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ABSTRACT
The ranked retrieval model has rapidly become the de facto way for
search query processing in client-server databases, especially those
on the web. Despite of the extensive efforts in the database com-
munity on designing better ranking functions/mechanisms, many
such databases in practice still fail to address the diverse and some-
times contradicting preferences of users on tuple ranking, perhaps
(at least partially) due to the lack of expertise and/or motivation
for the database owner to design truly effective ranking functions.
This paper takes a different route on addressing the issue by defin-
ing a novel query reranking problem, i.e., we aim to design a third-
party service that uses nothing but the public search interface of a
client-server database to enable the on-the-fly processing of queries
with any user-specified ranking functions (with or without selec-
tion conditions), no matter if the ranking function is supported by
the database or not. We analyze the worst-case complexity of the
problem and introduce a number of ideas, e.g., on-the-fly index-
ing, domination detection and virtual tuple pruning, to reduce the
average-case cost of the query reranking algorithm. We also present
extensive experimental results on real-world datasets, in both of-
fline and live online systems, that demonstrate the effectiveness of
our proposed techniques.

1. INTRODUCTION
Problem Motivation: The ranked retrieval model has rapidly re-
placed the traditional Boolean retrieval model as the de facto way
for query processing in client-server (e.g., web) databases. Unlike
the Boolean retrieval model which returns all tuples matching the
search query selection condition, the ranked retrieval model orders
the matching tuples according to an often proprietary ranking func-
tion, and returns the top-k tuples matching the selection condition
(with possible page-turn support for retrieving additional tuples).

The ranked retrieval model naturally fits the usage patterns of
client-server databases. For example, the short attention span of
clients such as web users demands the most desirable tuples to be
returned first. In addition, to achieve a short response time (e.g.,
for web databases), it is essential to limit the length of returned re-
sults to a small value such as k. Nonetheless, the ranked retrieval
model also places more responsibilities on the web database de-
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signer, as the ranking function design now becomes a critical fea-
ture that must properly capture the need of database users.

In a practical situation, different users often have diverse and
sometimes contradicting preferences on numerous factors. Even
more importantly, many database owners simply lack the exper-
tise, resources, or even motivation (e.g., in the case of government
web databases created for policy or legal compliance purposes) to
properly study the requirements of their users and design the most
effective ranking functions. For example, many flight-search web-
sites, including Kayak, Google Flights, Sky Scanner, Expedia, and
Priceline offer limited ranking options on a subset of the attributes,
that, for example, does not help ranking based on cost per mileage.
Similar limitations apply to the websites such as Yahoo! Autos
(resp. Blue Nile), for ranking, for example, based on mileage per
year (resp. summation of depth and table percent). As a result,
there is often a significant gap, in terms of both design and diver-
sity, between the ranking function(s) supported by the client-server
database and the true preferences of the database users. The objec-
tive of this paper is to define and study the query re-ranking prob-
lem which bridges this gap for real-world client-server databases.

Query Re-Ranking: Given the challenge for a real-world database
owner to provide a comprehensive coverage of user-preferred rank-
ing functions, in this paper we develop a third-party query re-ranki-
ng service which uses nothing but the public search interface of a
client-server database to enable the on-the-fly processing of queries
with user-specified ranking functions (with or without selection
conditions), no matter if the ranking function is supported by the
database or not. This query re-ranking service can enable a wide
range of interesting applications. For example, one may build a
personalized ranking application using this service, offering users
with the ability to remember their preferences across multiple web
databases (e.g., multiple car dealers) and apply the same person-
alized ranking over all of them despite the lack of such support
by these web databases. As another example, one may use the
re-ranking service to build a dedicated application for users with
disabilities, special needs, etc., to enjoy appropriate ranking over
databases that do not specifically tailor to their needs.

There are two critical requirements for a solution to the query
re-ranking service: First, the output query answer must precisely
follow the user-specified ranking function. Second, the query re-
ranking service must minimize the number of queries it issues to
the client-server database in order to answer a user-specified query.
This requirement is crucial for two reasons: First is to ensure a fast
response time to the user query. Second is to reduce the burden on
the client-server database, as many real-world ones, especially web
databases, enforce stringent rate limits on queries from the same IP
address or API user (e.g., Google Flight Search API allows only 50
free queries per user per day).
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Problem Novelty: While extensive studies have focused on trans-
lating an unsupported query to multiple search queries supported
by a database, there has not been research on the translation of
ranking requirements of queries. Related work includes the studies
on crawling client-server databases [15], as a baseline solution for
query re-ranking is to first crawl all tuples from the client-server
database, and then process the user query and ranking function lo-
cally. The problem, however, is the high query cost, since the num-
ber of queries to be issued to the client-server database for crawling
is proven [15] to range from at least linear to the database size in
the best-case scenario to quadratic and higher in worse cases.

Another seemingly simple solution is for the third-party service
to retrieve more than k tuples matching the user query, say h · k tu-
ples by using the “page-down” feature provided by a client-server
database (or [16, 17] when such a feature is unavailable), then lo-
cally re-rank the h · k tuples and return the top-k ones. There are
two problems with this solution. First, since many client-server
databases choose not to publish the design of their proprietary rank-
ing functions (e.g., simply naming it “rank by popularity” in web
databases), results returned by this approach will have unknown
error unless all tuples satisfying the user query are crawled. Sec-
ond, when the database ranking function differs significantly from
the user-specified one, this approach may have to issue many page-
downs (i.e., a large h) in order to retrieve the real top-k answers
according to the user-specified ranking function.

Finally, note that our problem stands in sharp contrast with exist-
ing studies on processing top-k queries over traditional databases
using pre-built indices and/or materialized views (e.g., [4,10]). The
key difference here is the underlying data access model: Unlike
prior work which assume complete access to data, we are facing a
restricted, top-k, search interface provided by the database.

Outline of Technical Results: We start by considering a simple
instance of the problem, where the user-desired ranking function is
on a single attribute, and developing Algorithm 1D-RERANK to
solve it. Note that this special, 1D, case not only helps with ex-
plaining the key technical challenges of query reranking, but also
can be surprisingly useful for real-world web databases. For ex-
ample, while flight search websites like Kayak offer the ability to
specify a range query on layover time, it does not support ranking
according to the attribute. The 1D-RERANK algorithm handily
addresses this need by enabling a “Get-Next” primitive - i.e., upon
given a user query q, an attributeAi, and the top-h tuples satisfying
q according to Ai, it finds the “next”, i.e., (h+ 1)-th ranked, tuple.

In the development of 1D-RERANK, we rigidly prove that, in
the worst-case scenario, retrieving even just the top-1 tuple requires
crawling of the entire database. Nonetheless, we also show that
the practical query cost tends to be much smaller. Specifically, we
found a key factor (negatively) affecting query cost to be what we
refer to as “dense regions” - i.e., a large number of tuples cluster-
ing together within a small interval, that may be queried again and
again for the processing of different queries. This prompts us to
propose an on-the-fly indexing idea that detects such dense regions
and proactively crawls top-ranked tuples in it to avoid the waste on
processing future user queries.

To solve the general problem of query reranking for any arbitrary
user-desired ranking function (rather than just 1D), a seemingly
simple solution is to directly apply a classic top-k query processing
algorithm that leverages sorted access to each attribute, e.g., Fa-
gin’s algorithm [9], by calling the “Get-Next” primitive provided
by 1D-RERANK as a subroutine. The problem with this is that it
incurs a significant waste of queries when applied to client-server
databases, mainly because it fails to leverage the multi-predicate
(conjunctive) queries supported by the underlying database.

To address the issue, we develop MD-RERANK (i.e., Multi-
Dimensional Rerank), a query re-ranking algorithm that identifies
a small number of multi-predicate queries to directly retrieve the
top-k tuples according to a user query. We note a key difference
between the 1D and MD cases: In the 1D case, a single query
is enough to cover the subspace outranking a given tuple, while
the MD case requires a much larger number of queries due to the
more complex shape of the subspace. We develop two main ideas,
namely direct domination detection and virtual tuple pruning, to
significantly reduce the query cost for MD-RERANK. In addition,
like in the 1D case, we observe the high query cost incurred by
“dense regions”, and include in MD-RERANK our on-the-fly in-
dexing idea to reduce the amortized cost of query re-ranking.

Our contributions also include a comprehensive set of experi-
ments on real-world web databases, both in an offline setting (for
having the freedom to control the database settings) and through
online live experiments over real-world web databases. Specifi-
cally, we constructed a Top-k web search interface in the offline
experiment, and evaluated the performance of the algorithms in dif-
ferent situations, by varying the parameters such as database size,
system-k, and system ranking function. In addition we also tested
our algorithms live online over two popular websites, namely Ya-
hoo! Autos and and Blue Nile, the largest diamond online retailer.
The experiment results verify the effectiveness of our proposed
techniques and their superiority over the baseline competitors.

2. PRELIMINARIES

2.1 Database Model
Database: Consider a client-server database D with n tuples over
m ordinal attributes A1, . . . , Am. Let the value domain of Ai be
V (Ai) = {vi1, . . . , vi|V (Ai)|}. The database may also have other
categorical attributes B1, . . . , Bm′ . But since they are usually not
part of any ranking function, they are not the focus of our attention
for the purpose of this paper. We assume each tuple t to have a
none-NULL value on each (ordinal) attribute Ai, which we refer
to as t[Ai] (t[Ai] ∈ V (Ai)). Note that if NULL values do exist
in the database, the ranking function usually substitutes it with an-
other default value (e.g., the mean or extreme value of an attribute).
In that case, we simply consider the occurrence of NULL as the
substituted value. In most part of the paper, we make the general
positioning assumption [20], i.e., each tuple has a unique value on
each attribute, before introducing a simple post-processing step that
removes this assumption in § 5.

Query Interface: Most client-server databases allow users to issue
certain “simplistic” search queries. Often these queries are lim-
ited to conjunctive ones with predicates on one or a few attributes.
Examples here include web databases, which usually allow such
conjunctive queries to be specified through a form-like web search
interface. Formally, we consider search queries of the form

q: SELECT * FROM D WHERE Ai1 ∈ (vi1 , v
′
i1) AND · · · AND

Aip ∈ (vip , v
′
ip) AND conjunctive predicates on B1, . . . , Bm′ ,

where {Ai1 , . . . , Aip} ⊆ {A1, . . . , Am} is a subset of ordinal at-
tributes, and (vij , v

′
ij ) ⊆ V (Aij ) is a range within the value do-

main of Aij .
A subtle issue here is that our definition of q only includes open

ranges (x, y), i.e., x < Ai < y, while real-world client-server
databases may offer close ranges [x, y], i.e., x ≤ Ai ≤ y, or a
combination of both (e.g., (x, y]). We note that these minor vari-
ations do not affect the studies in this paper, because it is easy to
derive the answer to q even when only close ranges are allowed by
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database: One simply needs to find a value arbitrarily close to the
limits, say x + ε and y − ε with an arbitrarily small ε > 0, and
substitute (x, y) with [x+ ε, y− ε]. In the case where the value do-
mains are discrete, substitutions can be made to the closest discrete
value in the domain.

As discussed in § 1, once a client-server database receives query
q from a user, it often limits the number of returned tuples to a small
value k. We use q to refer to the set of tuples actually returned
by q, R(q) to refer to the the set of tuples matching q (which can
be a proper superset of the returned tuples q when there are more
than k returning tuples, and |R(q)| to refer to the number of tuples
matching q. When |R(q)| > k, we say that q overflows because
only k tuples can be returned. Otherwise, if |R(q)| ∈ [1, k], we
say that q returns a valid answer. At the other extreme, we say that
q underflows when it returns empty, i.e., |R(q)| = 0.

System Ranking Function: In most parts of the paper, we make
a conservative assumption that, when |R(q)| > k, the database
selects the k returned tuples from R(q) according to a proprietary
system ranking function unbeknown to the query reranking service.
That is, we make no assumption about the system ranking function
whatsoever. In § 5, we also consider cases where the database offers
more ranking options, e.g., ORDER BY according to a subset of
ordinal attributes.

2.2 Problem Definition
The objective of this paper is to enable a third-party query rerank-

ing service which enables a user-specified ranking function for a
user-specified query q, when the query q is supported by the under-
lying client-server database but the ranking function is not.

User-Specified Ranking Functions: We allow a user of the query
reranking service to specify a user-specified ranking function S(q, t)
which takes as input the user query q and one or more ordinal at-
tributes (i.e., A1, . . . , Am) of a tuple t, and outputs the ranking
score for t in processing q. The smaller the score S(q, t) is, the
higher ranked t will be in the query answer, i.e., the more likely t
is included in the query answer when R(q) > k. Without causing
ambiguity, we also represent S(q, t) as S(t) when the context (i.e.,
the user query being processed) is clear.

We support a wide variety of user-specified ranking functions
with only one requirement: monotonicity. Given a user query q, a
ranking function S(t) is monotonic if and only if there exists an
order of values for each attribute domain, which we represent as
≺ with v1 ≺ v2 indicating v1 being higher-ranked than v2, such
that there does not exist two possible tuple values t1 and t2 with
S(t1) < S(t2) yet t2[Ai] ≺ t1[Ai] for all i ∈ [1,m].

Intuitively, the definition states that if t1 outranks t2 according
to S(·), then t1 has to outrank t2 on at least one attribute accord-
ing to the order ≺. In other words, t1 cannot outrank t2 if it is
dominated [5] by t2. Another interesting note here is that we do
not require all user-specified ranking functions to follow the same
attribute-value order ≺. For example, one ranking function may
prefer higher prices while the other prefers lower prices.

Performance Measure: To enable query reranking, we have to is-
sue a number of queries to the underlying client-server database. It
is important to understand that the most important efficiency fac-
tor here is the total number of queries issued to the database, not
the computational time. The rational behind it is that almost all
client-server databases, enforce certain query-rate limit by allow-
ing only a limited number of queries per day from each IP address,
API account, etc.

Problem Definition: In this paper, we consider the problem of
query reranking in a “Get-Next”, i.e., incremental processing, fash-

ion. That is, for a given user query q, a user-specified ranking func-
tion S, and the top-h tuples satisfying q according to S, we aim
to find the No. (h + 1) tuple. When h = 0, this means finding
the top-1 for given q and S. One can see that finding the top-h
tuples for q and S can be easily solved by repeatedly calling the
Get-Next function. The reason why we define the problem in this
fashion is to address the real-world scenario where a user first re-
trieves the top-h answers and, if still unsatisfied with the returned
tuples, proceeds to ask for the No. (h + 1). By supporting incre-
mental processing, we can progressively return top answers while
paying only the incremental cost.

QUERY RERANKING PROBLEM: Consider a client-server
database D with a top-k interface and an arbitrary, un-
known, system ranking function. Given a user query q, a
user-specified monotonic ranking function S, and the top-h
(h ≥ 0 can be greater than, equal to, or smaller than k) tu-
ples satisfying q according to S, discover the No. (h + 1)
tuple for q while minimizing the number of queries issued to
the client-server database D.

3. 1D-RERANK
We start by considering the simple 1D version of the query rerank-

ing problem which, as discussed in the introduction, can also be
surprisingly useful in practice. Specifically, for a given attribute
Ai, a user query q, and the h tuples having the minimum values
of Ai among R(q) (i.e., tuples satisfying q), our goal here is to
find tuple t(q,Ai, h + 1), which satisfies q and has the (h+ 1)-th
smallest value on Ai among R(q), while minimizing the number
of queries issued to the underlying database.

3.1 Baseline Solution and Its Problem

3.1.1 1D-BASELINE
Baseline Design: Since our focus here is to discover t(q,Ai, h +
1) given q, Ai and h, without causing ambiguity, we use th+1

as a short-hand representation of t(q,Ai, h + 1). A baseline so-
lution for finding th+1 is to start with issuing to the underlying
database query q1: SELECT * FROM D WHERE Ai > th[Ai]
AND Sel(q), where Sel(q) represents all selection conditions spec-
ified in q. If h = 0, this query simply becomes SELECT * FROM
D WHERE Sel(q).

Note that the answer to q1 must return non-empty, because other-
wise it means there are only h tuples matching q. Let a1 be the one
having minimum Ai among all returned tuples. Given a1, the next
query we issue is q2: WHEREAi ∈ (th[Ai], a1[Ai]) AND Sel(q).
In other words, we narrow the search region on Ai to “push the en-
velop” and discover any tuple with even “better” Ai than what we
have seen so far.

If q2 returns empty, then th+1 = a1. Otherwise, we can con-
struct and issue q3, q4, . . ., in a similar fashion. More gener-
ally, given aj being the tuple with minimum Ai returned by qj ,
the next query we issue is qj+1: WHERE Ai ∈ (th[Ai], aj [Ai])
AND Sel(q). We stop when qj+1 returns empty, at which time we
conclude th+1 = aj . Algorithm 1, 1D-BASELINE, depicts the
pseudo-code of this baseline solution.

Leveraging History: An implementation issue worth noting for
1D-BASELINE is how to leverage the historic query answers we
have already received from the underlying client-server database.
This applies not only during the processing of a user query, but
also across the processing of different user queries.

During the process of user query q, for example, we do not have
to start with the range of Ai ∈ (th[Ai],∞) as stated in the ba-
sic algorithm design. Instead, if we have already “seen” tuples in
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R(q) that have Ai > th[Ai] in the historic query answers, then
we can first identify such a tuple with the minimum Ai, denoted
by t′, and then start the searching process with Ai ∈ (th[Ai], t

′),
a much smaller region that can yield significant query savings, as
shown in the query cost analysis below. More generally, this exact
idea applies across the processing of different user queries, by iden-
tifying tuples in historic query answers that match the user query
being processed. By doing so, the more queries we have processed,
the more likely we can prune the search space for th+1 based on
historic query answers.

Algorithm 1 1D-BASELINE

1: th+1 = argmint[Ai]{t ∈ history | t[Ai] > th[Ai]}
2: T = Top-k(WHERE th+1[Ai] > Ai > th[Ai] AND Sel(q))
3: while T is overflow
4: th+1 = argmint[Ai]{t ∈ T}
5: T = Top-k(WHERE th+1[Ai] > Ai > th[Ai] AND
Sel(q))

6: return th+1

3.1.2 Negative Result: Lower Bound on Worst-Case
Query Cost

While simple, 1D-BASELINE has a major problem on query
cost, as it depends on the correlation between Ai and the system
ranking function which we know nothing about and has no con-
trol over. For example, if the system ranking function is exactly
according to Ai, then the query cost of finding th+1 is 2: q1 re-
turns th+1 and q2 returns empty to confirm that th+1 is indeed the
“next” tuple. On the other hand, if the system ranking function is
the exact opposite to Ai, then the query cost for the baseline solu-
tion is exactly |R(q)|+ 1 in the worst-case scenario (when k = 1),
because every tuple satisfying q will be returned before th+1 is re-
vealed at the end. While it might be tempting to try to “adapt to”
such ill-conditioned system ranking functions, the following theo-
rem actually shows that the problem is not fixable in the worst-case
sense. Specifically, there is a lower bound of n/k on the query cost
required for query reranking given the worst-case data distribution
and worst-case system ranking function.

THEOREM 1. ∀n > 1, there exists a database of n tuples such
that finding the top-ranked tuple on an attribute through a top-k
search interface requires at least n/k queries that retrieve all the
n tuples.

PROOF. Without loss of generality, consider a database with
only one attributeA and an unknown ranking function. Let (v0, v∞)
be the domain of A. Note that this means (1) the query re-ranking
algorithm can only issue queries of the form SELECT * FROM
D WHERE A ∈ (v1, v2), where v0 ≤ v1 < v2 ≤ v∞, (2) the
returned tuples will be ranked in an arbitrary order, and (3) the ob-
jective of the query re-ranking algorithm is to find the tuple with
the smallest A.

For any given query re-ranking algorithm R, consider the fol-
lowing query processing mechanism Q for the database: During
the processing of all queries, we maintain a min-query-threshold
vq with initial value v∞. If a query q issued byR has lower bound
not equal to v0, i.e., q: WHERE A ∈ (v1, v2) with v1 > v0, Q
returns whatever tuples already returned in historic query answers
that fall into range (v1, v2). It also sets vq = min(vq, v1).

Otherwise, if q is of the form WHERE A ∈ (v0, v2) with v2 >
v0, then Q returns an overflowing answer with k tuples. These
k tuples include those in the historic query answers that fall into
(v0, v2). If more than k such tuples exist in the history, we choose
an arbitrary size-k subset. If fewer than k such tuples exist, we

fill up the remaining slots with arbitrary values in range ((v0 +
vq)/2, vq)1. We also set vq to be (v0 + vq)/2.

There are two critical observations here. First is that for any
query sequence q1, . . . , qh with h ≤ n/k, we can always construct
a database D of at most n tuples, such that the query answers gen-
erated by Q are consistent with what D produces. Specifically, D
would simply be the union of all tuples returned. Note that our
maintenance of vq ensures the consistency.

The second critical observation is that no query re-ranking algo-
rithm R can find the tuple with the smallest A without issuing at
least n/k queries. The reason is simple: since n/k−1 queries can-
not reveal all n tuples, we can add a tuple t with A = (v0 + vq)/2
to the database, where vq is its value after processing all n/k − 1
queries. One can see that the answers to all n/k − 1 queries can
remain the same. As such, for any n > 1, there exists a database
containing n tuples such that finding the top-ranked one for an at-
tribute requires at least n/k queries, which according to [15] is
sufficient for crawling the entire database in a 1D space.

3.2 1D-RERANK
Given the above result, we have to shift our attention to reduc-

ing the cost of finding th+1 in an average-case scenario, e.g., when
the tuples are more or less uniformly distributed on Ai (instead of
forming a highly skewed distribution as constructed in the proof
of Theorem 1). To this end, we start this subsection by consider-
ing a binary-search algorithm. After pointing out the deficiency of
this algorithm when facing certain system ranking functions, we
introduce our idea of on-the-fly indexing for the design of 1D-
RERANK, our final algorithm for query reranking with a single-
attribute user-specified ranking function.

3.2.1 1D-BINARY and its Problem
The binary search algorithm departs from 1D-BASELINE on the

construction of q2: Given a1, instead of issuing q2: WHERE Ai ∈
(th[Ai], a1[Ai]) AND Sel(q), we issue here

q′2 : WHERE Ai ∈ (th[Ai], (a1[Ai] + th[Ai])/2) AND Sel(q).

This query has two possible outcomes: If it returns non-empty,
we consider the returned tuple with minimum Ai, say a2, and
construct q′3 according to a2. The other possible outcome is for
q′2 to return empty. In this case, we issue q′′2 : WHERE Ai ∈
[(a1[Ai] + th[Ai])/2, a1[Ai]) AND Sel(q), which has to return
non-empty as otherwise th+1 = a1. In either case, the search
space (i.e., the range in which th+1 must reside) is reduced by at
least half. Algorithm 2, 1D-BINARY, depicts the pseudocode.

Algorithm 2 1D-BINARY

1: th+1 = argmint[Ai]{t ∈History | t[Ai] > th[Ai]}
2: do
3: q′ = WHERE Ai ∈ (th[Ai], (th+1[Ai] + th[Ai])/2) AND
Sel(q)

4: T = Top-k(q′)
5: if T is underflow, then
6: q′ = WHERE Ai ∈ [(th+1[Ai] + th[Ai])/2, th+1[Ai])

AND Sel(q)
7: T = Top-k(q′)
8: if T is not underflow, then th+1 = argmint[Ai]{t ∈ T}
9: while T is overflow

10: return th+1

1Note that any factor here (besides 2) works too. So in general the
range can be ((v0 + vq) · α, vq) so long as α > 0.
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Query Cost Analysis: While the design of 1D-BINARY is simple,
the query-cost analysis of it yields an interesting observation which
motivates the indexing-based design of our final 1D-RERANK al-
gorithm. Let

εk = th+k+1[Ai]− th+1[Ai]. (1)

An important observation here is that the execution of 1D-BINARY
must conclude when the search space is reduced to width smaller
than εk, because no such range can cover th+1[Ai] while match-
ing more than k tuples. Thus, the worst-case query cost of 1D-
BINARY is

O(min(log2(|V (q,Ai)|/εk), |R(q)|/k)), (2)

where |V (q,Ai)| is the range ofAi among tuples satisfying q - i.e.,
maxt∈R(q) t[Ai]−mint∈R(q) t[Ai]. Note that the second input to
the min function in (2) is because every pair of queries issued by
1D-BINARY, i.e., q′j and q′′j , must return at least k tuples never
seen before that satisfies q.

The query-cost bound in (2) illustrates both the effectiveness and
the potential problem of Algorithm 1D-BINARY. On one hand, one
can see that 1D-BINARY performs well when the tuples matching
q are uniformly distributed onAi, because in this case the expected
value of εk becomes k · |V (q,Ai)|/|R(q)|, leading to a query cost
of O(log2(|R(q)|/k)). On the other hand, 1D-BINARY still in-
curs a high query cost (as bad as Ω(|R(q)|/k), just as indicated by
Theorem 1 when (1) the system ranking function is ill-conditioned,
i.e., negatively correlated with Ai, and (2) Within R(q) there are
densely clustered tuples with extremely close values on Ai, lead-
ing to a small εk. Unfortunately, once the two conditions are met,
the high query cost 1D-BINARY is likely to be incurred again and
again for different user queries q, leading to an expensive rerank-
ing service. It is this observation which motivates our index-based
reranking idea discussed next.

3.2.2 Algorithm 1D-RERANK: On-The-Fly Indexing
Oracle-based Design: According to the above observation, densely
clustered tuples cause a high query cost of 1D-BINARY. To address
the issue, we start by considering an ideal scenario where there ex-
ists an oracle which identifies these “dense regions” and reveals
the tuple with minimum Ai in these regions without costing us any
query. Of course, no such oracle exists in practice. Nevertheless,
what we shall do here is to analyze the query cost of 1D-BINARY
given such an oracle, and then show how this oracle can be “simu-
lated” with a low-cost on-the-fly indexing technique.

Specifically, for any given region [x, y] ∈ V (Ai), we call it a
dense region if and only if it covers at least s tuples and y − x <
|V (Ai)| · (s/n)/c, where c and s are parameters. In other words,
the density of tuples in [x, y] is more than c times higher than the
uniform distribution (which yields an expected value ofE(y−x) =
|V (Ai)| · (s/n)). The setting of c and s is a subtle issue which
we specifically address at the end of this subsection. Given the
definition of dense region, the oracle functions as follows: Upon
given a user query q, an attribute Ai, and a range [x, y] ⊆ V (Ai)
as input, the oracle either returns empty if [x, y] is not dense, or a
tuple t which (1) satisfies q, (2) has Ai ∈ [x, y], and (3) features
the smallest Ai among all tuples satisfying (1) and (2).

With the existence of this oracle, we introduce a small yet critical
revision to 1D-BINARY, by terminating binary search whenever
the width of the search space becomes narrower than the threshold
for dense region, i.e., εk < |V (Ai)| · (s/n)/c. Then, we call the
oracle with the remaining search space as input. Note that doing so
may lead to two possible returns from the oracle:

One is when the region is indeed dense. In this case, the ora-
cle will directly return us th+1 with zero cost. The other possible

outcome is an empty return, indicating that the region is not re-
ally dense, instead containing more than k (otherwise 1D-BINARY
would have already terminated) but fewer than s tuples. Note that
this is not a bad outcome either, because it means that by following
the baseline technique (1D-BASELINE) on the remaining search
space, we can always find th+1 within O(s/k) tuples.

Algorithm 3 depicts the pseudocode of 1D-RERANK, the re-
vised algorithm. The following theorem shows its query cost, which
follows directly from the above discussions.

Algorithm 3 1D-RERANK

1: th+1 = argmint[Ai]{t ∈History | t[Ai] > th[Ai]}
2: while (th+1[Ai]− th[Ai]) < |V (Ai)| · (s/n)/c
3: q′ = WHERE Ai ∈ (th[Ai], (th+1[Ai] + th[Ai])/2) AND
Sel(q)

4: T = Top-k(q′)
5: if T is underflow
6: q′ = WHERE Ai ∈ [(th+1[Ai] + th[Ai])/2, th+1[Ai])

AND Sel(q)
7: T = Top-k(q′)
8: if T is not underflow
9: th+1 = argmint[Ai]{t ∈ T}

10: if T is valid break
11: if T is valid
12: look up th+1 at ORACLE(Ai,(th[Ai], th+1[Ai]),q)
13: return th+1

THEOREM 2. The query cost of 1D-RERANK, with the pres-
ence of the oracle, is O(log(c · n/s) + s/k).

PROOF. The query cost of of 1D-RERANK, with the presence
of the oracle, is the summation of (i) the query cost of follow-
ing 1D-BINARY until the search space becomes narrower than the
dense region threshold, which is O(log2(|V (q,Ai)|/εk)), and (ii)
the query cost of discovering th+1 in the remaining region, us-
ing the oracle. Since εk < |V (Ai)| · (s/n)/c, the first term is
O(log(c · n/s)). As discussed previously, if the oracle does not
include the remaining region, the region is not dense and contains
fewer than s tuples. Thus, following 1D-BASELNE in the remain-
ing region requires at most s/k queries.

Note that the query cost indicated by the theorem is very small.
For example, when c = n and s = k · logn, the query cost
is O(logn), substantially smaller than that of 1D-BINARY. Of
course, the oracle does not exist in any real system. Thus, our goal
next is to simulate this oracle with an efficient on-the-fly indexing
technique.

On-The-Fly Indexing: Our idea for simulating the oracle is sim-
ple: once 1D-RERANK decides to call the oracle with a range
(x, y), we invoke the 1D-BASELINE algorithm on SELECT * FR-
OM D WHERE Ai ∈ (x, y) to find the tuple t with smallest Ai

in the range. If t satisfies the user query q being processed, then
we can stop and output t. Otherwise, we call 1D-BASELINE on
WHERE Ai ∈ (t[Ai], y) to find the No. 2 tuple, and repeat this
process until finding one that satisfies q. All tuples discovered dur-
ing the process are then added into the “dense index” that is main-
tained throughout the processing of all user queries.

Algorithm 4 depicts the on-the-fly index building process. Note
that the index we maintain is essentially a set of 3-tuples

〈Ai, (x, y), D(Ai, x, y))〉, (3)

whereAi is an attribute, (x, y) is a range in V (Ai) (non-overlapping
with other indexed ranges ofAi), andD(Ai, x, y) contains all (top-
ranked) tuples we have discovered that have Ai ∈ (x, y).
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Algorithm 4 ORACLE
1: if ORACLE(Ai,x, y) exists
2: return argmint[Ai]{t ∈ D(Ai, x, y))| t matches Sel(q)}
3: t=1D-BASELINE(WHERE Ai ∈ (x, y))
4: add t to D(Ai, x, y)
5: while t does not satisfy Sel(q)
6: t=1D-BASELINE(WHERE Ai ∈ (t[Ai], y))
7: add t to D(Ai, x, y)
8: return t

Note that this simulation does differ a bit from the ideal oracle.
Specifically, it does not really determine if the region is dense or
not. Even if the region is not dense, this simulated oracle still out-
puts the correct tuple. What we would like to note, however, is that
this difference has no implication whatsoever on the query cost of
1D-RERANK. Specifically, what happens here is simply that the
on-the-fly indexing process pre-issues the queries 1D-RERANK is
supposed to issue when the oracle returns empty. The overall query
cost remains exactly the same.

Another noteworthy design in on-the-fly indexing is the call of
1D-BASELINE on SELECT * FROM D WHERE Ai ∈ (x, y), a
query that does not “inherit” the selection conditions in the user
query q being processed. This might appear like a waste as 1D-
BASELINE could issue fewer queries with a narrower input query.
Nonetheless, we note that rationale here is that a dense region might
be covered by multiple user queries repeatedly. By keeping the in-
dex construction generic to all user queries, we reduce the amor-
tized cost of indexing as the dense index can make future reranking
processes more efficient.

Parameter Settings: To properly set the two parameters for dense
index, c and s, we need to consider not only the query cost derived
in Theorem 2, but also the cost for building the index, which is
considered in the following theorem:

THEOREM 3. The total query cost incurred by on-the-fly index-
ing (for processing all user queries) is at most

n−s−1∑
h=1

c(h) (4)

where c(h) = 1 if there exists j ∈ [h− s, h], such that

t(∗, Ai, j + s+ 1)[Ai]− t(∗, Ai, j)[Ai] <
s · |V (Ai)|

c · n , (5)

and 0 otherwise. Here t(∗, Ai, j) refers to the j-th ranked tuple
according to Ai in the entire database.

PROOF. The discovery of every tuple in the dense region takes
at most the amortized cost of one query. That is because 1D-
BASELINE assures the discovery on k unseen tuples by every non-
underflowing query, i.e. every tuple in the dense region is discov-
ered by one and only one query. Thus the query cost is at most
equal to the number of tuples in the dense regions. Each tuple t is
in the dense region with regard to the dimension Ai, if, sorting the
tuples on Ai, we can construct a window containing t, with size
less than the dense region threshold, that has at least s tuples. Sup-
pose t is ranked h-th based on Ai. Equation 5 checks the existence
of such a window around it. The total cost thus, is at most the num-
ber of the tuples for which this equation is true. This is reflected in
Equation 4.

One can see from the above theorem and Theorem 2 how c and s
impacts the query cost: the larger c is, the fewer dense regions there
will be, leading to a lower indexing cost. On the other hand, the per-
query reranking cost increases at the log scale with c. Similarly,

the larger s is, the fewer dense regions there will be (because a
larger s reduces the variance of tuple density), while the per-query
reranking cost increases linearly with s. Given the different rate of
increase for the per-query reranking cost with c and s, we should
set c to be a larger value to leverage its log-scale effect, while keep
s small to maintain an efficient reranking process.

Specifically, we set c = n and s = k · logn. One can see that the
per-query reranking cost of 1D-RERANK in this case is O(logn).
While the indexing cost depends on the specific data distribution
(after all, we are bounded by Theorem 1 in terms of worst-case
performance), the large value of c = nmakes it extremely unlikely
for the indexing cost to be high. In particular, note that even if
the density surrounding each tuple follows a heavy-tailed scale-free
distribution, the setting of c = n still makes the number of dense
regions, therefore the query cost for indexing, a constant.We shall
verify this intuition and perform a comprehensive test of different
parameter settings in the experimental evaluations.

Now let us use 1D-RERANK on a mock example specified in
Example 1, in order to find the Top-1 tuple with minimum delay.

EXAMPLE 1. Consider a flight-search website, with two attrib-
utes: Price (A1) and Delay (A2). SupposeD = {t1[50, 1000], t2[-
51, 990], . . . , t50[99, 510], t51[200, 200], t52[510, 99], t53[520, 98],
. . . , t100[990, 51]}, while the Top-1 interface of the database ranks
the flights based on price ascendingly.

Let s = 6 and c = 20. Starting from SELECT *, 1D-RERANK
issues the following set of queries (in qi(condition):result format):
{q0() : t1, q1(A2 < 500) : t51, q2(A2 < 100) : t52, q3(A2 <
50) : ∅, q4(50 ≤ A2 < 99) : t53, q5(50 ≤ A2 < 74) : t78,
q6(50 ≤ A2 < 61.5) : t90, q7(50 ≤ A2 < 55.5) : t96, (reaching
the dense region threshold) q8(50 ≤ A2 < 52.5) : t99, q9(50 ≤
A2 < 52) : t100, q10(50 ≤ A2 < 51) : ∅}, and returns t100.

4. MD-RERANK
In this section, we consider the generic query reranking problem,

i.e., over any monotonic user-specified ranking function. We start
by pointing out the problem of implementing a classic top-k query
processing algorithm such as TA [9] by calling 1D-RERANK as a
subroutine. The problem illustrates the necessity of properly lever-
aging the conjunctive queries supported by the search interface of
the underlying database. To do so, we start with the design of MD-
BASELINE, a baseline technique similar to 1D-BASELINE. De-
spite of the similarity, we shall point out a key difference between
two cases: MD-BASELINE requires many more queries because
of the more complex shape of what we refer to as a tuple’s “rank-
contour” - i.e., the subspace (e.g., a line in 2D space) containing
all possible tuples that have the same user-defined ranking score as
a given tuple t. To reduce this high query cost, we propose Algo-
rithm MD-BINARY which features two main ideas, direct domina-
tion detection and virtual tuple pruning. Finally, we integrate the
dense-region indexing idea with MD-BINARY to produce our final
MD-RERANK algorithm.

4.1 Problem with TA over 1D-RERANK
A seemingly simple solution to solve the generic query rerank-

ing problem is to directly apply a classic top-k query processing
algorithm, e.g., the threshold (TA) algorithm [9], over the Get-Next
primitive offered by 1D-RERANK. While we refer readers to [9]
for the detailed design of TA, it is easy to see that 1D-RERANK
offers all the data structure required by TA, i.e., a sorted access
to each attribute. Note that the random access requirement does
not apply here because, as discussed in the preliminary section, the
search interface returns all attribute values of a tuple without the
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Figure 4: Design of MD-Binary:
Example 2

need for accessing each attribute separately. Since TA supports all
monotonic ranking functions, this simple combination solves the
generic query reranking problem defined in § 2.

While simple, this solution suffers from a major efficiency prob-
lem, mainly because of not leveraging the full power provided by
client-server databases. By exclusively calling 1D-RERANK as a
subroutine, this solution focuses on just one attribute at a time and
does not issue any multi-predicate (conjunctive) queries supported
by the underlying database (unless such predicates are copied from
the user query). The example in Figure 1 illustrates the problem:
In the example, there is a large number of tuples with extreme val-
ues on both attributes (i.e., tuples on the x- and y-axis). Since this
TA-based solution focuses on one attribute at a time, these extreme-
value tuples have to be enumerated first even when the system rank-
ing function completely aligns (e.g., equals) the user-desired rank-
ing function.

On the other hand, one can observe from the figure the power be-
stowed by the ability to issue multi-predicate conjunctive queries.
As an example, consider the case where the system ranking func-
tion is well-conditioned and returns t as the result for SELECT
* FROM D. Given t, we can compute its rank-contour, i.e., the
line/curve that passes through all 2D points with user-defined score
equal to S(t), i.e., the score of t. The curve in the figure depicts
an example. Given the rank-contour, we can issue the smallest 2D
query encompassing the contour, e.g., q in Figure 1, and immedi-
ately conclude that t is the No. 1 tuple when q returns t and nothing
else (assuming k > 1). This represents a significant saving from
the query cost of implementing TA over 1D-RERANK.

4.2 MD-Baseline

4.2.1 Discovery of Top-1
To leverage the power of multi-predicate queries, we start with

developing a baseline algorithm similar to 1D-BASELINE. The al-
gorithm starts with discovering the top-1 tuple t according to an
arbitrary attribute, sayA1. Then, we compute the rank-contour of t
(according to the user ranking function, of course), specifically the
values where t’s rank-contour intersects with each dimension, i.e.,

`(Ai) = max{v ∈ V (Ai)|S(t) ≤ S(0, . . . , 0, v, 0, . . . , 0)}.
(6)

Figure 2 depicts an example of `(Ai) for the two dimensions, com-
puted according to t.

We now issue m queries of the form

q1 : A1 < t[A1] & A2 < `(A2) & · · · & Am < `(Am)

q2 : A1 ∈ [t[A1], `(A1)) & A2 < t[A2] & A3 < `(A3) & · · ·
& Am < `(Am)

qm : A1 ∈ [t[A1], `(A1)) & · · · & Am−1 ∈ [t[Am−1,

`(Am−1)) & Am < t[Am] (7)

Again, Figure 2 shows an example of q1 and q2 for the 2D space.
One can see that the union of thesem (mutually exclusive) queries

covers in its entirety the region “underneath” the rank-contour of t.
Thus, if none of them overflows, we can safely conclude that the
No. 1 tuple must be either t or one of the tuples returned by one of
the m queries. If at least one query overflows and returns t′ with
score S(t′) < S(t), i.e., t′ that ranks higher than t, we restart the
entire process with t = t′.

Otherwise, for each query qi that overflows, we “partition” it
further into m + 1 queries. Let ti be the tuple returned by qi. We
compute for each attribute Aj a value b(Aj) such that

b(Aj) = min{v ∈ V (Aj)|S(t) ≤
S(ti[A1], . . . , ti[Aj−1], b(Aj), ti[Aj+1], . . . , ti[Am])}. (8)

Intuitively, b(Aj) can be understood as follows: In order for a tuple
t′ to outrank t, the highest-ranked tuple discovered so far, it must
either “outperform” b(Aj) on at least one attribute, i.e., ∃Aj with
t′[Aj ] < b(Aj), or it must dominate ti. Examples of b(A1) and
b(A2) are shown in Figure 2.

Note that, while any monotonic (user-defined) ranking function
yields a unique solution for b(Aj), the complexity of computing
it can vary significantly depending upon the design of the ranking
function. Nonetheless, recall from § 2 that our main efficiency con-
cern is on the query cost of the reranking process rather than the
computational cost for solving b(Aj) locally (which does not incur
any additional query to the underlying database). Furthermore, the
most extensively studied ranking function in the literature, a linear
combination of multiple attributes, features a constant-time solver
for b(Aj).

Given b(Aj), we are now ready to construct the m + 1 queries
we issue. The first m queries qi1, . . . , qim cover those tuples out-
performing b(A1), . . . , b(Am) onA1, . . . , Am, respectively; while
the last one covers those tuples dominating ti. Specifically, qij
(j ∈ [1,m]) is the AND of qi and

(A1 ≥ b(A1)) AND · · · AND (Aj−1 ≥ b(Aj−1))

AND (Aj < b(Aj)) (9)

The last query is the AND of qi and A1 ≤ ti[A1] AND · · · AND
Am ≤ ti[Am], i.e., covering the space dominating ti.

Once again, at anytime during the process if a query returns t′

with S(t′) < S(t), we restart the entire process with t = t′. Oth-
erwise, for each query that overflows, we “partition” it into m+ 1
queries as described above.

In terms of query cost, recall from § 2 our idea of leveraging
the query history by checking if any previously discovered tuples
match the query we are about to issue. Given the idea, each tuple
will be retrieved at most once by MD-BASELINE. Since each tuple
we discover triggers at most m + 1 queries which are mutually
exclusive with each other, one can see that the worst-case query
cost of MD-BASELINE for discovering the top-1 tuple isO(m·n).
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4.2.2 Discovery of Top-k
We now discuss how to discover the top-k (k > 1) tuples sat-

isfying a given query. To start, consider the discovery of No. 2
tuple after finding the top-1 tuple t1. What we can do is to pick an
arbitrary attribute, say A1, and partition the search space into two
parts: A1 < t1[A1] and A1 > t1[A1]. Then, we launch the top-1
discovery algorithm on each subspace. Note that during the discov-
ery, we can reuse the historic query answers - e.g., by starting from
the tuple(s) we have also retrieved in each subspace that have the
smallest S(·). One can see that one of the two discovered top-1s
must be the actual No. 2 tuple t2 of the entire space.

Once t2 is discovered, in order to discover the No. 3 tuple, we
only need to further split the subspace from which we just discov-
ered t2 (into two parts). For example, if we discovered t2 from
A1 > t1[A1], then we can split it again into A1 ∈ (t1[A1], t2[A1])
and A2 > t2[A1]. One can see that the No. 3 tuple must be ei-
ther the top-1 of one of the two parts or the top-1 of A1 < t1[A1],
which we have already discovered. As such, the discovery of each
tuple in top-k, say No. h, requires launching the top-1 discovery
algorithm exactly twice, over the two newly split subspaces of the
subspace from which the No. h − 1 tuple was discovered. Thus,
the worst-case query cost for MD-BASELINE to discover all top-k
tuples is O(m · n · k).

4.3 MD-Binary

4.3.1 Problem of MD-Baseline
A main problem of MD-Baseline is its poor performance when

the system ranking function is negatively correlated to the user-
desired ranking function. To understand why, consider how MD-
Baseline compared with the 1D-Baseline algorithm discussed in
§ 3. Both algorithms are iterative in nature; and the objectives for
each iteration are almost identical in both algorithms: once a tuple t
is discovered, find another tuple t′ that outranks it according to the
input ranking function. The difference, however, is that while it is
easy to construct in 1D-Baseline a query that covers only those tu-
ples which outranks t (for the attribute under consideration), doing
so in the MD case is impossible.

The reason for this difference is straightforward: observe from
Figure 3 that, when there are more than one, say two, attributes, the
subspace of tuples outranking t is roughly “triangular” in shape.
On the other hand, only “rectangular” queries are supported by the
database. This forces us to issue at least m queries to “cover” the
subspace outranking t (without covering, and returning, t itself).

The problem for this “coverage” strategy in MD-Baseline, how-
ever, is that the rectangular queries it issues may match many tuples
that indeed rank lower (i.e., have larger S(·))) than t according to
the desired ranking function. For example, half of the space cov-
ered by q2 in Figure 3 is occupied by tuples that rank lower than
t. This means that, when the system ranking function is negatively
correlated with our desired one, queries like q2 in Figure 3 are most
likely going to return tuples that rank lower than t. This outcome
has two important ramifications on the efficiency of MD-Baseline:
First, it significantly slows down the process of iteratively finding
a tuple that outranks the previous one. Second, within each itera-
tion, it slows down the pruning of the search space. For example,
observe from Figure 3 that, after q2 returns t′, the pruning effect on
the space covered by q2 is minimal, i.e., only the dark subspace on
the top-right corner of q2.

4.3.2 Design of MD-Binary
We propose two ideas in MD-Binary to address the two ramifi-

cations of MD-Baseline, respectively:
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Figure 5: Design of MD-Binary: Example 1

Direct Domination Detection: The intuition of this idea can be
stated as follows: When a query such as q2 returns a tuple t′ that
ranks lower than t, we attempt to “test” whether this is indeed
caused by the absence of higher-ranked tuples in q2, or by the ill-
conditioned nature of the system ranking function. As discussed
above, there is no way to efficiently cover the subspace of tuples
outranking t. Thus, what we do here is to find the single query
which (1) is a subquery of q2, (2) only covers the subspace out-
ranking t, and (3) has the maximum volume among all queries that
satisfy (1) and (2).

For example, when q2 in Figure 3 returns t′, we issue q3 (marked
in green) in Figure 5 which covers roughly half of the “triangular”
subspace underneath the rank-contour of t in q2. As another exam-
ple, if q1 in Figure 2 returns a tuple with lower rank than t, then
we the max-volume tuple would be q7 in Figure 4, which covers al-
most all of the subspace outranking t in q1. One can see from these
examples that, if the returning of t′ is caused by the ill-conditioned
system ranking function while there are abundant tuples outranking
t, then q3 and/or q7 are likely to return such a tuple and success-
fully push MD-Binary to the next iteration. If, on the other hand, q3
returns empty, we use the next idea to further partition q2, in order
to determine whether there is any tuple in it that outranks t.
Virtual Tuple Pruning: We now address the second problem of
MD-Baseline, i.e., the lack of pruning power when the system rank-
ing function is negatively correlated with the desired one. To this
end, our idea is to prune the search space according to not the re-
turned tuple, but a virtual tuple created for the purpose of minimiz-
ing the pruned subspace. Figure 5 illustrates an example: Instead
of partitioning q2 with t′ like in Figure 3 which results in mini-
mal pruning, we “create” a virtual tuple v′ which maximizes the
reduction of search space as marked in gray in Figure 5.

Figure 5 represents one possible outcome of virtual tuple prun-
ing, when v′ happens to dominate the tuple t′ returned by q2. The
other possible outcome is depicted in Figure 4, where v′ does not
dominate t′. In this case, if we still split q2 as in Figure 5, then one
of the subspace (i.e., x ∈ (t[x], v′[x]) AND y < t[y]) would return
t′, making the query answer useless. As such, we split q2 into three
pieces in this scenario, as shown in Figure 4.

The more general design of virtual tuple pruning for an m-D
database is shown in Algorithm 5. The algorithm also depicts the
direct domination detection idea. Note from the algorithm that,
depending on the values of t′ and v′ on them attributes, the number
of split subspaces can range fromm, when v′ dominates t′, to 2m−
1, when t′ dominates v′ on all but one attribute.

One can see from the design that virtual tuple pruning does not
affect the correctness of the algorithm: so long as S(v′) ≥ S(t),
the union of the split subspaces still cover q2. On the other hand, the
benefit of the idea can be readily observed from Figure 5: instead of
having only a small reduction of the search space like in Figure 3,
now we can prune half of the space in q2 that rank below t (in this
2D case, of course). The experimental results in § 6 demonstrate
the effectiveness of virtual tuple pruning.
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Algorithm 5 MD-BINARY

1: apply 1D-RERANK on A1 to t and set threshold=s(t)
2: add the queries in Equation 7 to the empty queue
3: while queue is not empty
4: q′=queue.delete
5: T = Top-k(q′);t = argmins(t){t ∈ T}
6: if s(t) <threshold
7: threshold=s(t); goto Line 2
8: if T is valid: continue
9: v′ = argmaxvol(v){v ∈ contour(t)}

10: T = Top-k(∀A ∈ A, A ≤ v′[A])
11: if T is not underflow
12: t=argmins(t){t ∈ T}; threshold=s(t); goto Line 2
13: for each Ai ∈ A
14: if t[Ai] ≥ v′[Ai] add the following query to the queue

q1 : q′ AND Ai < v′[Ai] AND {∀i−1
j=1Aj >= v′[Aj ]}

15: else add the following queries to the queue

q1 : q′ AND Ai < t[Ai] AND {∀i−1
j=1Aj >= v′[Aj ]}

q2 : q′ AND Ai < v′[Ai] AND Ai+1 < bt(Ai+1)

AND {∀i−1
j=1Aj >= v′[Aj ]}

16: return t

4.4 MD-RERANK
Just like the 1D case, the query cost of MD-Binary may increase

significantly when there is a dense cluster of tuples right above the
rank-contour of the top-1 tuple. In this case, the split in MD-Binary
may have to continue for a large number of times before all tuples
in the cluster are excluded from the search space. Once again, our
solution to this problem is index-based reranking. Like in the 1D
case, we proactively record as an index densely located tuples once
we encounter them, so that we do not need to incur a high query
cost every time a query q triggers visits to the same dense region.

More specifically, MD-RERANK follows MD-Binary until a re-
maining search space (1) is covered by an already crawled region in
the index; or (2) has volume smaller than |V | · (s/n)/c, where |V |
is the volume of the entire data space, and s and c are the same as
in 1D. In the earlier case, since the search space has been crawled
already, we can directly reuse the crawled tuples. In the latter case,
we follow the same procedure as in 1D-RERANK, i.e., we crawl
the space and, if it indeed turns out to be dense (by containing at
least s tuples), we include the crawled tuples into the index. Algo-
rithm 6 depicts the pseduocode of MD-RERANK.

Algorithm 6 MD-RERANK
1: follow MD-BINARY
2: during the process for each query q′:
3: if V (q′) < |V | · (s/n)/c
4: q′ = remove Sel(q)} from q′
5: if ORACLE(q′) exists
6: return argmins(t){t ∈ D(q′))| t matches Sel(q)}
7: t=MD-BASELINE(q′); add t to temp
8: while t does not satisfy Sel(q)
9: t1 = MD-BASELINE(q′ AND A1 < t[A1])

10: t2 = MD-BASELINE(q′ AND A1 > t[A1])
11: t=min(t1 , t2); add t1 and t2 to temp
12: add temp to D(q′)

Now, considering Example 1, let us apply MD-RERANK in or-
der to find the Top-1 tuple with minimum Delay+Price. The al-
gorithm applies 1D-RERANK to find the Top-1 on A1 (q0() :
t1, q1(A1 < 50) : ∅), then issues the query q2(A1 ∈ [50, 1050)

AND A2 < 1000) : t2. Next, constructing the virtual point
v′[525, 525], it issues the query q3(A1 ≤ 525 AND A2 ≤ 525) :
t51. Having found a better result, it restarts the process with queries
q4(A1 < 200 AND A2 < 400) : ∅ and q5(A1 ∈ [200, 400) AND
A2 < 400) : ∅. It finally returns t51 as Top-1.

5. DISCUSSIONS
General Positioning Assumption: In previous discussions, we
made the general positioning assumption, for the simplicity of dis-
cussions. We now consider the removal of this assumption. Note
that the removal of this assumption for MD-RERANK is extremely
simple: the only tuple(s) that can be missed by MD-RERANK are
those that have the exact same value on every single attribute. Thus,
the only post-processing step required for removing the assumption
is to form a fully specified query according to No. h tuple just dis-
covered. If more than one, say i, tuples are returned, they become
the No. h to No. (h + i − 1) top-ranked tuples. Removing the
assumption for 1D-RERANK is slightly more complex. For ex-
ample, if we are running it over attribute A1, the removal of the
general positioning assumption means query SELECT * FROM D
WHERE A1 = t[A1] might overflow. In this case, our solution is
to call the crawling algorithm [15] to discover, one at a time, tuples
satisfying A1 = t[A1], as all of these tuples have the same rank for
the purpose of 1D-RERANK.

Multiple/Known System Ranking Functions: Another interest-
ing issue arising in practice is when the client-server database of-
fers more than one ranking functions, often times allowing ranking
over a specific attribute. For example, Amazon.com offers not only
a proprietary rank by “popularity”, the design of which is unknown,
but also ranking by price, which is an attribute usually involved in
the user-specified ranking function. An interesting implication of
such a “public” ranking function is that it might boost the perfor-
mance of the TA-1D algorithm discussed in the beginning of § 4.
Specifically, since now TA can simply use the public ranking func-
tion on the attribute instead of calling 1D-RERANK, it may have
a even lower query cost than MD-RERANK when the user-desired
ranking function aligns well with the system one.

Point Predicates: In this paper, we focused on cases where at-
tributes involved in the ranking function are numeric attributes that
support range queries. While this is often the case in practice (as
evidenced in real-world websites such as the aforementioned Blue
Nile where all attributes such as price, carat, clarity, etc., are avail-
able as range predicates), there are also cases where a ranking at-
tribute with only a small number of domain values can only be
specified as a point predicate (i.e., of the form Ai = v) in the
database search interface. For 1D-RERANK, this is often a bless-
ing because it simplifies the task to querying the attribute values
in the preference order (plus the crawling-based provision as in the
discussion for the general positioning assumption). On the other
hand, it makes MD-RERANK much more costly, because now a
conjunctive query covers a much smaller space than the range case.
Thus, an intuition here is to prefer the TA-1D algorithm over MD-
RERANK when a large number of attributes are searchable as point
predicates only. Due to space limitations, we leave a comprehen-
sive study of this issue to future work.

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
In this section, we present our experimental results over a num-

ber of several real-world datasets, offline and online. We started
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with the offline case by testing over a real-world dataset we have al-
ready collected. Specifically, we constructed a top-k web search in-
terface over it, and then executed our algorithms through the inter-
face. This offline setting enabled us to not only verify the correct-
ness of our algorithms, but also investigate how the performance of
query reranking changes with various factors such as the database
size, the system ranking function, settings of the system search in-
terface, etc. We followed the offline tests with online, live, ex-
periments over two real-world web databases, including the largest
online diamond retailer and a popular auto search website. In all
these experiments, we applied the extensions described in § 5 to
resolve the general positioning assumption which may not hold in
practice.
Offline Dataset: We used the flight on-time dataset published by
the US Department of Transportation (DOT)2. A wide range of
third-party websites use this dataset to identify on-time performance
of flights, routes, airports, airlines, etc. It consists of 457,013 flight
records of 14 US carriers during the month of May 2015. It has
28 attributes, out of which we selected the following 8 attributes
for ranking: Dep-Delay, Taxi-Out, Taxi-In, Arr-Delay-New, CRS-
Elapsed-Time, Actual-Elapsed-Time, Air-Time, and Distance. The
domain sizes are 1988, 180, 180, 1971, 718, 724, 676, and 5000,
respectively. For the purpose of the experiments, we considered
two system ranking functions: 0.3 AIR-TIME + TAXI-IN (SR1) and
-0.1 DISTANCE - DEP-DELAY (SR2). In general, SR1 has a posi-
tive correlation with the user-specified ranking functions we tested,
while SR2 has a negative one. We set SR1 as the default ranking
function in the experiments. The value of k offered by the database
is set to 10 by default.
Online Experiments: We conducted live experiments over two
real-world web-sites: Blue Nile (BN) and Yahoo! Autos (YA).
Blue Nile3 is the largest diamonds online retailer in the world. At
the time of our experiments, its catalog had 117,641 diamonds. We
considered Carat, Depth, LengthWidthRatio, Price, and Table as
the ranking attributes, and Clarity, Color, Cut, Fluorescence, Pol-
ish, Shape, and Symmetry for filtering. The domains for the ranking
attributes are [0.23,22.74], [0.45,0.86], [0.49,0.89], [$220,$4506938]
and [0.75,2.75], respectively. BN allows multiple ranking functions
- ordering based on each attributes individually as well as by the de-
rived attribute price-per-carat.
Yahoo! Autos is a popular website for buying used cars4. We con-
sidered the 13,169 cars listed for sale within 30 miles of New York
city. We treated Price, Milage and Year as the ranking attributes,
and BodyStyle, DriveType, Transmission, Name and Model as the
filtering attributes. The cars had a price range between $0 and
$50,000, mileage between 0 and 300,000, and were manufactured
between 1993 and 2016. The default ranking function is “distance
from a predefined location” (which is not monotonic). Addition-
ally, it supports ranking by each of the numerical attributes individ-
ually.
Performance Measures: As explained in § 2, our algorithms al-
ways return the precise query answer. After verifying the correct-
ness in all offline experiments, we turn our attention to the key per-
formance measure, efficiency, which is measured by the number of
queries issued to the web database.

6.2 1D Experiments
Constructing Workload of User Preference Queries: We tested a
diverse set of user-specified queries of the form SELECT * FROM

2http://www.transtats.bts.gov/DL_SelectFields.asp?
Table_ID=236&DB_Short_Name=On-Time
3http://www.bluenile.com/diamond-search
4https://autos.yahoo.com/used-cars/

D WHERE Sel(q) ORDER BY Ai. Specifically, we randomly
selected different subsets of filtering attributes for the WHERE
clause, while choosing the (1D) ranking attribute uniformly at ran-
dom. This approach has a number of appealing properties. First,
it covers diverse cases that include ideal, worst-case and typical
scenarios. Second, since 1D-RERANK uses on-the-fly indexing
to amortize the cost between different user-issued queries, our di-
verse query workload simulates a real-world scenario where the
service is used by multiple users. For each experimental configu-
ration, we execute each of the queries and report the average query
cost. Specifically, for the DOT dataset, we constructed 32 queries
of which 25% do not have any filtering condition. For BN, we con-
structed a set of 20 queries, of which 4 have no filtering conditions,
while these values are 15 and 2 for YA, respectively.

6.2.1 Experiments over the Real-world Dataset
Impact of Database Size and System Ranking Function: We
started by testing the impact of database size on our algorithms for
the two system ranking functions SR1 and SR2. To test databases
of varying sizes, we drew 10 simple random samples of a given size
from the DOT dataset, and measured the average query cost for the
entire workload over these 10 small databases. Figures 6 and 7
show the average query cost for retrieving the top-1 tuple over SR1
and SR2, respectively. The database size, as expected, has negligi-
ble impact on the query cost. As discussed in § 3.2.2, by applying
the on the fly indexing in order to simulate the dense regions ora-
cle (while considering proper parameter settings), 1D-RERANK
resolves the problem of 1D-BINARY and can work as good as
O(logn). This is reflected in the figures where 1D-RERANK out-
performed both 1D-BASELINE and 1D-BINARY significantly. One
can also note that the change in system ranking function has a major
impact on the performance comparison between 1D-BASELINE
and 1D-BINARY. This is, as pointed in §3.1.2, due to the fact that
when the system ranking function is positively correlated with the
user-specified queries, the top result based on system function is
close to the top user-queried tuple, and therefore, 1D-BASELINE
only needs to explore a small area with few number of queries,
while 1D-BINARY issues more queries on very narrow empty re-
gions. On the other hand, when the system ranking function is neg-
atively correlated with the user-specified queries, 1D-BASELINE
need to explore a large region and slowly move toward the top user-
queried tuple, while 1D-BINARY rapidly shrinks the search region
by cutting the search space by half.
Impact of Value of k: Figure 8 shows the average (accumulative)
query cost for retrieving top-1 to top-10 tuples when the system k
varies from 1 to 10. There are two key observations from the figure:
First, our query cost increases (about) linearly with the number of
desired top answers, demonstrating its scalability to a large desired
answer size. Second, the query cost, as expected, decreases when
the system offers a larger k.
Impact of 1D-RERANK parameters s and c: Recall from § 2
that the performance of 1D-RERANK can be parameterized by s
and c. We conducted two experiments to empirically verify the
impact. In the first experiment, we fixed the value of s to n and
varied c between 10 and n2. In the other one, we fixed the value
of c to k log2 n and varied the value of s from 10 to n2. Figure 9
shows the average query cost for both settings. As our theoretical
results suggest, setting c = k log2 n and s = n resulted in the (al-
most) optimal performance. One can see that further reducing c or
increasing s does not have much affect on query cost, yet signifi-
cantly increases the index size.
Impact of Query Order on 1D-RERANK: Recall that 1D-RERA-
NK constructs the index on the fly. As such, when queries are is-
sued in different order, the index being maintained may differ. To
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Figure 6: 1D: Impact of n (SR1)
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Figure 7: 1D: Impact of n (SR2)
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Figure 8: 1D: Impact of System-k
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Figure 9: 1D: Impact of s and c
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Figure 10: 1D: Impact of Query
order in 1D-RERANK
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Figure 11: 1D: Topk Query Cost
(BN)
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Figure 12: 1D: Topk Query Cost
(YA)
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Figure 13: MD: Impact of n (SR1)

test whether the order of user queries have a major effect on the
performance of 1D-RERANK, we ran an experiment using SR1
with three query-issuing orders: (1) from low to high selectivity
(i.e., from more general to narrower queries), (2) from high to low
selectivity, and (3) in a random order. Figure 10 shows that the
query issuance order has a negligible effect on the query cost of
1D-RERANK.

6.2.2 Online Experiments
We also conducted two live experiments over Blue Nile and Ya-

hoo! Autos, aiming to retrieve the top-100 tuples for each of the
user query in the workload. The default system-k for BN and YA
are 30 and 15, respectively, with the system ranking function be-
ing the default for each website, i.e., descending value of price per
carat for BN and distance from the pre-defined location for YA.

Figures 11 and 12 show the average query cost for retrieving
top-h tuples. As expected, 1D-RERANK significantly outperforms
the other algorithms for both websites. For BN, even though 1D-
BINARY performed well in the beginning, it required higher query
cost for large values of h. That is because it keeps dividing the
search area in half until the issued query becomes valid, thus it
will probably end up with a valid query that contains fewer number
of tuples. Considering the fact that here if the last (valid) query
return k′ tuples, we do not need to issue any queries for next k′−1
Get-Next calls, having less number of tuples in the valid queries
means less saving in the query cost. 1D-BASELINE, on the other
hand, uses the current top tuple as the upper-bound to query the
whole remaining region and has a higher chance to end up with
a valid query with more tuples, which means more saving in the
query cost for the next Get-Next operations. That is why in this
experiment (Figure 11), after discovering the Top-1 tuple, it did not
require more queries for the next 29 Get-Next operations.

6.3 MD Experiments
We compare the performance of MD-RERANK against “TA over

1D-RERANK”, MD-BASELINE and MD-BINARY.
Constructing Workload of User Preference Queries: The work-
load is constructed using a process similar to one described in § 6.2,
by selecting a subset from the set of all ranking attributes and choos-
ing different weights between 0 and 1 for each of them. The work-
load consists of 32, 12 and 10 queries for DOT, BN and YA, re-
spectively, of which 8, 3 and 2 do not have any filtering conditions.

6.3.1 Experiments over the Real-world Dataset
Impact of Database Size and System Ranking Function: The
experimental setup was similar to the 1D experiments in § 6.2.
We evaluated our algorithms for different database sizes and sys-
tem ranking functions SR1 and SR2. Figures 13 and 14 shows
the results for SR1 and SR2 respectively. In both cases, the algo-
rithm MD-RERANK significantly outperformed all three compet-
ing baselines. One may notice an increase in the query cost of the
algorithms when n increases in Figures 14, and a decrease in Fig-
ures 13. That is because when system and user-specified ranking
function are anti-correlated, the more tuples database has, the more
queries are required to find top tuples for the user-specified ranking
function (since more tuples are ranked higher than them based on
SR2). The case is vice-verse for SR1.
Impact of System-k: We then varied k, the number of tuples re-
turned by the web database and measured the average query cost
to retrieve top-10 tuples for the query workload. Figure 15 shows
the results. As expected, higher values of system-k required lesser
query cost to obtain the top-10 tuples. When k = 1, our algo-
rithms were not able to use the savings by valid queries resulting in
a substantial query cost.

6.3.2 Online Experiments
We applied MD-RERANK, as well as TA over 1D-RERANK,

to retrieve the top-100 tuples for each query in the workload. Fig-
ure 16 shows the average query cost for the BN experiment. As
shown in the figure, MD-RERANK outperformed TA significantly.
The results for YA experiment is reflected in Figure 17. The sub-
stantial difference in query cost of the algorithms can be explained
by the observation by the negative correlation between the ranking
tuples in YA queries (for example the cars with higher mileage are
probably cheaper). Hence TA algorithm had to issue many Get-
Next operations before it finds the top tuples.

7. RELATED WORK
Top-k discovery methods can get divided in three main categories:
(sorted/random) access-based methods, layering-based approaches,
and view-based techniques. The first series of algorithms take the
advantage of the data access methods. For example, NRA [9] as-
sumes the existence of one sorted list of tuples for each attribute,
and finds the Top-k only by exploring the lists, while TA [9] applies
both random and sorted access. The more advanced algorithms in
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this category are CA [9], Upper/Pick [2], and [13]. The next cat-
egory is the set of algorithms, such as ONION [4] and [19], that
pre-process the data and index the layers of extremum tuples that
gaurantee including the Top-k. View-based methods such as PRE-
FER [10] and LPTA [6], employ the materialized views to increase
the efficiency of Top-k discovery process. While prior work fo-
cused on minimizing the storage overhead of indices/materialized
views and the computational overhead of processing top-k queries,
we have to focus on minimizing the number of queries issued to
the underlying database. This fundamentally different data access
model also leads to a different cost model. For example, many prior
work, such as [9] and [3], assume a separate cost for accessing each
attribute and/or evaluating each predicate in the top-k query, while
in our problem all attributes of a tuple are returned at once.
Hidden Databases Most of the prior works on the hidden databases
relate to sampling, crawling the database, and aggregate estima-
tion. Prior works such as [7, 18] propose efficient algorithms for
collecting unbiased low-variance random samples of a given hid-
den databasee and [8, 11] provide unbiased aggregate estimators.
While [12, 14, 15] aim toward crawling the whole hidden database,
[1] only crawls the maxima index.
Top-k queries over Hidden Databases As the best of our knowl-
edge, this is the first paper on reranking the query results of a hid-
den database. The only prior work about Top-k in hidden databases
is [16]. Assuming the full knowledge of the system ranking func-
tion and attribute domains, its goal is to go beyond the Top-k limi-
tation of the database interface, by partitioning the query space.

8. FINAL REMARKS
In this paper, we introduced a novel problem of query reranking,

a third-party service that takes a client-server database with a pro-
prietary ranking function and enables query processing according
to any user-specified ranking function. To enable query reranking
while minimizing the number of queries issued to the underlying
database, we develop 1D-RERANK and MD-RERANK for user-
specified ranking functions that involve only one attribute and any
arbitrary set of attributes, respectively. Theoretic analysis and ex-
tensive experimental results on real-world databases, in offline and
online settings, demonstrate the effectiveness of our techniques and
their superiority over baseline solutions.
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