
High Performance Multi-Partition Transactions

Hua Fan
(Supervised by Wojciech Golab and Catherine Gebotys, with input from Brad Morrey, HP Labs)

University of Waterloo, Canada

h27fan@uwaterloo.ca

ABSTRACT
This PhD project addresses high throughput multi-partition,
multi-get/put transactions, a.k.a. read-only/write-only trans-
actions, in distributed storage systems providing strong con-
sistency, specifically serializability, on various workload changes.
Current systems either sacrifice performance for concurrency
control, or trade consistency for performance. The project
takes a new angle on the problem by proposing an epoch-
based concurrency control mechanism, which separates read
operations and write operations into different time slices, re-
ferred as epochs, to minimize conflicts among transactions.
This mechanism also supports self-adaptation as workload
characteristics change using the epoch duration as a tun-
ing parameter. Using this epoch-based concurrency control
protocol, our preliminary experiments achieve 1.5 million
get/put operations per second per hosts on six server hosts.
Our multi-get/put transactions are atomic and serializable.

1. INTRODUCTION
To overcome the performance gap between the traditional

relational database and web scale distributed system re-
quirements, researchers have built simpler semantic trans-
action systems, such as get/put operation distributed key-
value stores, or systems only guaranteeing weak consistency,
such as eventually consistent data stores. However, multi-
partition multi-get/put operation transactions in distributed
storage system are always expensive, especially if concurrent
multi-get/put operation transactions have common keys. Sin-
fonia [1] uses minitransactions to provide strong consistency:
more precisely ACID, using two-phase locking to lock the
items accessed by the transaction. Two phase locking can
be a bottleneck for performance when there is contention
among transactions. This kind of contention is common
with high throughput multi-partition multi-get/put opera-
tion transactions, which are the applications we are target-
ing. RAMP [2] explores the problem by weakening consis-
tency for performance. They have defined a non-serializable
isolation model called Read Atomic (RA), which means all or

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org.
Proceedings of the VLDB 2015 PhD Workshop

none of each transaction’s updates are visible to others. RA
allows non-serializable read, which either limits the usage of
the protocol or increases the complexity of application de-
velopment. Furthermore, with respect to network efficiency,
RAMP needs two round trips for write, one or two round
trips for read, and possibly large meta-data or large sec-
ond round message in communication, specifically, linear to
transaction size. Note that under scenarios with many con-
current large transactions (the number of keys/partitions is
large in one transaction), RAMP tends to have both two
rounds for read and large message size overhead depends on
size of data set.

More than building a specific high throughput multi-
partition transaction protocol, another question is can we
build a self-adapting protocol for different workloads?

Researchers usually build different systems for different
workload requirements. In the face of read heavy vs write
heavy trade-off, some systems design for write-optimized
(for instance, Cassandra [5], an open-source version of Dy-
namo [3], is designed to handle high write throughput), oth-
ers target read-optimized (for instance, RAMP, section 5.1
[2] targeting read-heavy applications). For (single) get/put
operation heavy vs multi-get/put operation trade-off, VoltDB
[7] uses a single thread to avoid latches or critical sections
in each partition, and has very good performance for sin-
gle node transactions, but performance suffers for multi-
partition transactions, because all multi-partition transac-
tions are sent to and serialized by a special global controller.
This project requires that the transaction protocol self-tunes
for performance, in the face of dynamic read-heavy and
write-heavy workload changes, or between single-get/put
operation heavy and multi-get/put operations heavy changes.

To achieve high throughput serializable transactions, and
self-adaptation upon workload characteristics changes, this
project explores a time-based scheme, which splits time into
read-only epochs and write-only epochs. This concurrency
control mechanism tends to minimize conflicts between multi-
partition transactions, and minimize the meta-data and mes-
sage size in the transaction for high performance. In our
research plan, epoch duration is used as the tunable pa-
rameter for adapting to different workloads. The cost of
epoch-based concurrency control is potentially large latency
variation, because a transaction may need to wait the time
up to one epoch duration before making progress, which is
acceptable in the applications we are targeting.

Silo[8] is a single machine main-memory DB, which uses
epoch number for serializability and recovery. In contrast,
we focus on distributed transactions and use epoch to sep-



arate read and write transactions, another difference from
our project is that Silo uses epoch as commit unit, which
means the clients will not get response until all transactions
in epoch finish, and serialization order within an epoch is
not recoverable.

In summary the objective of the PhD project is to con-
tribute the following: 1) we propose an epoch-based concur-
rency control mechanism; 2) build a high throughput seri-
alizable, multi-partition multi-get/put transaction protocol
for distributed storage system in single data center; 3) an
approach for system self-tuning based on workload changes.

2. APPROACH
This section explains the system data model of our discus-

sion, proposes the idea of epoch-based concurrency control,
and details a basic corresponding transaction protocol. This
section focuses on the core modeling of the epoch-based con-
currency control, and if not specified we assume it runs in
a failure-free scenario. Section 4 will discuss the research
plan for other features, including fault tolerance and repli-
cation, various improvement and trade-offs for the protocol,
and system self-tuning.

2.1 Data Model
We highlight the data models used in these project.

Data partition. Each item, identified by a key, has a single
logical copy, residing in its hash partition. Each item has an
initial value ⊥, and can identify its partition using this key.
Multi-versioning. Each key has a latest value as well as
snapshots of previous values. Each value is associated with
a globally unique version number.
Timestamps and commutative overwrite policy. The
version number is a timestamp used for choosing the latest
version by a highest-timestamp-wins policy. The timestamp
is generated by the server that receives the client’s request
at the time when the server begins to process the trans-
action. To generate a unique timestamp, the server could
combine a unique server ID, a per-server increasing number
and time from the clock. We assume clocks across servers
are synchronized, and clock skew is less than 1ms within the
data center, and the minimum transaction latency is at least
twice the clock skew.
Read-only and Write-only transactions. We focus on
read-only and write-only transactions, more precisely, multi-
get/put operations. We assume the transaction size may be
large, which means multi-put transactions have a high like-
lihood of write-write conflicts.
Serializable consistency. All committed transactions are
serialized by the version number timestamp. Write transac-
tions begin at the version number timestamp and finish at
sometime within the write epoch. Because there are no read
transactions making progress within write epochs, there are
no inconsistent reads if we treat the write transactions as
taking effect at the version number timestamps.

2.2 Epoch-based Concurrency Control
In our data model, every transaction is either read-only

or write-only. Reads never conflict with reads. Writes are
allowed to proceed in parallel, and are ordered using times-
tamps. Read transactions and write transactions are pro-
cessed in different epochs to avoid read-write conflicts.

Server-
backend

Server-
frontend

Server-
backend

Server-
frontend

Server-
backend

Server-
frontend

client client client

Epoch 
Manager

network

Figure 1: System architecture

Epoch-based Concurrency Control (ECC), splits time into
epochs. Each server maintains a local epoch status. Using
this epoch status, the server will behave as follows:

1. Transaction happens within an epoch. A trans-
action that begins within an epoch must also finish in the
same epoch.

2. No uncompleted transactions. At the start time
of an epoch, the server has no uncompleted transactions.

3. Read epoch. A server will not start any write trans-
actions in a read epoch.

4. Write epoch. Server will not start read transactions
in a write epoch. However, one exception is that read trans-
actions only accessing snapshot of old versions (committed
in previous write epochs) are allowed.

In order to successfully commit any multi-partition trans-
action, all the accessing partitions should have the same
epoch statuses(read or write) during the transaction execu-
tion. To support high multi-partition transaction through-
put, ECC needs a protocol to ensure epoch statuses among
hosts are synchronized. Synchronized status means all hosts
have the same status. Note that during the time of un-
synchronized status, which means a subset of the servers
have different epoch statuses from others, only transactions
accessing the same status servers will succeed, and any suc-
cessfully committed transactions remain serializable. We
suggest the duration of each epoch is long enough com-
pared to time used for each transaction and time to coordi-
nate switching between read and write epochs(epoch switch
time), to allow a significant number of transactions within
each epoch.

2.3 Architecture
We target a distributed system in one data center, and

Figure 1 shows the system architecture.
Server-backend (SBack). SBack stores items of a parti-
tion of the database, handles requests accessing these items.
Server-frontend (SFront). SFront accepts requests from
clients, starts transactions, generates timestamps for each
transaction, and communicates with SBack according to the
epoch status, deciding whether the transaction either com-
mitted or aborted in the epoch. Clients can connect to any
one of the SFronts, and each SFront may contact any SBacks
where the required items reside.
EpochManager (EM). SBack and SFront are usually co-



located in the same physical server host (denoted by a grey
box in Figure 1), but they may have their own epoch status.
The EM communicates with all SBacks and SFronts for the
purpose of synchronizing epoch status. Section 4 explains
our plans on how to avoid EM being a single failure point
or performance bottleneck in the protocol.

2.4 Transaction Protocol
This section first describes how the epoch switch guaran-

tees the requirements of ECC, then specifies the algorithms
of SBack and SFront when they agree on the current epoch.

Epoch switch algorithm: (1) The procedure is initi-
ated from the EM, which requests all SFronts to finish their
current epoch; SFronts will stop sending new requests upon
receipt of this request and respond after finishing all pending
transactions. (2) After getting all responses from SFronts,
the EM requests SBacks to switch to the next epoch. For
safety, SBacks respond after finishing all pending transac-
tions. (3) After getting all responses from the previous step,
the EM notifies all SFronts that all SBacks have changed to
new epoch, and it’s safe to begin sending requests for the
new epoch.

Regarding communication between SBacks and SFronts,
an SBack will reject requests within wrong epoch type which
notifies the sending SFront it has become desynchronized.
The protocol for multi-partition multi-get/put occurring within
the correct epoch is demonstrated in Algorithm 1.

While maintaining a stronger consistency semantic, our
protocol is simpler and has less overhead for multi-get/put
than previous work (e.g. RAMP). For example, there is no
need for meta-data which includes (in some variations) the
write set of the transaction, in storage and message commu-
nication. Also it only needs one round trip for read, and one
round trip for write when no failure occurs.

In a failure-free environment, transactions will not be aborted
because of write-write conflicts for keys across transactions.
In case of transaction abortion due to failure, we use a lazy
update policy to minimize overhead. If the latest version
needs to be aborted we only tag removed for that entry
(Algorithm 1 L9), the entry will be overwritten upon a new
put for that key, and the removed tag will be cleared. If a
get operation find the latestCommit[i] is removed, it needs
to find the latest version from all committed versions (Algo-
rithm 1 L14). Even if the versions are not sorted by times-
tamp or epoch order, the search is a one-time cost, because
the result is saved to avoid searching for it again.

3. PRELIMINARY EXPERIMENTS
We have conducted a preliminary experiment to evalu-

ate a simple implementation of ECC described in section
2.4. The experiment was deployed in Amazon EC2, using
c3.8xlarge instances. Because we were not able to have more
than 20 instances in one Amazon placement group, we used
19 instance to test up to 6 server hosts, 12 YCSB client
hosts, and one running controlling scripts. We used fbthrift
for RPC calls, and libcuckcoo for internal storage in SBack.
Each YCSB host had 64 client threads using uniform dis-
tribution, half of them were dedicated update clients, which
had 100% write workload; The other half were dedicated
query clients, which had 100% read workload. The clients
grouped sets of gets and puts into multi-get and multi-put
transactions, and each transaction had 500 get/put opera-
tions. We experimented with epoch durations of 500ms and

Algorithm 1: Multi-partition Multi-get/put operation

SBack-side method
Data: versions: set of

version< item i, value v, timstamp ts >.
latestCommit[i]:last committed timestamp for item i
timestamp ts has a flag removed, default value is false

1 Procedure Put(v: version)
2 versions.add(v)
3 latestCommit[i]← max (latestCommit[i], v.ts)
4 latestCommit[i].removed ← false
5 return

6 Procedure Abort(v: version)
7 versions.remove(v)
8 if v.ts = latestCommit[i] then
9 latestCommit[i].removed ← true

10 return

11 Procedure Get(i:item, ts: timestamp)
12 if ts = ⊥ then
13 if latestCommit[i].removed = true then
14 latestCommit[i]← versions.MaxTs(i)
15 return v ∈ versions : v.item = i ∧ v.ts =

latestCommit[i]
16 else
17 return v ∈ versions : v.item = i ∧ v.ts = ts

SFront-side method
18 Procedure PutAll(W: set of < item i, value v >)

19 ts ← generate new timestamp
20 V ← {v|∀w ∈W, v = {w.i, w.v, ts}}
21 parallel-for v ∈ V do
22 invoke Put(v) on respective partition.
23 if all previous Put not rejected or timeout then
24 return
25 else
26 parallel-for v ∈ V do
27 invoke Abort(v) on respective partition.

28 Procedure GetAll(I : set of items)
29 parallel-for i ∈ I do
30 invoke Get(i, ⊥) on respective partition.

1000ms. We also implemented a baseline (no concurrency
control), which should be the upper bound for performance.
In the baseline, SF and SB will process the requests without
any epoch-based or lock-based concurrency control.

Figure 2 shows the aggregate throughput and average la-
tency using various numbers of server hosts. The through-
put of operations is throughput of transaction times trans-
action size. In our experiment, when epoch duration was
1000ms(epoch 1000), the system achieved approximately 1.5
M get/put operations per second per host, which is only 10%
less than the baseline implementation without any concur-
rency control. For the multi-server scenario, the experiment
demonstrates nearly linear scalability. Clients blocked be-
cause they submitted a read during a write epoch or vice
versa had requests with latency nearly the same as the epoch
duration. However, because the number of these blocked
transactions was negligible compared to the overall transac-
tion count, the average latency is close to that of unblocked
transactions. If the clients are not performing a dedicated
read or write workload, the average latency could be much
higher. We plan to explore these scenario using nonblocking



0

2

4

6

8

10

0 2 4 6 8

Th
ro

ug
pu

t(
op

er
at

io
n/

s)
Millions

epoch 500 epoch 1000 no concurrency control

0

20

0 2 4 6 8

Av
g.

La
nt

e.
(m

s)

Number of server hosts

ms ms

Figure 2: Throughput and latency result

YCSB clients or large number of clients in future work.

4. RESEARCH PLAN
We propose the following research plan to meet the project

requirements not discussed in section 2, and overcome some
assumptions and limits in our previous work.

Self-tuning based on workload. If the EM allows re-
peated epochs of the same type, the system can adapt to the
read/write ratio of the workload for improved throughput.
Multi-get/put operations favor longer epoch durations, be-
cause it takes longer to process larger transactions; however,
if the duration is too long, get/put operation latency (and
variance) will increase with no benefit. We propose tun-
ing epoch type and duration as follows: the SFront will use
a metric to track the requests from clients; another process
collects these metrics from all SFronts (or by sampling), and
suggests future epoch type and duration to the EM based on
a predefined strategy. The metric usually includes property
and behavior statistics of recently requests, such as type,
transaction size, and latency.

Fault tolerance and replication. The system should
tolerate the failure of a single server. Server health is ex-
changed by heart beats. SBacks are replicated in a classic
primary-backup manner, with the backup taking over when
the primary fails. SFronts operate slightly differently from
a classic primary-backup: the backup only finishes the un-
completed transactions, but never takes over the primary
for new client requests. Clients can connect to any SFront,
and the system can easily add more SFronts. The EM has a
replicated backup, which tracks every request and response
of the primary. Because SF and SB passively handle epoch
change requests from the EM, the backup EM can easily
take over the role by sending follow on requests to SF and
SB. For a larger data center, the EM service can be imple-
mented by multiple physical hosts.These EM units can be
organized hierarchically, or coordinated using a distributed
consensus protocol (e.g. Paxos [6]) or distributed coordina-
tion (e.g. ZooKeeper [4]).

Agile epoch switch. To maximize overall performance,
we want to minimize the duration of each epoch switch.

To allow SF and SB to reduce the time for finishing un-
completed transactions, we plan to explore strategies for

epoch planning. The high level idea of Epoch planning is
to alert SFronts when the epoch switch request will come to
allow them to prepare for it. For example, the EM propa-
gates the expected time of next epoch switch to SF; SFront
will throttle multi-put/get operations depending on transac-
tion size and remaining time before expected epoch switch.

Differentiated treatment is a strategy to address the prob-
lem that the epoch switch is slow because EM waits for a
response from a slow server. Plan in detail: EM tracks the
history of each server’s response time; EM will send epoch
switch requests to slow servers (based on the history) earlier
than others.

Formal proof of serializability and Model. Even
though section 2.1 informally shows the timestamp of ver-
sion number can be used for the serialization. We plan to
give a formal proof of serializability of epoch-base concur-
rency control mechanism. We also want to identify the key
variables that affect the performance, and establish a model
for performance of ECC.

5. CONCLUSION
This paper discusses the problem of building high through-

put multi-partition, multi-get/put transactions with serial-
izability, by exploring an epoch-based concurrency control
method. Currently, based on a simple prototype of ECC, our
preliminary experiment achieves around 9 million operations
per second using 6 server hosts, which achieves 90% through-
put of no concurrency control and 10 times the throughput
reported by RAMP under small transaction size and read
heavy workload using the same number of servers. We also
show our research plans and ideas to extend the assumptions
and limits of the protocol.

6. REFERENCES
[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: A new paradigm for building
scalable distributed systems. ACM Trans. Comput.
Syst., 27(3):5:1–5:48, Nov. 2009.

[2] P. Bailis, A. Fekete, J. M. Hellerstein, A. Ghodsi, and
I. Stoica. Scalable atomic visibility with RAMP
transactions. In Proceedings of SIGMOD ’14, pages
27–38, New York, NY, USA, 2014. ACM.

[3] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, Oct. 2007.

[4] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In Proceedings of USENIXATC’10, pages
11–11, Berkeley, CA, USA, 2010. USENIX Association.

[5] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010.

[6] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[7] M. Stonebraker and A. Weisberg. The VoltDB main
memory DBMS.

[8] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of SOSP ’13, pages 18–32, New York,
NY, USA, 2013. ACM.


