Environment. GID, pages
215–224. Springer, 2013.

[3] D. R. Augustyn and L. Warchal. GPU-Accelerated
Method of Query Selectivity Estimation for Non
Equi-Join Conditions Based on Discrete Fourier
Transform. GID, pages 215–227. Springer, 2015.

[4] D. R. Augustyn and S. Zederowski. Applying CUDA
Technology in DCT-Based Method of Query
Selectivity Estimation. GID, pages 3–12. Springer,
2012.

[5] K. Bennett, M. C. Ferris, and Y. E. Ioannidis. A
Genetic Algorithm for Database Query Optimization.
ICGA, pages 400–407. Morgan Kaufmann Publishers,
1991.

[6] S. Breß. The Design and Implementation of CoGaDB:
A Column-oriented GPU-accelerated DBMS.
Datenbank-Spektrum, 14(3):199–209, 2014.

[7] S. Breß, N. Siegmund, M. Heimel, M. Saecker,
T. Lauer, L. Bellatreche, and G. Saake. Load-Aware
Inter-Co-Processor Parallelism in Database Query
Processing. Data & Knowledge Engineering, 2014.

[8] D. DeHaan and F. W. Tompa. Optimal Top-down Join
Enumeration. SIGMOD, pages 785–796. ACM, 2007.

[9] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover.
GPU Cluster for High Performance Computing. SC,
pages 47–58. IEEE, 2004.

[10] C. A. Galindo-Legaria, A. Pellenkoft, and M. L.
Kersten. Fast, Randomized Join-Order Selection -
Why Use Transformations? VLDB, pages 85–95.
Morgan Kaufmann Publishers, 1994.

[11] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and
V. Markl. Parallelizing Query Optimization. PVLDB,
1(1):188–200, 2008.

[12] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational Query
Coprocessing on Graphics Processors. TODS,
34:21:1–21:39, 2009.

[13] J. He, S. Zhang, and B. He. In-cache Query
Co-processing on Coupled CPU-GPU Architectures.
PVLDB, 8(4):329–340, 2014.

[14] M. Heimel, M. Kiefer, and V. Markl. Self-Tuning,
GPU-Accelerated Kernel Density Models for
Multidimensional Selectivity Estimation. SIGMOD,
pages 1477–1492. ACM, 2015.

[15] Y. E. Ioannidis and E. Wong. Query Optimization by
Simulated Annealing. SIGMOD, pages 9–22. ACM,
1987.

[16] N. Kabra and D. J. DeWitt. OPT++ : An
Object-oriented Implementation for Extensible
Database Query Optimization. VLDB Journal,
8(1):55–78, Apr. 1999.

[17] D. Kossmann and K. Stocker. Iterative Dynamic
Programming: A New Class of Query Optimization
Algorithms. TODS, 25(1):43–82, 2000.

[18] V. Markl, V. Raman, D. Simmen, G. Lohman,
H. Pirahesh, and M. Cilimdzic. Robust Query
Processing Through Progressive Optimization.
SIGMOD, pages 659–670. ACM, 2004.

[19] V. Muntes-Mulero, C. Zuzarte, and V. Markl. An
inside analysis of a genetic-programming based
optimizer. IDEAS, pages 249–255, 2006.

[20] T. Neumann. Engineering High-Performance Database
Engines. PVLDB, 7(13):1734–1741, 2014.

[21] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. Lefohn, and T. J. Purcell. A Survey of
General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[22] P. Pospichal, J. Jaros, and J. Schwarz. Parallel
Genetic Algorithm on the CUDA Architecture.
EvoApplicatons, pages 442–451. Springer, 2010.

[23] W. Scheufele and G. Moerkotte. On the Complexity of
Generating Optimal Plans with Cross Products
(Extended Abstract). PODS, pages 238–248. ACM,
1997.

[24] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access Path Selection in
a Relational Database Management System.
SIGMOD, pages 23–34. ACM, 1979.

[25] M. Steinbrunn, G. Moerkotte, and A. Kemper.
Heuristic and Randomized Optimization for the Join
Ordering Problem. VLDB Journal, 6(3):191–208, Aug.
1997.

[26] M. Stonebraker and G. Kemnitz. The POSTGRES
Next Generation Database Management System.
CACM, 34(10), Oct. 1991.

[27] A. Swami. Optimization of Large Join Queries:
Combining Heuristics and Combinatorial Techniques.
SIGMOD, pages 367–376. ACM, 1989.

[28] A. Swami and A. Gupta. Optimization of Large Join
Queries. SIGMOD, pages 8–17. ACM, 1988.

4


