
Redoop Infrastructure for Recurring Big Data Queries∗

Chuan Lei, Zhongfang Zhuang, Elke A. Rundensteiner, and Mohamed Y. Eltabakh
Worcester Polytechnic Institute, Worcester, MA USA
{chuanlei,zzhuang,rundenst,meltabakh}@cs.wpi.edu

ABSTRACT
This demonstration presents the Redoop infrastructure, the first full-
fledged MapReduce framework with native support for recurring
big data queries. Recurring queries, repeatedly being executed for
long periods of time over evolving high-volume data, have become
a bedrock component in most large-scale data analytic applications.
Redoop is a comprehensive extension to Hadoop that pushes the
support and optimization of recurring queries into Hadoop’s core
functionality. While backward compatible with regular MapRe-
duce jobs, Redoop achieves an order of magnitude better perfor-
mance than Hadoop for recurring workloads. Redoop employs
innovative window-aware optimization techniques for such recur-
ring workloads including adaptive window-aware data partitioning,
cache-aware task scheduling, and inter-window caching mecha-
nisms. We will demonstrate Redoop’s capabilities on a compute
cluster against real life workloads including click-stream and sen-
sor data analysis.

1. INTRODUCTION
The availability of large-scale data processing systems [5, 14]

has enabled most applications to explore their big data sets us-
ing data-intensive analytical tasks that were not possible before.
MapReduce [5] provides a simple API for writing user-defined jobs:
a user only needs to specify a serial map function and a serial re-
duce function. MapReduce then executes these functions over mas-
sively large datasets so called “big data” in a shared-nothing cluster.

Hadoop [14] is a widely-used platform for such data-intensive
applications because of its scalability, flexibility, and fault toler-
ance. However, as proven by a flurry of research work on Hadoop [11,
9], distributed processing by itself is not enough to achieve high
performance. Instead, the system needs to be highly optimized to
achieve robust performance for specific classes of query workloads.
In this vein, Redoop now is the first to focus on optimizing the type
of recurring workloads prevalent in many mission-critical applica-
tions [10, 13]. A recurring query is defined as an analytical query
that periodically executed over large volumes of evolving datasets.
∗This project is supported by NSF grants CNS-305258, IIS-
1018443 and IIS-0917017.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

In each execution it limits its scope of interest using a sliding win-
dow, e.g., processing the last n hours, days, weeks, or even months
worth of data depending on the granularity of interest.

We use news feed updates as an example of recurring queries in
Internet-scale applications. On modern consumer websites, news
feed generation is nowadays driven by online systems. Online news
services may be generated on a per-member basis based on the
member’s interactions with other components in the system. For
example, a LinkedIn member may receive periodic updates on their
profile changes. Computing these updates involves deep analytical
processing of large-scale data sets across multiple sources. To gen-
erate an update highlighting the company in which most of a mem-
ber’s connections have worked in the past month requires joining
the company’s data of various profiles. The update may often be
delivered to the members by the end of each day or week. Such up-
dates could naturally be expressed by recurring queries over evolv-
ing data sources such as members’ connections, employers, etc.

Many other data analytics applications from log processing to
click stream analysis share similar characteristics: they need to pe-
riodically run recurring queries over large volumes of data. Thus
even with a relatively small processing window, the amount of data
overlapping between consecutive executions can be huge. There-
fore, without proper system-level support, e.g., understanding the
recurring nature of queries, critical optimization opportunities have
been missed.

State-of-the-Art. Several extensions have been proposed to im-
prove Hadoop’s performance w.r.t different query types, e.g., SQL-
like queries [7, 12], online processing [4], and iterative queries [3].
However, none of these systems support or optimize the recurring
big data queries addressed by our Redoop solution [8].

While some studies such as HaLoop [3] and Twister [6] have
utilized disk-based caches to improve the performance of Hadoop,
their domain of queries, which is the iterative queries, is different
from ours. These systems provide special purpose support to iden-
tify and then maintain invariant data during subsequent recursions
on same static data set. The major difference between the afore-
mentioned systems and Redoop is that we use a well-understood
set of principles from window semantics to provide an end-to-end
optimization for supporting recurring queries over evolving data
sets. Thus our Redoop infrastructure is a general purpose solution
that not only offers caching mechanism to avoid redundant compu-
tations but also tackles other issues in recurring query processing
such as fluctuating inputs and window-aware task scheduling.

Nova [11], closest to our work, supports the convenient spec-
ification and processing of incremental workloads on top of Pig.
However, Nova acts as a middle-ware layer on top of Hadoop which
is treated as a black-box system. It cannot exploit the optimization
opportunities offered by Redoop including adaptive data partition-



ing, caching of the intermediate data to avoid redundant shuffling,
cache-aware task scheduling to utilize cache locality, and adaptivity
to the data arrival rate.

In summary, existing MapReduce-like systems fall short in pro-
viding system-level optimizations for recurring big data queries.
They offer neither caching of intermediate data for reuse, cache-
aware task scheduling, nor adaptive processing based on input data
rates. Our Redoop [8] infrastructure is the first MapReduce-based
technology that offers dedicated support for data-intensive recur-
ring queries. Highlights of Redoop to be showcased include:
• Redoop recurring query model: Redoop efficiently handles

recurring queries with a wide spectrum of execution granularities
through a proactive execution mechanism, whereby it adaptively
detects fluctuations in input data between different executions and
proactively starts performing partial processing to deliver results.
• Redoop adaptive data partitioning strategy: Redoop splits

the input data into fine-grained data units (called panes) customized
for effective window-centric data consumption. Adaptive partition-
ing eliminates costs of repeated reading and loading of partially
overlapping panes across windows.
• Redoop window-aware caching: Redoop creates re-use op-

portunities across the subsequent execution of recurring queries by
caching intermediate data at different stages of a MapReduce job.
The caching mechanism significantly reduces I/O costs by avoid-
ing unnecessary re-loading, re-shuffling, and re-computation of the
overlapping data. The Redoop scheduler is tuned to maximize the
utilization of the available caches and to balance the workload on
each node to boost the system performance.

In this demonstration, we show Redoop infrastructure running
over real-world workloads with fluctuations including click-stream
and sensor data analytics. The demonstration will leverage a 30-
node compute cluster hosted in the Computer Science Department
at Worcester Polytechnic Institute.

2. REDOOP INFRASTRUCTURE
The sliding window semantics of recurring queries may result in

a significant overlap of data between consecutive windows. Thus,
we proposed an advanced task execution manager for Redoop to
cache input data on local file systems of task nodes. The cached
data is efficiently utilized to reduce redundant disk I/O operations
at run-time. Redoop introduces an incremental processing model to
allow task nodes to asynchronously execute any map or reduce task
with incrementally evolving data between two consecutive query
recurrences. Redoop adds five new components along with adopt-
ing and extending several existing components from Hadoop. Fig-
ure 1 illustrates the proposed infrastructure of Redoop as an exten-
sion of Hadoop.

1. Window Semantic Analyzer is the optimizer that, given the
window constraints of recurring queries, produces a data partition
plan. That is, it produces a plan of subdividing input data sources
into panes (i.e., separate HDFS files) with optimized granularity
that can be most efficiently processed by map and reduce tasks.
Such plan can also eliminate unnecessary data re-processing caused
by recurring queries.

2. Dynamic Data Packer is the partition executor that imple-
ments the instructions encoded in the partition plan produced by
the above optimizer. That is, it dynamically splits very large input
data partitions into smaller panes. The data packer piggybacks the
pane creation step with the loading step, i.e., while a given input file
is being loaded into HDFS, the data packer partitions the records to
the corresponding panes.

3. Execution Profiler collects the statistics after the comple-
tion of each query recurrence, i.e., execution times of previous

query recurrences. The profiler then transmits the statistics to the
Window Semantic Analyzer such that the pane size can be ad-
justed in a timely manner during subsequent input partitioning.
The above three mentioned Window Semantic Analyzer, Dynamic
Data Packer, and Execution Profiler together also determine the Re-
doop’s execution modes to tackle data fluctuations.

Window-Aware 
Task Scheduler

Job 
Tracker

Window 
Semantic 
Analyzer

Query

Dynamic Data 
Packer

Inputs

Window-Aware 
Cache Controller

Redoop Framework

Master Node Task Nodes

Task Tracker

Local Cache 
Manager

HDFS

Local FS

Tasks ...

Task Tracker

Local Cache 
Manager

HDFS

Local FS

Tasks ...

Task Tracker

Local Cache 
Manager

HDFS

Local FS

M/R Task

Execution 
Profiler

Modified from Hadoop Identical to HadoopNew in Redoop

Figure 1: Redoop Infrastructure [8]

4. Local Cache Manager installed on each task node in Re-
doop maintains the Redoop caches on the node’s respective local
file system. The Local Cache Manager sends its cache meta-data to
the Window-Aware Cache Controller described below along with
its heartbeat for global synchronization. The cache manager allows
users to provide a purge policy. It is responsible for purging the
expired caches according to the prescribed policy and the purge
notification received from the master node.

5. Window-Aware Cache Controller is a new module housed
on the Redoop master node that maintains window-aware meta-
data of reduce input and output data cached on any of the task
nodes’ local file systems. This controller helps optimize query exe-
cution by providing information of window-dependent cache usage
for run-time task scheduling decisions.

6. Window-Aware Task Scheduler, an extension of the default
Hadoop TaskScheduler, aims to maximally exploits the interme-
diate caches that reside on the local file system for incremental
window-centric processing of input data. It also balances the work-
loads on each node based on the locality of prior caches. Both ex-
ploiting existing caches and keeping the load balanced further both
improve the query processing performance.

3. KEY TECHNICAL INNOVATIONS OF
REDOOP SOLUTION

This section discusses the key innovations of Redoop to support
large-scale data-intensive recurring query processing using MapRe-
duce paradigm.

Adaptivity to Load Fluctuations: Evolving data fluctuating
over time requires Redoop to adapt to these changes. Variance of
the input data sources (in rate and/or in values) can at times result in
temporary load spikes, with the data processing time significantly
affected by the duration of the spikes. Worse yet, the cluster re-
sources may not be efficiently utilized and the delayed query results
may further slow down other data analytics jobs that depend on the
current query execution.



Redoop implements an adaptive pane-based partitioning tech-
nique to adaptively partition a pane into sub-panes when faced with
workload spikes. Clearly, a larger amount of input data will tend to
increase the execution time. The core idea is to exploit the statistics
collected from the Execution Profiler, i.e., the execution times and
the amount of data processed in the previous executions, to adjust
the pane size during the subsequent input data partitioning process.
This is based on the insight that the input data size is one of the
dominant factors determining the execution time of a MapReduce
job [9]. Thus, the pane size in Redoop is determined by a series of
observations of the job execution over time and the corresponding
pane sizes. Our solution is to estimate the future behavior of in-
put data sources based on these observations and then produce the
pane-based partitioning plan accordingly.

Cache-Based Processing: The greatest challenge and opportu-
nity in recurring queries is that the inputs across consecutive execu-
tions of the same query can significantly overlap. The straightfor-
ward approach to avoid the repeated input data processing is to keep
the overlapping data in memory before any job finishes processing
the data. This is not a desirable approach in our case for two rea-
sons. First, the memory resources may not scale to the huge volume
of data. Second, it is vital to retain the fault-tolerance of MapRe-
duce via automatic cache recovery and task re-execution support.

In Redoop, we cache the input data partitions on task nodes’ lo-
cal file system for subsequent reuse to reduce the unnecessary I/O
costs. Redoop maintains caches at two stages of a MapReduce job,
reduce input and output. Both cached data need not to be loaded,
processed or shuffled again with the same mapper across windows.
Hence this reduces the processing time for recurring queries. To
facilitate caching on local nodes, Redoop maintains additional data
structures associated with these caches. Due to data sources being
updated periodically, the local file system on task nodes cannot ac-
commodate an unbounded number of historical caches. Thus, we
also introduce purging mechanisms to remove the expired caches.

H 
D 
F 
S 

S1,1 

S2,1 

S2,2 

m1 

m2 

r1 

r2 

m1 r1 

r2 

Node 2 

2nd Win 

RI1 

RI2 

RI3 

 1st Win 
Node 1 

Node 2 

Node 1 

Local fs 

Local fs 

Local fs 

Local fs 

Figure 2: Redoop Infrastructure Workflow

Cache-Aware Scheduling: The default Hadoop task sched-
uler does not understand the window constraints specified in the
recurring queries. Thus the execution of a chain of recurring jobs
can be slow, especially if an inappropriate scheduling decision is

made. The goal of the Redoop’s cache-aware scheduler is to sched-
ule tasks that exploit the window-centric cached partitions as much
as possible, reducing redundant work across window panes.

To provide more detail. For example, Figure 2 is a sample sched-
ule for a query joining data sources S1 and S2. To improve perfor-
mance, window-centric partitions S1,1 and S2,1 from S1 and S2

are cached and reused in the recurring query processing. Two task
nodes are involved in this job. The scheduling of the first window
in Redoop is no different than in Hadoop, except the reducer inputs
RI1 and RI2 are cached on the local file systems of Node1 and
Node2, respectively.

The Redoop’s scheduler can take advantage of the cached data
RI1 and RI2 when it schedules the second execution of the join
query. There is no need to load the input data partitions S1,1 and
S2,1, to re-compute their map outputs, nor to communicate them
to the reducers. Only the new data partition S2,2 needs to be pro-
cessed. The same reducers r1 and r2 combine the new reducer
inputs from m1 and m2 with RI1 and RI2 to compute the results
for the second query occurrence.

We refer the interested reader to our technical paper [8] for more
details about the Redoop infrastructure and techniques.

4. DEMONSTRATION DETAILS
The showcases using real use cases including recurring work-

load configuration and processing. It also includes demonstrations
of extreme workflows such as input data fluctuation scenarios to il-
lustrate the effectiveness of Redoop innovations, such as caching,
adaptive input pre-processing, robustness of fault tolerance. The
use cases are setup such that all jobs complete within 10 minutes,
which is the duration of the entire demonstration.

The demonstration has two key components. The first compo-
nent shows the Redoop implementation in action on real recurring
applications, including recurring workload configuration and pro-
cessing. The second component is an interactive walk-through of
the Redoop approach using various workloads that represent input
data fluctuation scenarios to illustrate the effectiveness of Redoop
innovations, such as caching, adaptive input pre-processing, robust-
ness of fault tolerance. The use cases are setup such that all jobs
complete within 10 minutes, which is the duration of the entire
demonstration.

Recurring Workload Configuration: We first show how Re-
doop is used to model and accept recurring queries for different
window constraints with real datasets from two domains, namely
the WorldCup web click (WCC) [1] and the sensor data collected
from a football field (FFG) [2]. The audiences can interactively
construct additional recurring workloads for clickstream or trajec-
tory analytics by selecting and adding relevant components such as
input data sources and key operations for the recurring application.
Redoops UI automatically asks for the relevant parameter values
(see Figure 3(a)). The audiences can deploy these workloads with
ease on our compute cluster.

Recurring Workload Processing: The recurring workload pro-
cessing will be demonstrated with both Redoop and the plain Hadoop
as a baseline system. The Redoop visual monitor displays metrics
including processing time, end-to-end latency, and I/O consump-
tion in Redoop’s job report portal (see Figure 3(b)). The audiences
can work with different workloads by adjusting the operation type
and datasets. Furthermore, a detailed report of query execution
progression helps the audience to better understand Redoop’s im-
provements to each processing phase. This display reports on the
cost distribution of the query operation across the Shuffle and Re-
duce phases in a series of consecutive executions.



(a) Redoop Query Configuration (b) Recurring Queries Performance Monitoring

Figure 3: Redoop Front End GUI

Effectiveness of Window-Aware Caching: The audience can
enable or disable the caching functionality during the recurring
workload configuration. Performance improvement achieved by
the Redoop’s pane-based caching and cache-aware execution over
the plain Hadoop can easily be observed. Details of Redoop caching
strategies can be explored by manipulating parameters such as the
number of nodes and the window overlapping ratio. The overlap ra-
tio indicates how much input data partitions are the same between
two consecutive query executions. From the impact on the exe-
cution time of a recurring application, the audience can assess the
scalability and efficiency of Redoop pane-based caching.

Effectiveness of Adaptive Pane-Based Partitioning: To demon-
strate the robustness our adaptive pane-based partitioning technique,
we work with recurring workloads with fluctuating arrival rates of
input data during each execution. We then execute the recurring
query over the workload with and without the adaptive pane-based
partitioning technique. Redoop’s graphical views (see Figure 3(b))
allow for a quick identification of load spikes and the degree of
data fluctuation. This reveals that input data fluctuation translate
into system overloads. Redoop’s analysis screen visualizes the
execution times of all map and reduce tasks along with their as-
signed workload (i.e., number of panes). This illustrates that Re-
doop keeps similar amount of workload, namely map and reduce
tasks, on each node when employing adaptive technique (Sec. 3).
Moreover, the frequency of job executions along with the amount
of input data that each job actually consumes is displayed.

Robustness of Fault Tolerance: We will demonstrate fail sce-
narios by removing caches from task nodes. The audiences will
learn how our Redoop system can seamlessly recover from cache
failure when the cached data is lost. The cached intermediate data
of the running query in the background will be removed via our
console. The Redoop’s query monitor automatically detects the
cache failure and shows how Redoop copes with such failure w.r.t
the overall processing time. This fault tolerance focussed demon-
stration will let the audiences assess the robustness of Redoop.

5. CONCLUSION
In summary, this demonstration presents the key innovations of

the Redoop infrastructure, a novel distributed system that optimizes
the recurring big data queries. We show Redoop’s capabilities on a

compute cluster against real life workloads including click-stream
and sensor data analysis.

6. REFERENCES
[1] 1998 world cup.

http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
[2] Soccer - real time tracking system.

http://www.iis.fraunhofer.de/en/bf/ln/referenzprojekte/redfir.html.
[3] Y. Bu, B. Howe, M. Balazinska, and others. Haloop:

Efficient iterative data processing on large clusters. PVLDB,
3(1):285–296, 2010.

[4] T. Condie, N. Conway, P. Alvaro, et al. Mapreduce online. In
NSDI, pages 313–328, 2010.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, pages 137–150,
2004.

[6] J. Ekanayake, H. Li, B. Zhang, et al. Twister: a runtime for
iterative mapreduce. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed
Computing, pages 810–818, 2010.

[7] Hive. Hive. http://hadoop.apache.org/hive.
[8] C. Lei, E. A. Rundensteiner, and M. Y. Eltabakh. Redoop:

Supporting recurring queries in hadoop. In EDBT, pages
25–36, 2014.

[9] B. Li, E. Mazur, Y. Diao, et al. A platform for scalable
one-pass analytics using mapreduce. In SIGMOD, pages
985–996, 2011.

[10] D. Logothetis, C. Trezzo, K. C. Webb, et al. In-situ
mapreduce for log processing. In USENIXATC, pages 9–9,
2011.

[11] C. Olston, G. Chiou, L. Chitnis, et al. Nova: continuous
pig/hadoop workflows. In SIGMOD, pages 1081–1090,
2011.

[12] Pig. http://hadoop.apache.org/pig.
[13] R. Sumbaly, J. Kreps, and S. Shah. The big data ecosystem at

linkedin. In SIGMOD, pages 1125–1134, 2013.
[14] The Apache Software Foundation. Hadoop.

http://hadoop.apache.org.


