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ABSTRACT
Debugging massively parallel data analysis programs is cur-
rently a difficult process. Traditional debug cycles involve
manual code instrumentations, re-execution and analysis of
the resulting data. This is expensive in terms of develop-
ment time, execution time, amount of data produced, and
cognitive overhead. This work proposes a course of research
that is meant to alleviate this situation by automating the
code instrumentation and by lowering the re-execution time
of instrumented code. By using these techniques, we hope to
achieve a higher efficiency compared to manual debugging
approaches.

1. INTRODUCTION
Implementing and testing massively parallel data analy-

sis programs (MPDAP)s is a tedious process. In current
systems, such as Hadoop MapReduce, Stratosphere, and
Spark, developers usually implement user defined functions
(UDF)s. These functions are passed as arguments to nested
second order functions that represent data flow graphs1.
Like any other piece of software, such programs, especially
the UDFs, are bound to contain bugs. Compared to debug-
ging on single machines, finding bugs in distributed shared-
nothing environments with hundreds of nodes that process
terrabytes of data is more difficult. The reason for this is
that the most commonly used debugging strategies, print
statements and interactive break-/watchpoint debuggers, in
combination with cyclic re-execution, do not scale well to
massively parallel environments.

Firstly, execution times are often not developer friendly.
A program that runs several hours is likely to cause similarly
long debug cycles. Even if execution times are within de-
veloper friendly scales, short debug cycles are still costly in
terms of computational resources. Effectively, a five minute
job that saturates a 100-node cluster, still consumes several
CPU hours that could be put to better use.

1Out of the box Hadoop MapReduce only allows fixed
graphs with one map and one reduce operator.
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Secondly, the amount of log and tracing data that is pro-
duced during the individual debugging cycles can itself rep-
resent a big data problem that needs to be solved. When
analyzing a certain failure, developers need to have a good
understanding of what input and intermediate data looks
like. Even in conventional small scale applications, simply
inspecting a log of all values that occurred during execution
may already be infeasible. In the context of big data, the
problem size increases by several orders of magnitude. Here,
materialization, let alone inspection, of potentially billions
of input or intermediate values is out of question. The only
valid solution appears to be gathering meaningful statistics
for a given debug task. Writing the corresponding statis-
tics gathering and aggregation logic is just as error-prone as
writing the original program that is to be debugged.

Of course, well-known quality assurance techniques may
help to intercept potential bugs before execution on the en-
tire dataset. Locally executed unit tests for individual code
modules, and integration tests for entire analysis programs
may help to test and debug code locally before running it on
the cluster. However, a lot of data analysis programs, espe-
cially those used during exploratory analysis, may combine
code modules in unforeseen ways and thus provoke erro-
neous code interactions. In terms of data size, it is of course
possible to sample the input dataset(s) for local execution.
However, the sampled dataset is likely to not accurately rep-
resent all peculiarities of the original dataset.

We argue that all of these techniques fail to account for
the ad-hoc nature of many data processing programs as well
as for a specific property that holds for all but the most
cleanest data sets: failure waits in the long tail. According
to the law of large numbers, even the most unlikely error
will occur eventually if only the data set is large enough.
Consequently, we see the need to enable developers to debug
their MPDAPs in situ, that is in its native environment, the
cluster, and with the entire dataset.

It is our goal to research means for minimizing the in-
evitable debugging costs of MPDAPs running in shared-
nothing environments. Specifically, we focus on minimizing
re-execution times. The core problem that causes costly re-
executions is that unintended program behavior often can-
not be readily tracked back to it’s root causes: unexpected
input data, erroneous code, or a combination of both. We
intend to solve this problem using a combination of the fol-
lowing techniques:

1. Automated Instrumentation (AI) of MPDAPs

2. Cross UDF Slicing (CUS) of MPDAPs
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3. Data Slicing (DS) in MPDAPs

The following section provides details on the three core
techniques that we propose in this work. Section 3 and 4
sketch our implementation and validation strategies. Sec-
tion 5 describes the related work and Section 6 outlines our
work plan for the following years.

2. TECHNIQUES

2.1 Automated Instrumentation
Instrumentation is the process of supplementing the data

analysis program or any of its underlying execution systems
(e.g. Hadoop MapReduce, Stratosphere, the Java Virtual
Machine) with code that gathers intelligence such as values
of tuples, aggregations, like number of input/output tuples
of an operator, event counters, or statistical distributions.

In current systems, this is usually done manually by devel-
opers by adding suitable logging functionality to their code.
After discovering a faulty result, developers add code to log
properties2 of contributing variables. Similarly, developers
may introduce counters to simply log how often certain code
paths are triggered or how often boolean expressions such
as equalities, inequalities, and nullness hold.

Since these modifications are time consuming and error
prone, there is an incentive for programmers to keep instru-
mentation as low as possible. Consequently, developers may
have to repeat this process several times to find the root
cause of a faulty result.

We propose to automate this process and thus make it less
error prone. Developers should be enabled to simply specify
code path locations, variable identifiers, or boolean condi-
tions and have the necessary instrumentation performed for
them. During subsequent executions of the program, the
gathered data should be aggregated across the cluster and
delivered to the developer’s workstation. This should re-
duce the number of execution cycles, since developers would
not be restricted by implementation overhead when speci-
fying desired instrumentation points. Given proper imple-
mentation, automated instrumentation will also reduce the
likelihood of introducing new bugs during instrumentation.

2.2 Cross UDF Slicing
Program slicing is a well-known debugging technique that

isolates program statements that potentially contribute to a
faulty result, hiding the clutter of surrounding, non-contributing
code [20]. The analysis techniques are very similar to read/write
set analysis as it has been applied in [12].

To enable program slicing for MPDAPs, we need to be
able to determine the contributing statements of a result
across UDFs, thus following the origins of a given result
back to the data sources. Since the semantics of the indi-
vidual operators in the operator graph are well understood,
it should be possible to extend the concept of program slic-
ing to this type of program.

The benefit of this approach is threefold:

1. In combination with an IDE, it would be possible to
provide developers with direct visual cues that indi-
cate which statements, across the entire program, con-
tribute to the values of any given variable. This feature

2min/max values, histograms, or just samples
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Figure 1: Illustration of Cross UDF Slicing. A: Orig-
inal data flow. B: Sliced data flow that correctly
computes all values of c (dashed tuple components
are not computed). C: Sliced data flow that omits
duplicate values of c that are introduced by the right
outer join.

would allow for sanity checks even without executing
the program.

2. CUS could provide possible instrumentation points to
the AI algorithm. In this scenario, the developer would
only need to select the variable that contains the faulty
result and CUS would determine the code locations
relevant for AI.

3. Once a variable containing faulty results has been iden-
tified, CUS could be used to automatically strip any
non-contributing code from the program and thus re-
duce it to the critical path. Depending on the ratio
and complexity of non-contributing code, this could
significantly reduce re-execution time.

Especially point three is closely related to the idea of query
or program optimization. The removal of non-contributing
operations is a standard feature of such optimizers. Con-
sequently, it would be possible to use an existing query
optimizer of the execution environment to prune any non-
relevant statements within UDFs and even entire data-flow
subgraphs. It should be noted though, that decomposing
(and potentially recombining) UDFs is a highly advanced
optimization feature that, to the best of our knowledge, has
not been implemented in query optimizers of current sys-
tems. The strived for results of this work can therefore be
seen as enabling technology for advanced query optimiza-
tion.

Figure 1 illustrates the concept using a simple program
with two sources, two map operations, and a right outer
join. The sliced version of this program (Figure 1B) that
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correctly computes all values of c still includes all operators,
but leaves out computations for the irrelevant values b and
d. Due to the right outer join, the sliced program still needs
to compute a completely, because multiple occurrences of
certain values of a may also cause multiple occurrences of
c. If we relax conditions slightly and assume we can omit
duplicate values that are introduced by the join, the sliced
program can be reduced to only containing a sliced version
of Map2. Depending on the complexity of the pruned oper-
ations, sliced programs may exhibit significant performance
speed-ups.

A challenge for program slicing are third-party libraries
and system code. These components are usually not in the
debugging scope of a developer, since they are either un-
likely to contain bugs or their implementation details do
not concern the developer. In this case, program slicing
should still be able to follow the dependencies of any given
variable trough the system code. However, due to licensing
constraints, the code itself may not actually be sliced.

2.3 Data Slicing
Building on top of automatic instrumentation and on the

idea of program slicing, we propose data slicing as a third
approach to reducing re-execution time. Here, the idea is
to reduce execution time not by removing irrelevant parts
of the program logic, but by ignoring irrelevant parts of the
data. This strategy borrows from the concept of data prove-
nance [2] although exact provenance information is not al-
ways required during debugging. For reducing re-execution
time, it can be sufficient to have approximate provenance
information. This approach assumes that the program can
be executed multiple times on precisely the same dataset.

As an example we assume a single faulty result in a group-
wise aggregation as depicted in Figure 2A. In order to un-
derstand how this faulty result was computed, the developer
would want to re-execute the program only with the input
tuples that contribute to the faulty group.

Already in the first run, when the key of the faulty group is
still unknown to the developer, automated instrumentation
can be used to gather approximate provenance information
(Figure 2B). The system attaches a provenance label p to
each source tuple. The label is preserved during propagation
through the data flow. Once the group key k for each tu-
ple is computed, the system uses a set of probabilistic data
structures, such as bloom filters, to track which provenance
label contributed to which key3. In the second run of the
program (2C), the developer knows the key of the faulty
group (in the example we assume K = b). Consequently,
the execution of the program can now be restricted to pro-
cess only input tuples that belong to this key. To achieve
this, we only consider tuples that pass the bloom filter that
belongs to the faulty key. Depending on the selectivity of
the bloom filter, this approach could significantly reduce the
execution time.

Figure 2D presents sample tuple sets for the previously
mentioned versions of the data flows. The unmodified data-
source produces a set of values v1...v8. In the instrumented
data flow for provenance tracing, these values receive a prove-

3Here, it is not necessary to have a one-to-one mapping be-
tween bloom filter and key, several keys could share a single
bloom filter.
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Figure 2: Illustration of Data Slicing. A: Original
data flow. B: Instrumented data flow for provenance
data collection. C: Instrumented data flow for effi-
cient re-execution. D: Sample tuples for the differ-
ent stages in the data flows in A, B, and C.

nance label4. Based on their key k, we insert the provenance
labels p of tuples into bloom filters. While we require each
key to be assigned to exactly one bloom filter, multiple keys
can share the same filter. In the second run, we now choose
the bloom filter for the key of the faulty group k = b and
test it with all provenance labels of the data source. We
can see that the filter returns true for at least all labels that
belong to k = b. Additional labels may pass the filter, be-
cause we use one filter for several keys at once, and because
of the probabilistic nature of bloom filters in general. Still,
considerably less source tuples need to be processed to test
the aggregation of all elements with k = b. After passing
the bloom filter, we can project away the provenance la-
bel and perform the computation of k for each tuple. After
this computation, we filter the remaining tuples to only con-
tain entries with k = b. The aggregation operator now only
receives tuples that contributed to the faulty aggregation
result.

3. IMPLEMENTATION
The previously mentioned core techniques cannot reason-

ably exist on their own right, but require accompanying
functionality that needs to be integrated into the execution

4While unique labels are used in the example, it should be
noted that uniqueness is not a hard requirement for these
labels
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system. Among other things, the result of the instrumenta-
tion process will need to be communicated to the worksta-
tion of the developer and visualized. Doing this in a scalable
way will require approaches like staged aggregation and ef-
ficient rendering. We intend to engage this issues in a best-
effort basis using state-of-the-art strategies. If during the
course of work we encounter potential for a completely new
approach, we will follow it, however, without any clear indi-
cation for a novel solution, we will not pursue this actively.
The Stratosphere system5 will serve as basis for our proto-
typical implementations. However, in principle these con-
cepts are transferable to other implementations like Spark6

or Hadoop MapReduce7.
It should be noted that our implementation focusses on

the user-provided code that is executed on the system. De-
bugging the runtime environment itself is currently out of
scope of this research. Consequently, we do not consider
typical runtime issues such as race conditions or data parti-
tioning and shuffling.

4. VALIDATION
The purpose of this section is to provide a clear definition

of the goal we pursue with our research in order to determine
whether the proposed techniques are fit for their purpose.

We argue that any given bug can be detected and ana-
lyzed manually by cyclic debugging, i.e. repeated execution
and modification of the source of the program (slicing and
logging) and subsequent log analysis [15]. The modification
of the source would primarily serve to adjust the verbosity
of the log and to enable/disable relevant code paths that are
executed (in an attempt to minimize re-execution cost).

The cost of this process could therefore be modeled in
terms of how many code modifications have to be performed
to analyze (not fix) the bug and how long the accumulated
execution time8 of all runs is. We include the execution time
of the run that is required to detect the bug in the first place.

The success of this work can be evaluated by comparing
the costs of detecting and debugging a faulty program using
the proposed techniques against the costs of detecting and
debugging it with manual cyclic debugging strategies.

To simplify the comparison of both techniques, we make
the following assumptions:

1. The production code runs without any default log-
ging. Any logged information would need to be ac-
quired through manual modification or automated in-
strumentation. Without this assumption, it would be
impossible to assess the value of automated instrumen-
tation.

2. Manual source modifications for analytical purposes
are likely to introduce new bugs, which in turn must
be analyzed manually. However, the cost of recursive
bug introduction cannot be reliably quantified. We
therefor control this variable by assuming that manual
source modifications do not introduce new bugs. This
assumption favors the manual approach and will be
considered accordingly in the comparison.

5http://stratosphere.eu
6http://spark.apache.org
7http://hadoop.apache.org.
8Again, we take into account the CPU hours spent, not only
wall clock time.

3. AI, CUS, and DS are correctly implemented.

4. The cost of different code modifications cannot be com-
pared against each other, we can only assume that no
modifications cause less costs than any modification at
all.

Given the previous assumptions, the three outlined tech-
niques would achieve our goal if it was possible to analyze
a given bug without any manual code modifications in less
accumulated execution time.

5. RELATED WORK
The most similar approach to the one presented in here

is the debugging suite that accompanies IBM’s System S [6,
4]. IBM’s approach provides means of tracking input and
output tuples of nodes in stream processing operator graphs
and supports local debugging of operators on data subsets.
Compared to the ideas presented in this work, it lacks the
instrumentation of UDFs and cross UDF code analysis.

Also very closely related to our approach is the Lipstick
framework described by Amsterdamer et al. [1]. The sys-
tem can generate provenance information of varying gran-
ularity from Pig Latin [17] workflows. The main points of
differentiation with our work are that we seek to directly
augment the user code as well the consideration of approxi-
mate provenance.

Perm a system described by Glavic and Alonso [7] seeks
to provide provenance information of SQL query results.
The core idea here is to rewrite a given SQL query in order
to attach provenance information to the result tuples. Our
concept of data slicing, which also enriches the user’s code
for gaining provenance information, is closely related to this
approach, however in the context of Big Data, we propose
to work with approximate provenance information that is
not attached to each result tuple.

Crawl et al. [3] propose a provenance tracking system
for Map/Reduce. Contrary to the concepts described here,
Crawl et al. suggest that provenance information should
be explicitly attached to records and retained throughout
the entire data flow. While this is useful for archiving and
bookkeeping purposes, it is a not justifiable overhead for
debugging.

Grust et al. [8] present a tool for debugging SQL queries
and sub expressions of these queries using actual data from
the database. While our works shares the mindset of an-
alyzing faulty query/program segments using actual query
data, our work adapts more to the needs created by the
presence of UDFs and takes into account the extreme size
of the datasets.

Herschel et al. [9] describe a system for answering the
question why certain tuples do not appear in the answer to
a given SQL query. Following the idea of data provenance,
the system traces back the hypothetical origin of such a c-
tuple and provides an explanation what tuples would not to
be added to the source relations to get the expected result.
The approach is closely related to the ideas presented here,
however, concentrates on relational systems and does not
consider approximate provenance. On the other hand, our
work models missing tuples simply as faulty results and does
not explicitly trace hypothetical tuples back to their sources.

Jones et al. also strive to minimize debugging time, how-
ever, not in a parallel distributed system, but by paralleliz-
ing the search for bugs itself [13] by targeting multiple bugs.
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Duesterwald et al. [5] and Mohapatra et al. [16] present
program slicing approaches that work across process bound-
aries, which communicate via message passing. Our take on
Cross UDF Slicing extends this work into the realm of mas-
sively parallel data processing systems in which the different
processes have better defined semantics.

Hölzle et al. [10] present means for debugging optimized
code which has little resemblance to the original code writ-
ten by the developer. This is an interesting topic, highly
relevant to modern data processing systems. Currently, we
do not consider the effects of dealing with optimized code.
Assuming that UDF code is not restructured (only moved
to different positions in the processing graph) and that the
optimizer works correctly, mapping the UDFs to their new
positions should be sufficient.

JIVE[18] and JOVE[19] are two subsequently developed
systems that aim to visualize execution paths of running
Java applications. This work is very relevant to the ap-
proach presented here, however, it needs to be adapted and
extended to dealing with potentially thousands of parallel
and remote processes.

A considerable amount of work has been done to debug
multithreaded software based on MPI [14, 11]. Most of these
approaches rely on logging the sequence of events in the dif-
ferent threads to ensure repeatability during the debugging
stage. Deadlocks, for example, can be replayed and analyzed
once they have been recorded. One could argue that these
generalized approaches to debugging subsume the more spe-
cific ideas presented in this paper. However, we argue that
recording the sequence of events in a massively parallel data
processing system that operates on terabytes of data, is pro-
hibitively expensive. We would also like to point out that
the abstraction level of these approaches may be suitable
for debugging the runtime engines of a massively parallel
system, but not for a semantically enriched query in which
defects like deadlocks are not an issue.

6. FUTURE WORK
We intend to research and prototypically implement the

techniques outlined in Section 2 within the course of the
following two to three years, aiming for completing this work
within the year 2016.

Starting with Automated Instrumentation, we will famil-
iarize ourselves with code analysis and code modification
techniques and implement the data gathering infrastructure
as well as some form of IDE support for selection of instru-
mentation points.

Building on top of the Automated Instrumentation in-
frastructure we will then research and implement the Data
Slicing approach, which is likely to provide the most gains
in terms of re-execution speed-up.

As a final step, we will focus on Cross UDF Slicing be-
ginning with IDE based sanity checks and instrumentation
point recommendation. This leaves the removal of non-
relevant code as the last item. Here, we will start with low-
hanging fruits like removal of complete operator subgraphs
and work our way up to the deactivation of irrelevant UDF
code paths.
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