
OceanST: A Distributed Analytic System for Large-Scale
Spatiotemporal Mobile Broadband Data

Mingxuan Yuan†, Ke Deng†, Jia Zeng‡,†, Yanhua Li†,
Bing Ni†, Xiuqiang He†, Fei Wang†, Wenyuan Dai† and Qiang Yang†

†Huawei Noah’s Ark Lab, Hong Kong
‡School of Computer Science and Technology, Soochow University, Suzhou 215006, China

yuan.mingxuan,deng.ke,zeng.jia,Li.Yanhua1@huawei.com

ABSTRACT
With the increasing prevalence of versatile mobile devicesand the
fast deployment of broadband mobile networks, a huge volumeof
Mobile Broadband (MBB) data has been generated over time. The
MBB data naturally contain rich information of a large number
of mobile users, covering a considerable fraction of whole pop-
ulation nowadays, including the mobile applications they are us-
ing at different locations and time; the MBB data may presentthe
unprecedentedly large knowledge base of human behavior which
has highly recognized commercial and social value. However, the
storage, management and analysis of the huge and fast growing
volume of MBB data post new and significant challenges to the
industrial practitioners and research community. In this demon-
stration, we present a new, MBB data tailored, distributed analytic
system namedOceanST which has addressed a series of problems
and weaknesses of the existing systems, originally designed for
more general purpose and capable to handle MBB data to some ex-
tent. OceanST is featured by (i) efficiently loading of ever-growing
MBB data, (ii) a bunch of spatiotemporal aggregate queries and
basic analysis APIs frequently found in various MBB data applica-
tion scenarios, and (iii) sampling-based approximate solution with
provable accuracy bound to cope with huge volume of MBB data.
The demonstration will show the advantage of OceanST in a cluster
of 5 machines using 3TB data.

1. INTRODUCTION
With the fast deployment of 3G/4G cellular networks and the in-

creasing popularity of mobile devices, it allows people to access
the Internet (almost) anytime and anywhere. It is reported that
more than 96% Hong Kong citizens use mobile phones to access
the Internet every day [2]. When mobile users access the Internet,
the system logs, called Mobile Broadband (MBB) data, recordrich
information includinguser id (i.e., IMSI, International mobile Sub-
scriber Identity),location (longitude, latitude),time-stamp, mobile
device type, mobile App type, package size, and etc. The MBB
data may present unprecedentedly large knowledge base of human
behavior in terms of the scale of the population covered and the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license.Contact
copyright holder by emailing info@vldb.org. Articles fromthis volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

fine-grained spatiotemporal granularity. The MBB data bring great
opportunities to build a full angle picture about crowds, which en-
able a wide range of applications to improve the experience of the
mobile users and to help decision making of business/government
in a wide range of application scenarios, e.g., location-based mar-
keting, mobile App recommendation, population movement pattern
in a city, the home-work location analysis, the public traffic opti-
mization, and etc.

It is highly challenging to handle the MBB data because of the
huge volume and the velocity of new data arriving. For example,
5TB MBB raw data is generated every day in November 2013 in
Shenzhen, a city in China with 10 million population. According
to our experiences working on the MBB data in the past few years,
we have identified three desirable features that a large-scale MBB
data analytic system must possess.

• Support the distributed data storage architecture to accom-
modate the huge volume of MBB data which have been col-
lected over time, and the efficiency of loading the ever-growing
new MBB data to the storage architecture periodically;

• Support efficient spatiotemporal query processing, in partic-
ular, a bunch of spatiotemporal aggregation queries and ba-
sic analysis APIs over distributed data storage system, since
almost all interesting problems of the MBB data we have ob-
served are spatiotemporal information relevant. Importantly,
the practical value of MBB data focuses on the aggregated
behaviour of population because querying the information
of individual user is usually problematic due to privacy con-
cerns;

• Support sampling-based approximate solution of spatiotem-
poral aggregation queries and basic analysis APIs, which are
much more efficient with theoretically provable error bound,
because the exact solution is often very time consuming.

We have investigated the existing distributed systems of spa-
tial/spatiotemporal data management [3, 4, 6, 1]. None of them
possesses all of the above three desirable features. The system
proposed in [3] is a spatial data warehousing system that provides
spatial querying based on Hadoop MapReduce through spatialpar-
titioning. The system proposed in [4] is also based on Hadoop
MapReduce with high-level language support for spatial data. How-
ever, they cannot properly manage the temporal aspect of MBB
data without significant extension. MongoDB [1] is a high-performance
NoSQL database with built-in support of spatiotemporal indices.
MongoDB scales horizontally using sharding. The user chooses a
shard key, which determines how the data in a collection willbe dis-
tributed. The data is split into ranges (based on the shard key) and
distributed across multiple shards. MongoDB can run over multi-
ple servers, balancing the load and/or duplicating data to keep the
system up and running in case of hardware failure. However, the

Figure 1: The structure of OceanST.

poor loading efficiency of MongoDB has been observed in both our
practice and by the previous study [6]. CloST [6] is a spatiotem-
poral database based on Hadoop MapReduce. While it directlyin-
herits the proven scalability of Hadoop MapReduce, it also shows
much more efficient parallel data loading compared to MongoDB
due to the deliberated designed hierarchical partitioningstrategy.
The weakness of CloST to work as a MBB data analytic system
is that it only supports relatively simple spatiotemporal query, i.e.,
retrieving the records in the spatiotemporal query range, while the
MBB data analytic system mainly supports spatiotemporal aggre-
gate query and analysis, i.e., the (exact/approximate) statistics of
the records in the spatiotemporal query range.

In contrast, OceanST holds all three desirable features of areli-
able MBB data analytic system. First, the high loading efficiency is
achieved in OceanST by borrowing the ideas from CloST. Second,
OceanST is based on Spark MapReduce [7] which is an in-memory
MapReduce solution, i.e., the data in OceanST are processedre-
peatedly in memory, so that the query results can be obtainedmuch
faster than Hadoop MapReduce solution which is disk-based1;
in particular, the new spatiotemporal index structures have been
developed to process exact/approximate spatiotemporal aggregate
queries and basic analysis APIs over the distributed storage sys-
tem. Third, a set of novel approximate solutions based on random
sampling have been developed to handle huge volume of MBB data
with theoretically provable error bound.

In the demonstration, the advantage of OceanST is illustrated by
comparing against CloST [6] and MongoDB [1] on a cluster with
5 machines using the real-world MBB data of 3TB.

2. STRUCTURE OF OCEANST
OceanST has three layers, namely, the distributed data storage

layer, the functional layer, and the application layer, as shown in
Figure 1.

2.1 Distributed Data Storage Layer
All MBB data records are in the form [user id, time, longitude,

latitude, attribute1, attribute2,· · ·] where the first four attributes
together uniquely identify a MBB data record. Theattribute1, at-
tribute2, · · · are additional attributes such asdevice type, mobile
App type, package type and etc. All the records and indices are
stored as regular files on HDFS. To achieve high loading efficiency,
the hierarchical partitioning strategy of CloST is applied. Under
this strategy, the MBB data are first divided into a number of level-
1 partitions according to hash values ofuser id and coarse ranges

1Note that both Hadoop MapReduce and Spark MapReduce are on
HDFS which is designed to scale to tens of petabytes of storage.

of Time. Then, each level-1 partition is divided into a number of
level-2 partitions according to a spatial index on location(longi-
tude, latitude). Finally, each level-2 partition is further divided into
a sequence of level-3 partitions according to finer ranges ofTime.
Level-3 partitions contain actual MBB records and the higher level
partitions serve as indexes for level-3 partitions. The level-1 par-
tition is named as a bucket, a level-2 partition as a region, and a
level-3 partition as a block which corresponds to a block fileof
64MB. Each bucket can independently perform data loading and
storage optimizing, we can gradually append data or tune storage
structures one bucket after another such that the high loading effi-
ciency is achieved.

While the hierarchical partitioning strategy allows us to paral-
lelize the relatively simple spatiotemporal query in CloSTto re-
trieve records, it is insufficient in OceanST to properly support spa-
tiotemporal aggregate query and analysis of the MBB data, which
are mainly interested in the exact/approximate statisticsof the re-
trieved records. Therefore, two additional data structures have been
developed in OceanST, namely, in-block index and inverted list.

In-block index. The in-block index aims to refine the spatiotem-
poral granularity of the index structure. It is insensible to scan the
entire block file, if only a fraction of MBB data records in theblock
file are relevant to the query. For example, the query “count the
mobile users whose trajectories are in 100 meters along a speci-
fied road in a time period” may involve many block files which are
partially relevant to the spatiotemporal query.

In OceanST, the size of each leaf node corresponds to the default
memory page (4KB) of the operating system. In block file, the
records are grouped byuser id, and in the same partition the records
are sorted ontime. Clearly, all records in the same group belong to
the same user and they are organized in the sequence of time that
the records are collected. A B+-tree is built to index theuser id
by maintaining the offset of the corresponding group in the block
file. As a consequence, given anuser id, the trajectory of the user
can be easily retrieved without accessing the trajectoriesof other
users. In addition to the B+-tree, a 3-dimensional quadtree (i.e.,
on time, latitude andlongitude) is built in block file to index MBB
data records. Given a spatiotemporal query range, for example, all
user ids whose MBB data records are contained by the range are
retrieved using the quadtree; then the complete trajectoryof these
users can be accessed in block files using the B+-tree.

Inverted Index. OceanST has a mechanism to allow various in-
verted indices which indicate the index leaf nodes (in the 3-dimensional
quadtree) associated with the attribute value of interest.For ex-
ample, suppose“iPhone” is a value of attributemobile App type;
“iPhone” keeps a list of index leaf nodes which contain the MBB
data record(s) with “iPhone” inmobile App type attribute; in par-
ticular, each leaf node in the list can be attached with various ag-
gregated information such as the number of users using “iPhone”
in this leaf node. As a result, the aggregate query, e.g., “what is
the total number of users usingiPhone in a spatiotemporal query
range?”, can be answered efficiently. Another motivation ofthe
inverted index is to support the approximate solution in OceanST
which is based on randomly sampling the leaf nodes of MBB data
index. Given the sampling budget (i.e., a certain percentage of in-
dex leaf nodes to be sampled), the finer the granularity is, the less
variance the approximate solutions is [5]. The storage of the in-
verted index is reasonable since the number of leaf nodes aremuch
smaller than the original MBB data and the number of attribute val-
ues requiring inverted index is very limited in practice.

2.2 Functional Layer

(a) (b)

Figure 2: Random sampling based spatiotemporal aggregate
query and basic analysis API.

The functional layer consists of a bunch of spatiotemporal ag-
gregate queries and basic analysis APIs which work independently
or support various complex analytic tasks found in the application
layer. OceanST provides two types of solutions, i.e.,exact andap-
proximate. The approximate solutions are based on randomly sam-
pling the MBB data. The approximate solution is a must because
exact solution may involve considerably large volume of MBBdata
and thus very time consuming. In this case, a theoretically error
bounded approximate solution is promising.

2.2.1 Exact Solution
The spatiotemporal aggregate queries in OceanST includecount,

distinct count, maximum, average, minimum, sum, and etc. Given a
spatiotemporal query range, for example,count returns the number
of mobile users who are in the range;maximum returns the mo-
bile App which is used by most mobile users in the range;average
returns the average movement speed of mobile users.

The basic analysis APIs include a number of basic analysis func-
tions. Some of them are: (i) given two spatiotemporal ranges, iden-
tify the most frequent path, the path distribution and the distribution
of transportation tools used by the mobile users travellingbetween
them; (ii) given the current location, a temporal range and a mobile
user, predict the next locations of the user and the next mobile APP
to be used by the user with a probability by mining the historical
data; (iii) given a spatiotemporal range, identify the top-k locations
from which the mobile users come from; (iv) given a spatiotem-
poral range, identify the top-k locations to which the mobile users
go; (v) given a spatial region, partition it into subregions according
to the density of mobile users at different time slots of a day, e,g,.
hourly; (vi) find out the home and work locations; and more.

2.2.2 Approximate Solution
The spatiotemporal aggregate query and basic analysis API pro-

cessing with large volume of disk-resident MBB data take very
long time to produce exact answers. Hence, the approximate so-
lution is promising in many application scenarios which have strin-
gent response time requirements and accept approximate result with
theoretical error bound.

By utilizing the well-established spatiotemporal index and a spe-
cific inverted list to trajectory data, we have developed random in-
dex sampling (RIS) algorithm in OceanST to estimate the answer
with a guaranteed error bound. An example is shown in Figure 2(a)
wherer1, r2, r3 are three trajectories belonging to different mobile
users,R is the spatiotemporal query range of queryq, and the small
gray blocks are leaf nodes of the MBB data index in a block file.
Now, we use spatiotemporaldistinct count query as an example
to show how to estimate the answer. LetB denote the sampling
budget, i.e., the maximum number of index leaf nodes allowedto

Figure 3: OceanST graphic user interface.

collect. In our analysis, we assume thatB is always sufficiently
large. We uniformly at random pick upB index leaf nodes from
the leaf node set covered by the spatiotemporal query range with
replacement. In OceanST, we have developed an asymptotically
unbiased estimator to thedistinct count query and proved the rela-
tionship between the accuracy and sampling budget. An estimator
is a function of a sequence of observations that outputs an estimate
of an unknown population parameter.

The proposed RIS algorithm properly deals with a single spa-
tiotemporal aggregate query with a guaranteed estimation error bound.
However, when it comes to OceanST, a large-scale MBB data an-
alytic system, a large number of spatiotemporal aggregate queries
may come concurrently. These queries may have overlapped spa-
tiotemporal query ranges. As illustrated in Figure 2(b) where R′

1

andR′
2 are the spatiotemporal query ranges of two queries which

arrive concurrently and overlap with each other. A naive method
for handling concurrent queries is to perform single randomindex
sampling (RIS) algorithm individually for each query. However,
by reusing the samples obtained in the overlapped range of queries,
the estimation accuracy can be significantly improved. In OceanST,
we propose concurrent random index sampling (CRIS) algorithm,
that performs stratified sampling and overlapping sample reuse on
concurrent spatiotemporal aggregate queries. As illustrated in Fig-
ure 2(b), the small blocks are samples used in the estimation. Our
theoretical results show that CRIS can achieve higher estimation
accuracy for each concurrent trajectory aggregate query, with less
sampling budget than simply running RIS for each query.

Our extensive evaluation results indicate that both RIS andCRIS
outperform exhaustive search for single and concurrent spatiotem-
poral aggregate queries by two orders of magnitude in terms of the
query processing time and they guarantee the answer accuracy of
0.003 to 0.2 in normalized mean square error.

2.3 Application Layer
The application layer incorporates the graphic user interface (GUI)

and the complex analytic tasks. The GUI provides an effective way
to directly communicate with the queries and APIs in the functional
layer. As shown in Figure 3, the temporal query range (and other
parameters) are input using the text fields in the left side ofthe inter-
face; the spatial range is specified on the map by clicking anddrag-
ging mouse; the output is visualized. One more example is shown
in Figure 4; we select a rectangle in the middle of Figure 4(a)and
input a temporal range; the results of some spatiotemporal aggre-
gate queries are visualized as shown in Figure 4(b)-(e).

Using the queries and APIs in the functional layer as the build-
ing blocks, various complex analytic tasks can be built. Letus use
the business scenarios of outdoor advertising as example: (i) An
advertising agency wants to know the number of peoples who are
covered by an outdoor advertising panel (i.e., the peoples passing

Figure 4: An example of spatiotemporal aggregate query. (a)
the spatial query range, (b) the distribution of mobile users,
(c) the speed distribution of mobile users, (d) the mobile App
distribution, (e) the distribution of mobile users at different lo-
cations

the effective region of the panel) in a certain time period, such in-
formation is the basis to set the price on the panel; (ii) given a cus-
tomer whose budget is$50, 000, which panels from many options
can cover the maximum number of (distinct) peoples and the total
cost is under the budget; (iii) the advertising agency owns a large
number of outdoor panels of different prices and many customers
of different budgets, the problem is how to assign the outdoor pan-
els to customers so as to maximize the benefit of the advertising
agency. In such complex analytic tasks, thecount or distinct count
query of OceanST provide the fundamental information, i.e., the
number of mobile users covered by a spatiotemporal range, since
mobile users are random sample of the entire population. Other
examples of complex analytic tasks can be found in government
agency in the traffic congestion analysis, the movement pattern of
population in a city, the event recognition, and etc. In suchtasks,
the basic analysis APIs in the functional layer such as the path dis-
tribution between locations, the prediction of the next locations and
the distribution of population are closely relevant.

3. DEMONSTRATION
The demonstration will be conducted on a cluster with 5 ma-

chines. Each machine has24 six-cores Intel X56702.93GHz pro-
cessors and94GB memory. All machines run on Suse Linux En-
terprise Server11. Spark-0.7.3 is selected as the running system.
Around 3TB MBB data are used in the demonstration. We also
configure CloST and MongoDB on the three machines for compar-
ison. This demonstration consists of three phases.

In the first phase, we will show the structure of OceanST and
explain the rationale behind the advantage against the existing sys-
tems, i.e., CloST and MongoDB. To help deliver the ideas, a num-
ber of diagrams will be presented with animated effects to show the
input/output and the processing flows.

In the second phase, we will demonstrate spatiotemporal aggre-
gate query and the basic analysis API processing. In particular, this
phase will demonstrate both the exact solution and the approximate
solution of OceanST. Two typical scenarios will be presented. The

first scenario is to processdistinct user count query, given a spa-
tiotemporal query range; the second scenario is to processattribute
distribution query which returns requested attribute’s (for example,
mobile APP usage) distribution in a spatiotemporal query range. In
the approximate solution, the balance of accuracy and the response
time will be demonstrated in the same scenarios. The demonstra-
tion will report the query response time when the spatiotemporal
query range varies, in specific,10 temporal ranges and10 spatial
ranges are used. All temporal ranges have the same starting time
and all spatial ranges are rectangle bounding boxes with thesame
centroid.

The third phase will demonstrate the performance of OceanST
and its advantage against CloST and MongoDB. We focus on two
important performance indicators for the large MBB data analytic
system: data loading time and query/API response time. The data
loading time of OceanST is consumed for loading data into OceanST
block files and for building index. For example, it takes about 10
minutes for building index and takes about40 minutes for writing
blocks in OceanST and CloST to load147GB MBB data; Mon-
goDB failed to load this data within an acceptable time (cannot
finish after5 days). In our experience, MongoDB takes40 hours
to load 3GB data and shuffling them across the three sharded ma-
chines. The demonstration, therefore, only compares the perfor-
mance between OceanST and CloST on processing the queries in
the three scenarios in the second phase. In all settings of spatiotem-
poral query range, OceanST returns the exact solutions at least 8
times faster than CloST, the sampling based approximate solution
achieves another 10 times acceleration with high accuracy.

4. ACKNOWLEDGEMENTS
This work is supported by National Grant Fundamental Research

(973 Program) of China under Grant 2014CB340304, NSFC (Grant
No. 61373092 and 61033013), Natural Science Foundation of the
Jiangsu Higher Education Institutions of China (Grant No. 12KJA520004),
and Innovative Research Team in Soochow University (Grant No.
SDT2012B02).

5. REFERENCES
[1] Mongodb. www.mongodb.org.
[2] Sin chew daily. http://news.sinchew.com.my/node/318251.
[3] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

Hadoop gis: A high performance spatial data warehousing
system over mapreduce. InProceedings of VLDB Endowment,
pages 1009–1020, 2013.

[4] A. Eldawy and M. F. Mokbel. A demonstration of
spatialhadoop: An efficient mapreduce framework for spatial
data. InProceedings of VLDB Endowment, pages 1230–1233,
2013.

[5] Y. Li, M. Steiner, J. Bao, L. Wang, and T. Zhu. Region
sampling and estimation of geosocial data with dynamic range
calibration. InProceedings of ICDE, pages 1–12. IEEE, 2014.

[6] H. Tan, W. Luo, and L. M. Ni. Clost: a hadoop-based storage
system for big spatio-temporal data analytics. InProceedings
of CIKM, pages 2139–2143. ACM, 2012.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: cluster computing with working sets. In
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, pages 10–10, 2010.

