
Distributed multi-query optimization of continuous 
clustering queries 

Sobhan Badiozamany 
Supervised by Tore Risch 

Department of Information Technology 
Uppsala University 

Box 337, SE-751 05, 
Uppsala, Sweden 

sobhan.badiozamany@it.uu.se
ABSTRACT 
This work addresses the problem of sharing execution plans for 
queries that continuously cluster streaming data to provide an 
evolving summary of the data stream. This is challenging since 
clustering is an expensive task, there might be many clustering 
queries running simultaneously, each continuous query has a long 
life time span, and the execution plans often overlap. Clustering is 
similar to conventional grouped aggregation but cluster formation 
is more expensive than group formation, which makes 
incremental maintenance more challenging. The goal of this work 
is to minimize response time of continuous clustering queries with 
limited resources through multi-query optimization. To that end, 
strategies for sharing execution plans between continuous 
clustering queries are investigated and the architecture of a system 
is outlined that optimizes the processing of multiple such queries. 
Since there are many clustering algorithms, the system should be 
extensible to easily incorporate user defined clustering algorithms. 

1. INTRODUCTION 
Compared to conventional database applications, a Data Stream 
Management System (DSMS) has different data processing 
requirements. First, continuous queries run for very long periods 
of time over data streams. Second, as the data flows through the 
system, only a limited window of data is presented at a g iven 
point in time. Sliding windows are commonly used for capturing 
the evolving behavior of data streams, which requires efficient 
incremental algorithms. Finally, since queries stand for a v ery 
long time, at any point in time there are potentially many queries 
that have overlapping computations. In particular, they might 
share expensive computations such as clustering, aggregations, 
and filtering in presence of overlapping window specifications. 
Examples of such data streaming workloads can be found in 
monitoring applications with many users and queries, e.g. urban 
traffic monitoring, stock trading, and industrial sensor data 
monitoring. The essence of data streaming is to continuously 
summarize the data. When the exact grouping of data is unknown, 
clustering is a very good candidate for explorative grouping of 
similar data over which statistics is computed. 

Multi-query optimization has been studied in conventional 
databases since 80s [12] motivated by the fact that several queries 
might share the same data. Multi-query optimization is even more 
beneficial in data streaming applications. To elaborate the extra 
benefits of multi-query optimization, we compare the 
characteristics of conventional OLAP and OLTP workloads with 
data streaming workloads in Table 1. Data streaming has similar 
characteristics as OLAP: Since they both have long query life 
spans there is higher potential for overlapping computations, and 
since they both contain expensive summarization queries shared 
computation of queries in beneficial. Note that since the life span 
of queries is even longer in data streaming, the sharing is more 
beneficial. 
A sharing solution has to be distributed in today’s widespread 
distributed computing platforms where resources are limited and 
have a p rice tag. Therefore the focus of this PhD project is to 
develop novel methods and system architecture for optimization 
of multiple clustering queries over data streams in a distributed 
environment. 

Table 1. Characteristics of different data processing 
workloads 

Workload 
Life span of 

active queries 
Prevalence of 

summarization 
queries 

Computation 
overlap in the 

active query set 

OLTP Short Low Low 

OLAP Long Very High Potentially high 

Data 
Streaming 

Very Long Very High Very high 

 
Clustering data points into disjoint sets is similar to conventional 
grouped aggregation, with two differences, first the process of 
clustering is much more expensive than grouping, and second, 
incremental maintenance of clusters is challenging. While there 
have been several publications on optimizing multiple Aggregate 
Continuous Queries (ACQs) [9] [10] [11] [13] [14], there has been 
little research on the task of optimizing multiple Continuous 
Clustering Queries (CCQs).  
A general system that optimizes shared execution of multiple 
CCQs must fulfill the following three main requirements: 

1. Since in real scenarios resources are always limited, the 
system must provide resource oriented scalability, i.e. 
given a certain resource allocation, it must minimize the 
response time. The key here is using shared processing 
techniques.  

 
 
 
 
This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To vie w a copy of this 
license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.  O btain 
permission prior to any use beyond those covered by the license.  Contact 
copyright holder by emailing info@vldb.org.  
Proceedings of the VLDB 2014 PhD Workshop 
 



2. To facilitate exploiting new resources, the system must 
be distributable.  

3. The sharing techniques should be independent of 
specific clustering methods. Therefore a general system 
should be extensible so that new clustering algorithms 
can be added to it in a non-intrusive manner. 

The rest of the paper is organized as follows. Section 2 covers the 
background, mainly the related work on m ulti-ACQ and multi-
CCQ optimization indicating the relevance to our research 
problem, leading to Section 3 where the research questions are 
stated. Section 4 defines an extensible generic clustering query 
operator and sketches how it can be distributed over several 
computation nodes. Section 5 outlines the architecture of a 
distributed multi-CCQ processing system. 

2. Background and related work 
First we define multiple Continuous Summarization Queries 
(CSQs) over sliding windows as a general concept covering both 
ACQs and CCQs. We then cover the related work on maintaining 
non-shared CSQs over sliding windows. Then multi-ACQ 
optimization is discussed and finally the related work and 
remaining challenges for multi-CCQ optimization is presented. 

2.1 Multiple CSQs over sliding windows 
Assume we have a data stream DS with a set of attributes A 
{A1…An}. We define Q {Q1 … Qn} as a set of CSQs where each Qi 
∈ Q has the following properties:  

• A window specification tuple W=(R, S), where R and S 
are the range and stride parameters for the window. 

• A subset of the attributes G ⊆ A that specifies data 
grouping or clustering. 

• A selection predicates P that selects tuples from DS. 
We also define the set of all window specifications in Q, W*, the 
set of all G in Q, G*, and set of all selection predicates in Q, P*. 
For example, assume we have DS with A= {a, b, c, d}, Q= {Q1, 
Q2} where 

• Q1 is specified by W= (10, 2), G= {a, b}, P= (d=c1), 
where c1 is a constant. 

• Q2 is specified by W= (6, 3), G= {b, d}, P= (b=c2), 
where c2 is a constant. 

Then W*= {(10, 2), (6, 3)}, G*= {a, b, d}, and P*= {(d=c1), 
(b=c2)}. 

2.2 Non-shared CSQs over sliding windows  
ACQs are similar to CCQs because both of them form groups of 
data points. However, they differ in the cost of the group 
formation because in the conventional group-by aggregates the 
group formation is only dependent on equality of values, whereas 
in clustering the group formation is a very expensive similarity 
based operation. Furthermore, sliding a window for CCQs is more 
complex than removing elements from groups. 
Consider a sliding window specified by the two parameters stride 
S and range R. Figure 1 illustrates how a sliding window can be 
maintained, for R=10 and S=2. The data stream is first broken 
down into contiguous pieces, i.e. partial windows (PW0 to PW9). 

To form the sliding window several consecutive partial windows 
are assembled. The size of these partial windows is determined by 
the stride S and range R parameters of the window specification. 
In Figure 1, each window is formed by assembling 5 pa rtial 
windows, each of size 2. Notice that if S and R are time based, 
depending on the stream rate, there might be varying number of 
data points in each of the partial windows. 
Based on such partial windows, processing an ACQ is commonly 
done in two steps, partial aggregation and final aggregation [10] 
[11] [13] [14]. The partial aggregation step is applied on each 
partial window (PW0 to PW9), thereby summarizing its contents 
to produce partial grouped aggregates. The final aggregation step 
forms ACQ results by rolling up the partial grouped aggregates 
corresponding to the full window. 
For example, the query in Listing 1 calculates the number of 
vehicles in segments of streets over a window. The total number 
of vehicles is first calculated per partial windows of size 2 
minutes, producing partial grouped aggregates. Then, to find the 
total number of vehicles in each 10 minute window, in the final 
aggregation step the corresponding 5 consecutive partial grouped 
aggregates are summed. 

 
When the window slides, a partial window expires and needs to be 
evicted. Handling deletion under sliding window semantics for 
conventional grouped summaries (aggregates) is done 
incrementally by simply deducting the contribution made by the 
expired partial grouped aggregates from the ACQ results. 

 
In contrast to ACQs, deleting expired elements from clusters is 
more complicated, since the impact of removing data points from 
clusters might not stay local to them: clusters might shrink, split, 
or disappear. For this reason CCQ deletion is handled in [15] [1] 
as follows. Instead of simply deducting the expired data points 
from the window summary, the need for deletion is eliminated by 
adding the new set of points into as many windows as they 
participate in. For example, referring back to the sliding window 
maintenance in Figure 1, the partial cluster summaries formed 
over PW5 are merged into all of the windows W1 to W9. 
Therefore at any point in time 5 w indows are maintained 
simultaneously.  
This strategy is similar to our earlier preliminary work on 
maintaining raw data indexes over sliding windows [3]. A 
potential drawback of the approach is the multiplied cost of 

 
Figure 1. Sliding window maintenance 

 

W0= [PW0-PW4] 

W1= [PW1-PW5] 

 W2= [PW2-PW6] 

 W3= [PW3-PW7] 

 W4= [PW4-PW8] 

 W5= [PW5-PW9] 

 

PW0 PW1 PW2 PW3 PW4 PW5 PW6 PW7 PW8 PW9 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 14 17 18 19 20 

Listing 1: simple aggregate queries over data streams 
SELECT seg-id, COUNT(*) 

FROM          Traffic [RANGE 10 Minutes,SLIDE 2 Minutes] 

GROUP BY seg-id 

 



adding the individual partial grouped aggregates to all the 
windows they participate in. Furthermore, the amount of memory 
required to simultaneously maintain several windows will also be 
multiplied. The aforementioned drawbacks make the window 
maintenance expensive, particularly for long windows with short 
strides. 
The incremental algorithm in [6] to delete expired elements from 
clusters in data warehouses was rejected in [15] motivated by the 
high cost of deletion from clusters. However, the experiments in 
[15] do not show the effect of scaling the window size when the 
incremental approach in [6] is compared to their deletion 
elimination approach. 
Incremental deletion of expired elements from clusters remains a 
challenging open problem. 

2.3 Multi-ACQs optimization 
Gigascope [5] is a d ata stream management system which is 
designed for processing traffic monitoring queries over IP 
networks. In particular, it supports shared optimization of multiple 
ACQs [10]. An example ACQ in Gigascope is given in Listing 2. 

The execution strategy for such a query is illustrated in Figure 2 
taken from [10]. It exemplifies the two tier distributed processing 
having partial aggregation and final aggregation, where the Low 
level Filter, Transforms, and Aggregate (LFTA) is the partial 
aggregation step and the High level Filter, Transforms, and 
Aggregate (HFTA) is the final aggregation step. For example, in 
Listing 2 the partial aggregation (LFTA) is COUNT, while the 
final aggregation (HFTA) is SUM.  

Individual data points, e.g. C1 in the figure, are continuously 
added to the partial grouped aggregates in LFTA (i.e. COUNT). 
The partial grouped aggregates in the LFTA are sent to the HFTA 
when a partial window becomes complete. 

 
Listing 3 is an example of a set of ACQs from [10], where 
Q={Q1, Q2, Q3}, W*= {(1, 1)}, and G*= {A, B, C}. 

Figure 3 s hows the two main execution strategies in Gigascope 
investigated in [10]: naïve (none shared) (Fig. 3a), and phantom 
based (shared) processing (Fig. 3b).  

In the naïve approach, each query maintains its index for 
grouping, so three hash indexes are maintained for grouping by A, 
B, and C, respectively. Every incoming tuple is matched against 
all three indexes. 

In the phantom based approach, the input stream is first grouped 
by the phantom ABC, from which individual A, B, C groupings 
are fed. A phantom is a virtual grouping that is not used in any of 
the queries in Q, but is used to facilitate the shared processing of 
queries by the simple intuition that a finer grain grouping can feed 
several coarser grain groupings. Here the phantom ABC can feed 
any grouping specified using a subset of {A, B, C}, for example 
{A}, {B}, {C}, {A,B}, etc. The key point is that the feeding of A, 
B and C happens only when the partial grouped aggregates in a 
partial window are emitted. Since all queries in Listing 3 have the 
same slide = 1 second (W*= {(1, 1)}), the feeding occurs once per 
second. 
When not all windows have the same slide, i.e. when W* is not a 
singleton set, [13] generalizes the method by materializing finer 
grain partial windows in the pre-aggregation phase, from which 
all windows in W*are formed. 
The phantoms and other hash tables form a feeding graph [10]. 
Since there might be many different feeding graphs, the 
optimization problem of finding the right feeding graph is also 
studied in [10]. 
Maintaining phantoms is beneficial for sharing the execution of 
several ACQs because, in contrast to the naïve approach, only a 
single look-up of the ABC index is made per incoming stream 
tuple. At the feeding time, there will be updates to the A, B and C 
indexes, but those are relatively infrequent, since the original 
tuples are already partially grouped in phantom ABC. 
Multiple ACQs were also present in the DEBS 2013 Grand 
Challenge [8], where resource limitations were critical and 
therefore a shared execution strategy was vital, as shown in [2].  

Listing 3: A set of ACQs with varying grouping attributes 

/*Q1*/ 
SELECT A, COUNT(*) 

FROM          R [RANGE 1 Min, SLIDE 1 Sec]  

GROUP BY A 

 
 

/*Q2*/ 
SELECT B, COUNT(*) 

FROM          R [RANGE 1 Min, SLIDE 1 Sec]  

GROUP BY B 

 
 

/*Q3*/ 
SELECT C, COUNT(*) 

FROM          R [RANGE 1 Min, SLIDE 1 Sec]  

GROUP BY C 

 

 
Figure 2. Single aggregation in Gigascope 

Listing 2: simple Gigascope ACQ 
SELECT win_time, source_IP, COUNT(*) 
FROM          IP_header_stream [RANGE 1 Min, SLIDE 1 Sec]  

GROUP BY win_time, source_IP 

 



Gigascope does not support dynamic query optimization, and does 
not consider selection predicates P* in multi-ACQ optimization. 
As an improvement Krishnamurthy et al. in [11] proposes a 
solution focusing on dynamic multi-ACQ optimization in 
presence of high query churn, i.e. queries frequently join and 
leave the system. To address dynamic query optimization, a single 
execution pipeline is proposed where addition and removal of 
queries from the pipeline is implemented by modifying data 
structures in different parts of the pipeline.  
There are a number of shortcomings with the approach in [11]. 
First, no strategy for parallel or distributed execution is proposed. 
Second, the sharing scheme for selection predicates does not scale 
for the following reason. The system tags all input tuples with a 
bitmap signature, indicating what combination of query selection 
predicates they fulfill. Having this tag, the tuples can be assigned 
to fragments, which are the non-overlapping groups of tuples. The 
total number of fragments is 2N, where N is the number of queries. 
Therefore the proposed solution is not scalable w.r.t. the number 
of queries. Another shortcoming in [11] is the lack of support for 
a general GROUP BY. 
Guirguis et al. [14] [13] improve the single pipeline approach in 
[11] by incorporating the optimizations in Gigascope on sharing 
grouped aggregates, but the non-scalable selection predicate 
sharing problem remains, as does the problem of parallelized or 
distributed execution. 
In general there is no system that combines the following two 
aspects of shared execution of multiple ACQs: 

1. Efficient sharing of selection predicates. 
2. Shared execution of a general GROUP BY operator. 

Furthermore, automatic distributed or parallel multi-ACQ 
execution has not been addressed. For example, in [2] the 
parallelization was manual, which becomes very complex when 
there are many complex queries. This leaves room for 
improvement in multi-ACQs optimization. 

2.4 Multi-CCQ optimization 
Initial work on shared execution of clustering queries can be 
found in [16]. The authors propose a method to share execution of 
multiple density based CCQs for a query set Q that contains 
diverse density parameters and window specifications. In general 

the method is based on the deletion elimination approach 
explained in section 2.2 with the following limitations: 

1. There is no support for specific clustering attributes, G, 
in queries. It is assumed that all queries in Q* cluster 
the data based on all the attributes.  

2. There is no support for selection predicates, P, i.e. all 
queries in Q* have the same filter.  

3. Only one density clustering method [15] is supported. 
There is no support for plugging in new clustering 
algorithms. 

4. There is no distributed or parallel execution strategy. 

3. The research questions 
The following research questions are not addressed by any related 
work on multi-CCQ optimization: 

1. How can the combination of P*, G*, and W* be exploited 
for optimizing shared execution of multiple CCQs? 

2. How can extensible clustering be supported? That is, 
how can the sharing framework be made independent of 
a specific clustering algorithm?  

3. How can the query execution components be 
automatically distributed over several nodes? 

Next a generic clustering framework that facilitates answering the 
research questions is outlined. 

4. An extensible framework for processing 
distributed clustering queries 
In this section a g eneral framework for processing clustering 
queries is introduced, with two requirements in mind. First, it has 
to be extensible, i.e. it should be easy to plug in a variety of 
clustering methods. Second, it has to support distributed query 
execution.  

Listing 4 shows an example of a CCQ with syntax borrowed from 
[4] where the FROM clause is extended to support sliding 
windows over data streams. The attributes X, Y, and CITY are 
attributes of the tuples of the data stream TRUCK_POSITIONS. 
CONVEX_HULL and COUNT are aggregate functions applied 
per cluster returning a spatial object and a number, respectively. 
In the ALGORITHM clause an incremental clustering algorithm 
is specified, here EXTRA_N [15]. Unlike GROUP BY queries 
there is no explicit grouping key in clustering queries, which is 
why the SELECT clause only includes aggregate functions. This 
query is useful in active safety systems in modern vehicles where 
the focus is to avoid accidents. In this case, the query returns the 
boundaries of the congested areas every second to warn the 
drivers cruising at high speed prior to approaching congested 
areas. 

Listing 4: A CCQ 

SELECT 
CONVEX_HULL(*), COUNT(*) 

FROM   
TRUCK_POSITIONS(RANGE 1 Min, SLIDE 1 Sec) 

WHERE 
CITY=’Stockholm’ 

CLUSTER BY 
X, Y 

ALGORITHM EXTRA_N(0.1, 5) 

 

 
Figure 3. processing multiple aggregates in Gigascope 



Each cluster is represented by a system generated cluster 
identifier. At any point in time in a given window, the output of a 
clustering query is a set of aggregate objects for each cluster. 
Unlike incremental maintenance of aggregate functions in ACQs, 
the definition of the clustering algorithm addresses group 
formation, rather than aggregation. 

To allow the clustering algorithm to be executed incrementally, 
the definition of it is broken down into four components: init, add, 
merge, and exclude (Listing 5).  

  
The above components of a CCQ are distributed and executed 
over three processing nodes, as illustrated in Figure 4. The 
thickness of the arrows in the figure indicates relative volume of 
the stream. 

As a p reprocessing step, the selection filter process applies the 
selection predicate in the CCQ, typically reducing the stream 
volume. 
Similar to the two level processing of ACQs, the clustering task in 
CCQs is broken down into two levels. First a partial clustering 
process slices the incoming stream into partial windows, similar to 
partial aggregation. Thereby the init function in Listing 5 creates 
an initial cluster set for the partial window. For example, in 
distance based clustering algorithms such as [7] the init function 
generates initial centroids. Following the invocation of the init 
function, the add function is called for each data point in the 
partial window to add new data points to the partial cluster set. 
This will support all single-pass algorithms like BIRCH [18]. The 
processing of data points in a partial window finishes by sending 
the partial cluster set to the final clustering process. 

The final clustering process rolls up t he consecutive incoming 
partial cluster sets sent by the partial clustering node to maintain 
the total cluster set corresponding to the whole window, similar to 
final aggregation in ACQs. This is done by applying the merge 
function on every incoming partial cluster set to update the total 

cluster set, for example, as done by the merge step in the 
STREAM algorithm [7].  When the window slides, the exclude 
function is executed to remove the contributions made by the 
partial cluster sets in the expired partial window. The exclude 
function is optional, i.e. if a remove algorithm is not specified, the 
final clustering task merges each delta cluster set with as many 
windows as it corresponds to. This supports density based 
approaches like Extra-N [15] where the need for implicit deletion 
is eliminated. 
Notice that this framework is easily data parallelizable at all 
different stages. For example, if partial clustering becomes the 
bottleneck, the system can create other instances of it to 
parallelize the work and distribute the partial windows using, e.g., 
round-robin [17]. The merge can also be done in parallel using a 
divide and conquer paradigm in several steps forming a merge 
tree. 

To conclude, the framework is general, extensible, and capable of 
representing both incremental and deletion elimination methods. It 
can handle both distance based and density based clustering 
methods. It is optimizable and parallelizable. 

 

5. Multiple Stream Clustering Query 
(MSCQ) Processor  
Figure 5 sketches the overall architecture of the proposed MSCQ 
system to process multiple CCQs. The system receives a s et of 
CCQs applied on input data streams. The MSCQ optimizer 
produces an optimized shared distributed execution plan for the 
CCQ set. The query distributor sets up combined distributed 
query execution plans (CDQEPs) by initializing distributed 
processes and establishing communication links. The components 
of the CDQEPs are locally executed by a query execution engine 
(QEE) on each processing node. An execution monitor 

 
Figure 5. MSCQ system 

 
Set of CCQs 

 

Input data stream QEE 

QEE 

QEE 

QEE 

Optimized shared 
distributed execution plan 

Query results 

Combined Distributed Query 
Execution Plans (CDQEP) 

MSCQ 
Optimizer 

Query 
Distributer 

Execution 
Monitor 

QEE 

Input data stream 

Input data stream 

QEE 

QEE 

QEE QEE 

QEE 

QEE 

Query results 

Query results 

Query results 

 
Figure 4. Data flow of a single CCQ 

 

cluster_set 
new_total 

cluster_set 
partial Partial clustering 

init() 
add() 

Final clustering 
Merge () 
exclude() 

Selection 
filter 

Listing 5: Incremental user defined clustering function  
init(parms p)->cluster_set initial; 
 
add(data_point d, cluster_set partial, parms p) 
   ->cluster_set new_partial; 
 
merge(cluster_set total, cluster_set partial, parms p) 
   ->cluster_set new_total; 
 
exclude(cluster_set total, cluster_set partial, parms p) 
   ->cluster_set new_total; 

 



continuously observes CDQEPs to identify bottlenecks and adapts 
the local plans in the nodes to cure them.  
An open problem is how to dynamically modify CDQEPs when 
queries join or leave. A naive approach is to generate a n ew 
CDQEP every time a n ew CCQ joins or leaves. More 
sophisticated approaches would incrementally modify running 
CDQEPs.  

6. Conclusion 
We introduced and motivated the problem of optimizing multiple 
continuous clustering queries (CCQs). We showed its similarities 
and differences with the well-studied optimization of multiple 
aggregate continuous queries (ACQs). Based on this, we showed 
the need for research on e xtensible, distributable multi-query 
optimization, specifically exploiting all sharing opportunities in 
multiple CCQs. As first steps, an extensible framework for 
processing distributed CCQs was presented and the initial system 
architecture was outlined. 

7. ACKNOWLEDGMENTS 
This work was supported by the Swedish Foundation for Strategic 
Research, grant RIT08-0041 and by the EU FP7 project Smart 
Vortex. 

8. REFERENCES 
[1] Babcock, B., Mayur, D., Rajeev, M., and O'Callaghan, L. 

Maintaining variance and k-medians over data stream 
windows. In SIGMOD conf. (San Diego 2003), 234-243. 

[2] Badiozamany, S., Melander, L., Truong, T., Xu, C., and 
Risch, T. Grand Challenge: Implementation by Frequently 
Emitting Parallel Windows and User-Defined Aggregate 
Functions. In Proceedings of Distributed Evenet Based 
Systems 2013 (Arlington 2013), DEBS 2013. 

[3] Badiozamany, S. and Risch, T. Scalable ordered indexing of 
streaming data. In Workshop proceedings of the Accelerated 
Data Management Systems 2012, in conjunction with VLDB 
2012 (Istanbul 2012), ADMS Workshop at VLDB. 

[4] Chengyang, Z. and Yan, H. Cluster By: a new sql extension 
for spatial data aggregation. In Proceedings of ACM 
international symposium on Advances in geographic 
information systems (Seattle, Washington 2007), 53. 

[5] Cranor, C., Johnson, T., Spataschek, O., and Shkapenyuk, V. 
Gigascope: a s tream database for network applications. In 
SIGMOD conf. (New York 2003), 647-651. 

[6] Ester, M., Kriegel, H-P., Sander, J., Wimmer, M., and Xu, 
X. Incremental clustering for mining in a data warehousing 
environment. In VLDB conf. (New York 1998), 323-333. 

[7] Guha, S., Mishra, N., Motwani, R., and O'Callaghan, L. 
Clustering data streams. In Proceedings of Foundations of 

Computer Science conference (Redondo Beach, CA 2000), 
359-366. 

[8] Jerzak, Z. and Ziekow, H. 
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallen
gedetails. In DEBS 2013 Grand Challenge ( 2013). 

[9] Jin, L., Maier, D., Tufte, K., Papadimos, V., and Tucker, P. 
A. Semantics and evaluation techniques for window 
aggregates in data streams. In SIGMOD conf. (Baltimore, 
Maryland 2005), SIGMOD. 

[10] Rui, Z., Koudas, N., Ooi, B. C., and Srivastava, D. Multiple 
aggregations over data streams. In SIGMOD conf. 
(Baltimore, Maryland 2005), SIGMOD. 

[11] S., Krishnamurthy, Wu, C., and Franklin, M. On-the-fly 
sharing for streamed aggregation. In SIGMOD conf. 
(Chicago, Illinois 2006), SIGMOD. 

[12] Sellis, T. K. Multiple-query optimization. ( March 1988), 
Transactions Of Database Systems TODS, 23-52. 

[13] Shenoda, G., Sharaf, M. A., Chrysanthis, P. K., and 
Labrinidis, A. Optimized processing of multiple aggregate 
continuous queries. In Proceedings of the 20th ACM 
international conference on I nformation and knowledge 
management (Glasgow 2011), CIKM. 

[14] Shenoda, G., Sharaf, M. A., Chrysanthis, P. K., and 
Labrinidis, A. Three-level processing of multiple aggregate 
continuous queries. In Data Engineering (ICDE), 2012 IEEE 
28th International Conference on (Hannover 2012), ICDE. 

[15] Yang, D., Rundensteiner, E. A., and Ward, M. O. Neighbor-
based pattern detection for windows over streaming data. In 
EDBT conf. (Saint Petersburg 2009), 229-540. 

[16] Yang, D., Rundensteiner, E. A., and Ward, M. O. A shared 
execution strategy for multiple pattern mining requests over 
streaming data. In VLDB conf. (Lyon 2009), 874-885. 

[17] Zeitler, E. and Risch, T. Massive scale-out of expensive 
continuous queries. In VLDB conf. (Seattle 2011), 1181-
1188. 

[18] Zhang, T., Ramakrishnan, R., and Livny, M. BIRCH: an 
efficient data clustering method for very large databases. In 
SIGMOD conf. (Montreal 1996.), 103-114. 

 
 
 

 


	1. INTRODUCTION
	2. Background and related work
	2.1 Multiple CSQs over sliding windows
	2.2 Non-shared CSQs over sliding windows 
	2.3 Multi-ACQs optimization
	2.4 Multi-CCQ optimization

	3. The research questions
	4. An extensible framework for processing distributed clustering queries
	5. Multiple Stream Clustering Query (MSCQ) Processor 
	6. Conclusion
	7. ACKNOWLEDGMENTS
	8. REFERENCES

