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ABSTRACT
Recently, there has been significant interest in the study of the com-
munity search problem in social and information networks: given
one or more query nodes, find densely connected communities con-
taining the query nodes. However, most existing studies do not
address the “free rider” issue, that is, nodes far away from query
nodes and irrelevant to them are included in the detected commu-
nity. Some state-of-the-art models have attempted to address this
issue, but not only are their formulated problems NP-hard, they
do not admit any approximations without restrictive assumptions,
which may not always hold in practice.

In this paper, given an undirected graph G and a set of query
nodes Q, we study community search using the k-truss based com-
munity model. We formulate our problem of finding a closest truss
community (CTC), as finding a connected k-truss subgraph with the
largest k that contains Q, and has the minimum diameter among
such subgraphs. We prove this problem is NP-hard. Furthermore,
it is NP-hard to approximate the problem within a factor (2−ε), for
any ε > 0. However, we develop a greedy algorithmic framework,
which first finds a CTC containing Q, and then iteratively removes
the furthest nodes fromQ, from the graph. The method achieves 2-
approximation to the optimal solution. To further improve the effi-
ciency, we make use of a compact truss index and develop efficient
algorithms for k-truss identification and maintenance as nodes get
eliminated. In addition, using bulk deletion optimization and local
exploration strategies, we propose two more efficient algorithms.
One of them trades some approximation quality for efficiency while
the other is a very efficient heuristic. Extensive experiments on 6
real-world networks show the effectiveness and efficiency of our
community model and search algorithms.

1. INTRODUCTION
Community structures naturally exist in many real-world net-

works such as social, biological, collaboration, and communication
networks. The task of community detection is to identify all com-
munities in a network, which is a fundamental and well-studied
problem in the literature. Recently, several papers have studied a
related but different problem called community search, which is to
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Figure 1: Closest truss community example

find the community containing a given set of query nodes. The
need for community search naturally arises in many real applica-
tion scenarios, where one is motivated by the discovery of the com-
munities in which given query nodes participate. Since the com-
munities defined by different nodes in a network may be quite dif-
ferent, community search with query nodes opens up the prospects
of user-centered and personalized search, with the potential of the
answers being more meaningful to a user [16]. As just one ex-
ample, in a social network, the community formed by a person’s
high school classmates can be significantly different from the com-
munity formed by her family members which in turn can be quite
different from the one formed by her colleagues [20].

Various community models have been proposed based on differ-
ent dense subgraph structures such as k-core [25, 9, 19] , k-truss
[16], quasi-clique [8], weighted densest subgraph [28], to name a
few major examples. Of these, the k-truss as a definition of cohe-
sive subgraph of a graph G, requires that each edge be contained
in at least (k − 2) triangles within this subgraph. Consider the
graph G in Figure 1; in the subgraph in the whole grey region
(i.e., excluding the node t), each edge is contained in two trian-
gles. Thus, the subgraph is a 4-truss. It is well known that most of
real-world social networks are triangle-based, which always have
high local clustering coefficient. Triangles are known as the fun-
damental building blocks of networks [27]. In a social network, a
triangle indicates two friends have a common friend, which shows
a strong and stable relationship among three friends. Intuitively,
the more common friends two people have, the stronger their rela-
tionship. In a k-truss, each pair of friends is “endorsed” by at least
(k−2) common friends. Thus, a k-truss with a large value of k sig-
nifies strong inner-connections between members of the subgraph.
Huang et al. [16] proposed a community model based on the notion
of k-truss as follows. Given one query node q and a parameter k, a
k-truss community containing q is a maximal k-truss containing q,
in which each edge is “triangle connected” with other edges. Trian-
gle connectivity is strictly stronger than connectivity. The k-truss
community model works well to find all overlapping communities
containing a query node q. It is natural to search for communi-
ties containing a set of query nodes in real applications, and the
above community model, extended for multiple query nodes, has
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the following limitations. Due to the strict requirement of triangle
connectivity constraint, the model may fail to discover any com-
munity for query nodes. For example, for the graph of Figure 1(a),
and query nodes Q = {v4, q3, p1} the above k-truss community
model cannot find a qualified community for any k, since the edges
(v4, q3) and (q3, p1) are not triangle connected in any k-truss. A
detailed comparison of various community search models and tech-
niques can be found in the Section 7.

In this paper, we study the problem of close community search,
i.e., given a set of query nodes, find a dense connected subgraph
that contains the query nodes, in which nodes are close to each
other. As a qualifying cohesive structure, we use the notion of k-
truss for modeling a densely connected community, which inher-
its several good structural properties, such as k-edge connectivity,
bounded diameter and hierarchical structure. In addition, to ensure
every node included in the community is tightly related to query
nodes and other nodes included in the community reported, we use
graph diameter to measure the closeness of all nodes in the commu-
nity. Thus, based on k-truss and graph diameter, we propose a novel
community model as closest truss community (CTC), which re-
quires that the all query nodes are connected in this community, the
graph structure is a k-truss with the largest trussness k. In general,
several such candidate communities may exist. Some of them may
suffer from the so-called “free rider effect” formally defined and
studied in [28]. While we discuss this in detail in Section 3.2, we il-
lustrate it with an example here. In Figure 1(a), for the query nodes
{q1, q2, q3}, the subgraph shaded grey is a 4-truss containing the
query nodes. It includes the nodes p1, p2, p3 which are intuitively
not relevant to the query nodes. Specifically, they are all far away
from q1 and can be regarded as “free riders”. This 4-truss is said to
suffer from the free rider effect. On the other hand, the subgraph
without the nodes {p1, p2, p3} is also a 4-truss, it has the smallest
diameter among all 4-trusses containing the query nodes, and does
not suffer from the free rider effect. Motivated by this, we define
a closest truss community as a connected k-truss with the largest k
containing the query nodes and having the smallest diameter. We
show that such a definition avoids the free rider effect. A con-
nected k-truss with the largest k containing given query nodes can
be found in polynomial time. However, as we show, finding such
a k-truss with the minimum diameter is NP-hard and it is hard to
approximate within a factor better than 2. Here, the approximation
is w.r.t. the minimum diameter. On the other hand, we develop a
greedy strategy for finding a CTC that delivers a 2-approximation
to the optimal solution, thus essentially matching the lower bound.
In order to make our algorithm scalable to large real networks, we
propose two techniques. One of them is based on bulk deletion
of nodes far away from query nodes. The second is a heuristic
exploration of the local neighborhood of a Steiner tree containing
the query nodes. The challenge here is that a naive application of
Steiner trees may yield a k-truss with a low value of k, which is
undesirable. We address this challenge by developing a new notion
of distances based on edge trussness. Specifically, we make the
following contributions in this paper.

• We propose a novel community search model called closest
truss community (CTC) and motivate the problem of finding
CTC containing given query nodes (Section 2).

• We analyze the structural and computational properties of
CTC and show that it avoids the free rider effect, is NP-
hard to compute exactly or to approximate within a factor
of (2− ε), for any ε > 0 (Section 3).

• We develop a greedy 2-approximation algorithm for finding
a CTC given a set of query nodes. The algorithm is based on

Table 1: Frequently Used Notations

Notation Description
G = (V (G), E(G)) An undirected and connected simple graphG

n;m The number of vertices/edges inG
N(v) The set of neighbors of v

supH(e) The support of edge e inH
τ(H) Trussness of graphH
τ(e) Trussness of edge e
τ(v) Trussness of vertex v
τ̄(S) The maximum trussness of connected graphs containing S

diam(H) The diameter of graphH
distH(v, u) The shortest distance between v and u inH
distH(R,Q) distH(R,Q) = maxv∈R,u∈Q distH(v, u)

finding, in linear time, a connected k-truss with maximum k
containing the query nodes, using a simple truss index. Then
successively nodes far away from the query nodes are elimi-
nated (Section 4).

• We further speed up CTC search in two ways: (1) we make
use of a clever bulk deletion strategy and (2) find a Steiner
tree of the query nodes and expand it into a k-truss by ex-
ploring the local neighborhood of the Steiner tree. The first
of these slightly degrades the approximation factor while the
second is a heuristic (Section 5).

• We extensively experiment with the various algorithms on
6 real networks. Our results show that our closest truss
community model can efficiently and effectively discover
the queried communities on real-world networks with ground-
truth communities. (Section 6).

In Section 7, we present a detailed comparison with related work.
In Section 7.1, we discuss alternative candidates for community
models and provide a rationale for our design decisions. We sum-
marize the paper in Section 8.

2. PROBLEM DEFINITION
We consider an undirected, unweighted simple graphG = (V (G),

E(G)) with n = |V (G)| vertices and m = |E(G)| edges. We de-
note the set of neighbors of a vertex v by N(v), i.e., N(v) = {u ∈
V : (v, u) ∈ E}, and the degree of v by d(v) = |N(v)|. We
use dmax = maxv∈V d(v) to denote the maximum vertex degree
in G. W.l.o.g we assume in this paper that the graph G we con-
sider is connected. Note that this implies that m ≥ n− 1. Table 1
summarizes the frequently used notations in the paper.

A triangle in G is a cycle of length 3. Let u, v, w ∈ V be the
three vertices on the cycle, then we denote this triangle by 4uvw.
The support of an edge e(u, v) ∈ E in G, denoted supG(e), is
defined as |{4uvw : w ∈ V }|. When the context is obvious, we
drop the subscript and denote the support as sup(e). Based on
the definition of k-truss [6, 27], we define a connected k-truss as
follows.

DEFINITION 1 (CONNECTED K-TRUSS). Given a graph G
and an integer k, a connected k-truss is a connected subgraph
H ⊆ G, such that ∀e ∈ E(H), supH(e) ≥ (k − 2).

Intuitively, a connected k-truss is a connected subgraph such that
each edge (u, v) in the subgraph is “endorsed” by k − 2 common
neighbors of u and v [6]. In a connected k-truss graph, each node
has degree at least k − 1 and a connected k-truss is also a (k − 1)-
core [2]. Next, we define the trussness of a subgraph, an edge, and
a vertex as follows.

DEFINITION 2 (TRUSSNESS). The trussness of a subgraphH
⊆ G is the minimum support of an edge in H plus 2, i.e., τ(H) =
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2 + mine∈E(H){supH(e)}. The trussness of an edge e ∈ E(G)
is τ(e) = maxH⊆G∧e∈E(H){τ(H)}. The trussness of a vertex
v ∈ V (G) is τ(v) = maxH⊆G∧v∈V (H) {τ(H)}.

Consider the graphG in Figure 1(a). Edge e(q2, v2) is contained
in three triangles4q2v2q1 , 4q2v2v1 and4q2v2v5 , thus its support
is supG(e(q2, v2)) = 3. Suppose H is the triangle 4q2v2q1 , then
the trussness of the subgraphH is τ(H) = 2+mine∈H supH(e) =
3, since each edge is contained in one triangle in H . The trussness
of the edge e(q2, v2) is 4, because in the induced subgraph on ver-
tices {q1, q2, v1, v2}, each edge is contained in two triangles in the
subgraph and any subgraph H containing e(q2, v2) has τ(H) ≤ 4,
i.e., τ(e(q2, v2)) = maxH⊆G∧e∈E(H) {τ(H)} = 4. Note that the
trussness of an edge e of a graphG could be less than supG(e)+2,
e.g., τ(e(q2, v2)) = 4 < 5 = sup(e(q2, v2)) + 2. Moreover, the
vertex trussness of q2 is also 4, i.e. τ(q2) = 4.

For a set of vertices S ⊆ V (G), we use τ̄(S) to denote the
maximum trussness of a connected subgraph H containing S, i.e.,
τ̄(S) = maxS⊆H⊆G∧His connected {τ(H)}. Notice that by defini-
tion, for S = ∅, τ̄(∅) is the maximum trussness of any edge in G.
In Figure 1(a), the whole subgraph in the grey region is a 4-truss.
There exists no 5-truss in G, and τ̄(∅) = 4. We will make use of
τ̄(∅) in Section 5.

For two nodes u, v ∈ G, we denote by distG(u, v) the length of
the shortest path between u and v in G, where distG(u, v) = +∞
if u and v are not connected. We make use of the notions of graph
query distance and diameter in the rest of the paper.

DEFINITION 3 (QUERY DISTANCE). Given a graph G and a
set of query nodes Q ⊂ V , for each vertex v ∈ G, the vertex query
distance of v is the maximum length of a shortest path from v to a
query node q ∈ Q, i.e., distG(v,Q) = maxq∈Q distG(v, q). For
a subgraph H ⊆ G, the graph query distance of H is defined as
distG(H,Q) = maxu∈H distG(u,Q) = maxu∈H,q∈Q distG(u, q).

DEFINITION 4 (GRAPH DIAMETER). The diameter of a graph
G is defined as the maximum length of a shortest path in G, i.e.,
diam(G) = maxu,v∈G{distG(u, v)}.

For the graph G in Figure 1(a) and Q = {q2, q3}, the vertex
query distance of v2 is distG(v2, Q) = maxq∈Q {distG(v2, q)}
= 2, since distG(v2, q3) = 2 and distG(v2, q2) = 1. Let H be the
subgraph of Figure 1(a) shaded in grey. Then query distance of H
is distG(H,Q) = 3. The diameter of H is diam(H) = 4.

On the basis of the definitions of k-truss and graph diameter, we
define the closest truss community in a graph G as follows.

DEFINITION 5 (CLOSEST TRUSS COMMUNITY). Given a graph
G and a set of query nodes Q, G′ is a closest truss community
(CTC), if G′ satisfies the following two conditions:
(1) Connected k-Truss. G′ is a connected k-truss containing Q

with the largest k, i.e., Q ⊆ G′ ⊆ G and ∀e ∈ E(G′),
sup(e) ≥ k − 2;

(2) Smallest Diameter. G′ is a subgraph of smallest diameter sat-
isfying condition (1). That is, @G′′ ⊆ G, such that diam(G′′)
< diam(G′), and G′′ satisfies condition (1).

Condition (1) requires that the closest community containing the
query nodes Q be densely connected. In addition, Condition (2)
makes sure that each node is as close as possible to every other
node in the community, including the query nodes. We next illus-
trate the notion of CTC as well as the consequence of considering
Conditions (1) and (2) in different order.

EXAMPLE 1. In Definition 5, we firstly consider the connected
k-truss of G containing query nodes with the largest trussness, and
then among such subgraphs, regard the one with the smallest diam-
eter as the closest truss community. Consider the graph G in Fig-
ure 1(a), and Q = {q1, q2, q3}; the subgraph in the region shaded
grey is a 4-truss containing Q, and is a subgraph with the largest
trussness that contains Q, and has diameter 4. Notice that in Fig-
ure 1(a), although the nodes p1, p2, p3 belong to the 4-truss and
are strongly connected with q3, they are far away from the query
node q1. Figure 1(b) shows another 4-truss containing Q but not
p1, p2, p3, and its diameter is 3. It can be verified that this is the 4-
truss with the smallest diameter. Thus, by Condition (2) of Defini-
tion 5, the 4-truss graph in Figure 1(a) will not be regarded the clos-
est truss community, whereas the one in Figure 1(b) is indeed the
CTC. Intuitively, the nodes p1, p2, p3 are “free riders” that belong
to a community defined only using Condition (1), and are avoided
by Condition (2). We will see in Section 3.2 that the definition of
CTC above avoids the so-called “free rider effect”.

EXAMPLE 2. Suppose we apply the conditions in Definition 5
in the opposite order. That is, we first minimize the diameter among
connected subgraphs of G containing Q and look for the k-truss
subgraph with the largest k among those. Firstly, we find that the
cycle of {(q1, t), (t, q3), (q3, v4), (v4, q2), (q2, q1)} is the con-
nected subgraph containing Q with the smallest diameter 2. Then,
we find that this cycle is also the k-truss subgraph with the largest
k containing itself. However, it is only a 2-truss, which has a
loosely connected structure compared to Figure 1(b). This justi-
fies the choice of the order in which Conditions (1) and (2) should
be applied.

We discuss several natural candidates for community models in
Section 7.1 and provide a rationale for our design decisions. We
have a choice between minimizing diameter or minimizing query
distance. We address this choice in Section 3.2: Example 3 illus-
trates the value added by minimizing the diameter over minimizing
just the query distance. The problem of closest truss community
(CTC) search studied in this paper is stated as follows.

PROBLEM 1 (CTC-Problem). Given a graph G(V,E) and a
set of query vertices Q = {v1, ..., vr} ⊆ V , find a closest truss
community containing Q.

3. PROBLEM ANALYSIS

3.1 Structural Properties
Since our closest truss community model is based on the con-

cept of k-truss, the communities caputure good structral properties
of k-truss, such as k-edge-connected and hierarchical structure. In
addition, since CTC is required to have minimum diameter, it also
has bounded diameter. As a result, CTC avoids the “free rider ef-
fect” [25, 28] (see Section 3.2).

Small diameter, k-edge-connected, hierarchical structure. First,
the diameter of a connected k-truss with n vertices is no more
than b 2n−2

k
c [6]. The diameter of a community is considered as

an important feature of a community [11]. Moreover, a k-truss
community is (k − 1)-edge-connected [6], as it remains connected
whenever fewer than k − 1 edges are removed [13]. In addition,
k-truss based community has hierarchical structure that represents
the cores of a community at different levels of granularity [16], that
is, k-truss is always contained in the (k − 1)-truss for any k ≥ 3.

Largest k. We have a trivial upper bound on the maximum possi-
ble trussness of a connected k-truss containing the query nodes.
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LEMMA 1. For a connected k-truss H satisfying definition of
CTC for Q, we have k ≤ min {τ(q1), ..., τ(qr)} holds.

PROOF. First, we have Q ⊆ H . For each node q ∈ Q, q cannot
be contained in a k-truss in G, whenever k > τ(q). Thus, the
fact that H is a k-truss subgraph containing Q implies that k ≤
min{τ(q1), ..., τ(qr)}.

Lower and upper bounds on diameter. Since the distance func-
tion satisfies the triangule inequality, i.e., for all nodes u, v, w,
distG(u, v) ≤ distG(u,w)+distG(w, v), we can express the lower
and upper bounds on the graph diameter in terms of the query dis-
tance as follows.

LEMMA 2. For a graph G(V,E) and a set of nodes Q ⊆ G,
we have distG(G,Q) ≤ diam(G) ≤ 2distG(G,Q).

PROOF. First, the diameter diam(G) = maxv,u∈G distG(v, u),
which is clearly no less than distG(G,Q) = maxv∈G,q∈Q distG(v, q)
for Q ⊆ G. Thus, distG(G,Q) ≤ diam(G). Second, suppose that
the longest shortest path in G is between v and u. Then ∀q ∈ Q,
then we have diam(G) = dist(v, u) ≤ dist(v, q)+ dist(q, u) ≤
2distG(G,Q). The lemma follows.

3.2 Free Rider Effect
In previous work on community detection, researchers [25, 28]

have identified an undesirable phenomenon called “free rider ef-
fect”. Intuitively, if a definition of community admits irrelevant
subgraphs in the detected community, we refer to such irrelevant
subgraphs as free riders. For instance, suppose we use the classic
density definition of average internal degree |E||V | as the community
goodness metric. Then for a set of query nodes Q, the commu-
nity is a subgraph containing Q with the maximum density. Then,
any local community for Q merged with the densest subgraph part
will increase the community density. However, the densest sub-
graph may be disconnected from or irrelevant to query nodes. This
shows the simple density metric suffers from the free rider effect.
Wu et al. [28] show that several other goodness metrics including
minimum degree, local modularity, and external conductance suf-
fer from the free rider effect. Following Wu et al. [28], we define
the free rider effect as follows. Typically, a community definition
is based on a goodness metric f(H) for a subgraph H: subgraphs
with minimum1 f(H) value are defined as communities. E.g., for
our CTC problem, diameter is the goodness metric: among all sub-
graphs with maximum trussness, the smaller the diameter of H ,
the better it is as a community. The definition of free rider effect is
based on this goodness metric. We term a community query inde-
pendent if it is the solution to the community search with Q set to
∅.

DEFINITION 6 (FRE). Given a non-empty query Q, let H be
a solution to a community definition based on a goodness metric
f(.). Let H∗ be a (global or local) optimum solution, which is
query-independent. If f(H ∪H∗) ≤ f(H), we say that the defini-
tion suffers from free rider effect. Here, nodes inH∗ \H are called
free riders for the query Q and community H .

EXAMPLE 3. Consider Figure 2, showing a graph G and query
nodesQ = {q1, q2}. It also shows subgraphsG1 andG2. All three
graphs – G,G1, and G2 – are 4-trusses containing Q. The query
distance of the star node r is 3, while that for all other nodes is at
most 2. Thus, the query distance of G is 3. The subgraph G1 has
1We use minimum w.l.o.g.

q2

q1

v

p

r

Figure 2: A graph G with Q = {q1, q2}.

the minimum query distance 2 among all 4-trusses containing Q.
However, its diameter is 3, as the distance between square node v
and circle node p is 3. On the other hand, the subgraph G2, while
having the same query distance as G1, has a strictly smaller diam-
eter 2. It has the minimum diameter among all 4-trusses containing
Q.

Both the star node and the square nodes are free riders. The star
node is the furthest from query node q2 and its removal from G
leaves the trussness unchanged. The square nodes have the same
query distance 2 as the circle node p. However, the square nodes
are not close enough to other nodes of the community: e.g., their
distance to circle node p is 3. Unlike the circle nodes, removal
of square nodes leaves the trussness unchanged. Thus, the square
nodes are also free riders, while the circle nodes aren’t. Minimiz-
ing query distance among 4-trusses eliminates the free rider star
node but not the square free rider nodes, while minimizing diame-
ter eliminates both free riders.

We next show that our definition of CTC avoids the problem of
free rider effect.

In general, there may be multiple CTCs H , i.e., connected k-
trusses with maximum trussness containing Q with the minimum
diameter. For example, consider the graph G in Figure 1 and Q =
{q3}. The subgraphs of G induced respectively by {q3, p1, p2, p3}
and {q3, v3, v4, v5} are both 4-trusses with diameter 1. Both hap-
pen to be maximal in that they are not contained in any other 4-truss
with this property.

PROPOSITION 1. For any graphG and query nodesQ ⊂ V (G),
there is a solution H to the CTC search problem such that for
all query-independent optimal solutions H∗, either H∗ = H , or
H ∪H∗ is disconnected, or H ∪H∗ has a strictly larger diameter
than H .

PROOF. Let C(G,Q) denote the set of optimal solutions to the
CTC search problem on graph G and query nodes Q. C(G,Q) is
partially ordered w.r.t. the graph containment order ⊆. Let H be
any maximal element of C(G,Q), letH∗ be any query-independent
optimal solution, and consider H ∪ H∗. Assume w.l.o.g. that
(H∗ \ H) 6= ∅. Suppose that H ∪ H∗ is a connected k-truss
with maximum trussness containing Q, and diam(H ∪ H∗) ≤
diam(H). This contradicts the maximality of H .

3.3 Hardness and Approximation
Hardness. In the following, we show the CTC-Problem is NP-
hard. Thereto, we define the decision version of the CTC-Problem.

PROBLEM 2 (CTCk-Problem). Given a graphG(V,E), a set
of query nodesQ = {v1, ..., vr} ⊆ V and parameters k and d, test
whetherG contains a connected k-truss subgraph with diameter at
most d, that contains Q.

THEOREM 1. The CTCk-Problem is NP-hard.

PROOF. We reduce the well-known NP-hard problem of Maxi-
mum Clique (decision version) to CTCk-Problem. Given a graph
G(V,E) and number k, the Maximum Clique Decision problem is
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to check whetherG contains a clique of size k. From this, construct
an instance of CTCk-Problem, consisting of graph G, parameters
k and d = 1, and the empty set of query nodes Q = ∅. We show
that the instance of the Maximum Clique Decision problem is a
YES-instance iff the corresponding instance of CTCk-Problem is
a YES-instance. Clearly, any clique with at least k nodes is a con-
nected k-truss with diameter 1. On the other hand, given a solution
H for CTCk-Problem,H must contain at least k nodes sinceH is a
k-truss, and diam(H) = d = 1, which implies H is a clique.

The hardness of CTC-Problem follows from this. The next nat-
ural question is whether CTC-Problem can be approximated.

Approximation. For α ≥ 1, we say that an algorithm achieves
an α-approximation to the closest truss community (CTC) search
problem if it outputs a connected k-truss subgraph H ⊆ G such
that Q ⊆ H , τ(H) = τ(H∗) and diam(H) ≤ α · diam(H∗),
where H∗ is the optimal CTC. That is, H∗ is a connected k-truss
with the largest k s.t. Q ⊆ H∗, and diam(H∗) is the minimum
among all such CTCs containing Q. Notice that the trussness of
the output subgraph H matches that of the optimal solution H∗

and that the approximation is only w.r.t. the diameter: the diameter
of H is required to be no more than α · diam(H∗).

Non-Approximability. We next prove that CTC-Problem cannot
be approximated within a factor better than 2. We establish this re-
sult through a reduction, again from the Maximum Clique Decision
problem to the problem of approximating CTC-Problem, given k.
In the next section, we develop a 2-approximation algorithm for
CTC-Problem, thus essentially matching this lower bound. Notice
that the CTC-Problem with given parameter k is essentially the
CTCk-Problem.

THEOREM 2. Unless P = NP, for any ε > 0, the CTC-Problem
with given parameter k cannot be approximated in polynomial time
within a factor (2− ε) of the optimal.

Proof Sketch: We can show that a (2 − ε)-approximation algo-
rithm for the CTC-Problem with given parameter k can be used to
distinguish between the YES and NO instances of the Maximum
Clique Decision problem.

4. ALGORITHMS
In this section, we present a greedy algorithm called Basic for the

CTC search problem. Then, we show that this algorithm achieves
a 2-approximation to the optimal result. Finally, we discuss proce-
dures for an efficient implementation of the algorithm and analyze
its time and space complexity.

4.1 Basic Algorithmic Framework
Here is an overview of our algorithm Basic. First, given a graph

G and query nodes Q, we find a maximal connected k-truss, de-
noted as G0, containing Q and having the largest trussness. As G0

may have a large diameter, we iteratively remove nodes far away
from the query nodes, while maintaining the trussness of the re-
mainder graph at k.

Algorithm. Algorithm 1 outlines a framework for finding a closest
truss community based on a greedy strategy. For query nodesQ, we
first find a maximal connected k-truss G0 that contains Q, s.t. k =
τ(G0) is the largest (line 1). Then, we set l = 0. For all u ∈ Gl

and q ∈ Q, we compute the shortest distance between u and q (line
4), and obtain the vertex query distance distGl(u,Q). Among all
vertices, we pick up a vertex u∗ with the maximum distGl(u

∗, Q),
which is also the graph query distance distGl(Gl, Q) (lines 5-6).

Algorithm 1 Basic (G, Q)
Input: A graph G = (V,E), a set of query nodes Q = {q1, ..., qr}.
Output: A connected k-truss R with a small diameter.

1: Find a maximal connected k-truss containing Q with the largest k as
G0; //see Algorithm 2

2: l← 0;
3: while connectGl

(Q) = true do
4: Compute distGl

(q, u), ∀q ∈ Q and ∀u ∈ Gl;
5: u∗ ← argmaxu∈Gl

distGl
(u,Q);

6: distGl
(Gl, Q)← distGl

(u∗, Q);
7: Delete u∗ and its incident edges from Gl;
8: Maintain k-truss property of Gl; //see Algorithm 3
9: Gl+1 ← Gl; l← l + 1;

10: R← argminG′∈{G0,...,Gl−1} distG′ (G
′, Q);

Next, we remove the vertex u∗ and its incident edges from Gl,
and delete any nodes and edges needed to restore the k-truss prop-
erty of Gl (lines 7-8). We assign the updated graph as a new Gl.
Then, we repeat the above steps untilGl does not have a connected
subgraph containing Q (lines 3-9). Finally, we terminate by out-
putting graph R as the closest truss community, where R is any
graph G′ ∈ {G0, ..., Gl−1} with the smallest graph query dis-
tance distG′(G

′, Q) (line 10). Note that each intermediate graph
G′ ∈ {G0, ..., Gl−1} is a k-truss with the maximum trussness as
required.

EXAMPLE 4. We apply Algorithm 1 on G in Figure 1 for Q =
{q1, q2, q3}. First, we obtain the 4-truss subgraph G0 shaded in
grey, using a procedure we will shortly explain. Then, we compute
all shortest distances, and get the maximum vertex query distance
as distG0(p1, Q) = 4, and u∗ = p1. We delete node p1 and its in-
cident edges from G0; we also delete p2 and p3, in order to restore
the 4-truss property. The resulting subgraph is G1. Any further
deletion of a node in the next iteration of the while loop will in-
duce a series of deletions in line 8, eventually making the graph
disconnected or containing just a part of query nodes. As a re-
sult, the output graph R, shown in Figure 1(b), is just G1. Also
distR(R,Q) = 3, and R happens to be the exact CTC with diame-
ter 3, which is optimal.

4.2 Approximation Analysis
Algorithm 1 can achieve 2-approximation to the optimal solu-

tion, that is, the obtained connected k-truss community R satisfies
Q ⊆ R, τ(R) = τ(H∗) and diam(R) ≤ 2diam(H∗), for any
optimal solution H∗. Since any graph in {G0, ..., Gl−1} is a con-
nceted k-truss with the largest k containing Q by Algorithm 1, and
R ∈ {G0, ..., Gl−1}, we have Q ⊆ R, and τ(R) = τ(H∗). In the
following, we will prove that diam(R) ≤ 2diam(H∗). We start
with a few key results. For graphs G1, G2, we write G1 ⊆ G2 to
mean V (G1) ⊆ V (G2) and E(G1) ⊆ E(G2).

FACT 1. Given two graphs G1 and G2 with G1 ⊆ G2, for
u, v ∈ V (G1), distG2(u, v) ≤ distG1(u, v) holds. Moreover, if
Q ⊆ V (G1), then distG2(G1, Q) ≤ distG1(G1, Q) also holds.

PROOF. Trivially follows from the fact that G2 preserves paths
between nodes in G1.

Recall that in Algorithm 1, in each iteration i, a node u∗ with
maximum dist(u∗, Q) is deleted fromGi, but distGi(Gi, Q) is not
monotone nonincreasing during the process, hence distGl−1(Gl−1, Q)
is not necessarily the minimum. Note that in Algorithm 1,Gl is not
the last feasible graph (i.e., connected k-truss containing Q), but
Gl−1 is. The observation is shown in the following lemma.
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LEMMA 3. In Algorithm 1, it is possible that for some 0 ≤ i <
j < l, we have Gj ⊂ Gi, and distGi(Gi, Q) < distGj (Gj , Q)
hold.

PROOF. It is easy to be realized, because for a vertex v ∈ G,
distG(v,Q) is non-decreasing monotone w.r.t. subgraphs ofG. More
precisely, for v ∈ Gi∩Gj , distGi(v,Q) ≤ distGj (v,Q) holds.

We have an important observation that if an intermediate graph
Gi obtained by Algorithm 1 contains an optimal solution H∗, i.e.,
H∗ ⊂ Gi, and distGi(Gi, Q) > distGi(H

∗, Q), then algorithm
will not terminate at Gi+1.

LEMMA 4. In Algorithm 1, for any intermediate graph Gi, we
have H∗ ⊆ Gi, and distGi(Gi, Q) > distGi(H

∗, Q), then Gi+1

is a connected k-truss containing Q and H∗ ⊆ Gi+1.

PROOF. SupposeH∗ ⊆ Gi and distGi(Gi, Q)> distGi(H
∗, Q).

Then there exists a node u ∈ Gi\H∗ s.t. distGi(u,Q) = distGi(Gi, Q)
> distGi(H

∗, Q). Clearly, u /∈ Q. In the next iteration, Algo-
rithm 1 will delete u from Gi (Step 7), and perform Step 8. The
graph resulting from restoring the k-truss property is Gi+1. Since
H∗ is a connected k-truss containing Q, the restoration step (line
8) must find a subgraph Gi+1 s.t. H∗ ⊆ Gi+1, and Gi+1 is a con-
nected k-truss containingQ. Thus, the algorithm will not terminate
in iteration (i+ 1).

We are ready to establish the main result of this section. Our
polynomial algorithm can find a connected k-truss community R
having the minimum query distance to Q, which is optimal.

LEMMA 5. For any connected k-truss H with the highest k
containing Q, distR(R,Q) ≤ distH(H,Q).

PROOF. The following cases arise for Gl−1, which is the last
feasible graph obtained by Algorithm 1.

Case (a): H ⊆ Gl−1. We have distGl−1 (Gl−1, Q) ≤ distGl−1

(H,Q); for otherwise, if distGl−1 (Gl−1, Q) > distGl−1 (H,Q),
we can deduce from Lemma 4 that Gl−1 is not the last feasible
graph obtained by Algorithm 1, a contradiction. Thus, by Step 10 in
Algorithm 1 and the fact that distGl−1(Gl−1, Q)≤ distGl−1(H,Q),
we have distR(R,Q) ≤ distGl−1(Gl−1, Q) ≤ distGl−1(H,Q) ≤
distH(H,Q).

Case (b): H * Gl−1. There exists a vertex v ∈ H deleted from
one of the subgraphs {G0, ..., Gl−2}. Suppose the first deleted
vertex v∗ ∈ H is in graph Gi, where 0 ≤ i ≤ l − 2, then
v∗ must be deleted in Step 7, but not in Step 8. This is because
each vertex/edge of H satisfies the condition of k-truss, and will
not be removed before any vertex is removed from Gi. Then,
we have distGi(Gi, Q) = distGi(v

∗, Q) = distGi(H,Q), and
distGi(Gi, Q) ≥ distR(R,Q) by Step 10. As a result, distR(R,Q)
≤ distGi(H,Q) ≤ distH(H,Q).

Based on the preceding lemmas, we have:

THEOREM 3. Algorithm 1 provides a 2-approximation to the
CTC-Problem as diam(R) ≤ 2diam(H∗).

PROOF. Since distR(R,Q) ≤ distH∗(H
∗, Q) by Lemma 5, we

get diam(R) ≤ 2distR(R,Q)≤ 2distH∗(H
∗, Q)≤ 2diam(H∗)

by Lemma 2. The theorem follows from this.

4.3 K-truss Identification and Maintenance
In this section, we introduce the detailed implementation of Al-

gorithm 1. Finding G0, the maximal connected k-truss containing
Q with the largest trussness k, is a basic primitive in our problem.

Algorithm 2 FindG0(G, Q)
Input: A graph G = (V,E), a set of query nodes Q = {q1, ..., qr}.
Output: A connected k-truss G0 containing Q with the largest k.

1: k ← min {τ(q1), ..., τ(qr)} //see Lemma 1;
2: V (G0)← ∅; Sk = Q;
3: while connectG0 (Q) = false do
4: for v ∈ Sk do
5: if v ∈ V (G0) then
6: kmax ← k + 1;
7: else
8: kmax ← +∞; V (G0)← V (G0) ∪ {v};
9: for (v, u) ∈ G with k ≤ τ(v, u) < kmax do

10: G0 ← G0 ∪ {(v, u)};
11: if u /∈ Sk then Sk ← Sk ∪ {u};
12: l← max{τ(v, u)|(v, u) /∈ G0};
13: Sl ← Sl ∪ {v};
14: k ← k − 1;
15: Compute the edge support sup(v, u) in G0, for all (v, u) ∈ G0;

A straightforward method is to apply a truss decomposition algo-
rithm [27], and delete edges in ascending order of edge support
from G, until Q becomes disconnected. Then we can obtain the
largest trussness k and recover G0 by keeping all k-truss edges.
However, this method is quite costly. To find G0 efficiently, we
design an index structure. The index is constructed by organizing
edges according to their trussness.

Index Construction. We first apply a truss decomposition algo-
rithm such as [27] and compute the trussness of each edge of graph
G. We omit the details of this algorithm due to space limitation.

Based on the obtained edge trussness, we construct our truss in-
dex as follows. For each vertex v ∈ V , we sort its neighbors
N(v) in descending order of the edge trussness τ(e(v, u)), for
u ∈ N(v). For each distinct trussness value k ≥ 2, we mark
the position of the first vertex u in the sorted adjacency list where
τ(e(u, v)) = k. This supports efficient retrieval of v’s incident
edges with a certain trussness value. The vertex trussness of v is
also kept as τ(v) = max{τ(v, u)|u ∈ N(v)}, which is the truss-
ness of the first edge in the sorted adjacency list. Moreover, we
build a hashtable to keep all the edges and their trussness values.
This is identical to the simple truss index of [16] and we refer to it
as the truss index.

In the following, we will show that this truss index is sufficient to
design an algorithm for finding the maximal connected k-truss con-
taining given query nodesQ in timeO(m′), wherem′ = |E(G0)|.
This time complexity is essentially optimal. We remark the com-
plexity of this k-truss index construction below.

REMARK 1. The construction of this truss index takesO(ρ ·m)
time and O(m) space, where ρ is the arboricity of graph G, i.e.,
the minimum number of spanning forests needed to cover all edges
of G. Notice that ρ ≤ min{dmax,

√
m} [5].

Finding G0. Based on the index, we present Algorithm 2 for
finding G0, the maximal connected k-truss containing Q with the
largest trussness k. We initialize G0 to be the query vertex set Q,
and iteratively add the edges of G in decreasing order of trussness,
until G0 gets connected.

The initial trussness level of the edges to be included in G0 is
computed as k = min{τ(q1), ..., τ(qr)} (line 1). This is mo-
tivated by the fact that, by Lemma 1, for any k′ > k, no con-
nected k′-truss can contain Q. We use Sk to denote the set of
nodes to be visited within level k. We start with Sk = Q (line
2). For a given k, we process each node v ∈ Sk, and visit its neigh-
bors in a BFS manner. Then, we insert those of its incident edges
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Figure 3: An example graph G of finding G0

(v, u), with k ≤ τ(v, u) ≤ kmax into G0, where kmax is the
maximum possible trussness of unvisited edges. This is because
all these edge should be present in a connected k-truss. Mean-
while, if the neighbor u is not in Sk, we add u into Sk (line 11),
since unvisited edges incident to u may have trussness no less than
k. After checking all edges incident to v, we add v to Sl, where
l = max{τ(v, u) | u ∈ N(v), τ(v, u) < k} (line 12-13). Notice
that l is the next highest level for which a connected l-truss con-
tains the node v, which can avoid scanning the neighbor set of v at
each level. After traversing all vertices in Sk, the algorithm checks
whether Q is connected in G0. If yes, the algorithm terminates,
and G0 is returned; otherwise, we decrease the present level k by
1 (line 14), and repeat the above steps (lines 4-14). After obtain-
ing G0, we compute all edge supports by counting triangles in G0,
which is used for the k-truss maintenance (line 15).

The following example illustrates the algorithm.
EXAMPLE 5. Consider the graph G in Figure 3 with Q = {q1,

q2}. The trussness of each edge is displayed, e.g., τ(q1, v1) = 4.
Now, we apply Algorithm 2 on G to find G0 containing Q. We can
verify that τ(q1) = τ(q2) = 4 so we start with level k = 4 and
set S4 = {q1, q2}. Then, we process the node q1 ∈ S4, and insert
all its incident edges into G0, for the trussness of each edge is 4.
Meanwhile, all its neighbors are inserted into S4. We repeat above
process for each node in S4. Note that for nodes t1, t2, τ(t1, t2) =
2, so we insert t1, t2 into S2 (lines 11-12 of Algorithm 2). Then,
at level k = 4, we get the 4-truss as the whole graph in Figure 3
minus the edge (t1, t2), for τ(t1, t2) = 2. Since the current G0

is not connected, we decrease the truss level k to 3, and find that
S3 = ∅. Then, we decrease k to 2, and find that S2 = {t1, t2}.
So we expand from the edge incident to t1, and insert the edge
(t1, t2) into G0, and find that the resulting graph contains Q and is
connected. In this example, G0 happens to coincide with G.

REMARK 2. Based on the truss index, for each vertex v, in line
9 of Algorithm 2, each edge (v, u) can be accessed constant time
using the sorted adjacent list of v, and in line 12, we can compute
l in constant time. Algorithm 2 takes time O(m′) where m′ =
|E(G0)|.

Computing Query Distance. For a vertex v, to compute the query
distance distGi(v,Q), we need to perform |Q| BFS traversals on
graph Gi. Specifically, for each query node q ∈ Q, with one BFS
traversal starting from q in Gi, we can obtain the shortest distance
distGi(v, q) for each node v ∈ Gi. Then, distGi(v,Q) is the max-
imum of all shortest distances distGi(v, q), for q ∈ Q.

K-truss Maintenance. Algorithm 3 describes the procedure for
maintaining G as a k-truss after the deletion of nodes Vd from G.
In Algorithm 1, Vd = {u∗} (see line 8).2 Generally speaking, after
removing nodes Vd and their incident edges from G, G may not be
a k-truss any more, or Q may be disconnected. Thus, Algorithm 3
iteratively deletes edges having support less than (k−2) and nodes
disconnected with Q from G, until G becomes a connected k-truss
containing Q.

Algorithm 3 firstly pushes all edges incident to nodes Vd into set
S (lines 1-3). Then, for each edge (u, v) ∈ S, the algorithm checks
2In Section 5, we will discuss deleting a set of nodes Vd in batch.

Algorithm 3 K-trussMaintenance (G, Vd)
Input: A graph G = (V,E), a set of nodes to be removed as Vd.
Output: A k-truss graph.

1: S ← ∅; //S is the set of removed edges.
2: for v ∈ Vd and (v, u) ∈ G do
3: S ← S ∪ (v, u);
4: for (v, u) ∈ S do
5: for w ∈ N(v) ∩N(u) do

// Update the support of edges (v, w) and (u,w)
6: sup(v, w)← sup(v, w)− 1; sup(u,w)← sup(u,w)− 1;
7: if sup(v, w) < k − 2 and (v, w) /∈ S then S ← S ∪ (v, w);
8: if sup(u,w) < k − 2 and (u,w) /∈ S then S ← S ∪ (u,w);
9: Remove (v, u) from G;

10: Remove isolated vertices from G;

every triangle4uvw where w ∈ N(u) ∩N(v), and decreases the
support of edges (u,w) and (v, w) by 1; For any edge e /∈ S, with
resulting support sup(e) < k− 2, e is added to S. After traversing
all triangles containing (u, v), the edge (u, v) is deleted from G.
This process continues until S becomes empty (lines 4-9), and then
the algorithm removes all isolated vertices form G (line 10).

4.4 Complexity analysis
In the implementation of Algorithm 1, we do not need to keep

all immediate graphs, but just record the removal of vertices/edges
at each iteration. Let G0 be the maximal connected k-truss found
in line 1 of Algorithm 1. Let n′ = |V (G0)| and m′ = |E(G0)|,
and let d′max be the maximum degree of a vertex in G0.

At each iteration i of Algorithm 1, we delete at least one node
and its incident edges from Gi. Clearly, the number of removed
edges is no less than k − 1, thus the total number of iterations is
t ≤ min{n′ − k,m′/(k − 1)}, i.e., t is O(min{n′,m′/k}). We
have:

THEOREM 4. Algorithm 1 takes O((|Q|t + ρ)m′) time and
O(m′) space, where t ∈ O(min{n′,m′/k}), and ρ is the arboric-
ity of graph G0. Furthermore, we have ρ ≤ min{d′max,

√
m′}.

Proof Sketch: First, listing all triangles of G0 and creating a
series of k-truss graphs {G0, ..., Gl−1} take O(ρm′) time in all,
where ρ is the arboricity of graph G0. Second, the computation
of shortest distances by a BFS traversal starting from each query
node q ∈ Q takes O(t|Q|m′) time for t iterations. Third, for the
space consumption, we only record the sequence of removed edges
from G0 for attaching a corresponding label to a graph Gi at each
iteration i, which takes O(m′) space in all. A complete proof is
available in an arXiv report [17].

5. FAST SEARCH ALGORITHMS
In this section, we focus on improving the efficiency of CTC

search in two ways. First, we develop a new greedy strategy to
speed up the pruning process process in Section 5.1, by deleting at
least k nodes in batch, to achieve quick termination while sacrific-
ing some approximation ratio. Second, we also propose a heuristic
strategy to quickly find the closest truss community in the local
neighborhood of query nodes.

5.1 Bulk Deletion Optimization
In this subsection, we propose a new algorithm called BulkDelete

following the framework of Algorithm 1, which is based on dele-
tion of a set of nodes in batch when maintaining a k-truss. The
algorithm is described in detail in Algorithm 4, which can termi-
nate quicker than Algorithm 1. It is based on the following two
observations.

282



Algorithm 4 BulkDelete (G, Q)
Input: A graph G = (V,E), a set of query nodes Q = {q1, ..., qr}.
Output: A connected k-truss R with a small diameter.

1: FindG0 (G, Q) //see Algorithm 2;
2: d← +∞; l← 0;
3: while connectGl

(Q) = true do
4: Compute distGl

(q, u), ∀q ∈ Q and ∀u ∈ Gl;
5: distGl

(Gl, Q)← maxu∗∈Gl
distGl

(u∗, Q);
6: if distGl

(Gl, Q) < d then
7: d← distGl

(Gl, Q);
8: L = {u∗|distGl

(u∗, Q) ≥ d− 1, u∗ ∈ Gl};
9: Maintain k-truss property of Gl //see Algorithm 3;

10: Gl+1 ← Gl; l← l + 1;
11: R← argminG′∈{G0,...,Gl−1} distG′ (G

′, Q);

First, in Algorithm 1, if a graphGi has query distance distGi(Gi, Q)
= d, only one vertex u∗ with distGi(u

∗, Q) = d is removed from
Gi. Instead, we can delete all nodes u with distGi(u,Q) = d,
from Gi, in one shot. The reason is that distGi(u,Q) is mono-
tone non-decreasing with decreasing graphs, i.e., distGj (u,Q) ≥
distGi(u,Q) = d, for j > i. Thus, removing a set of vertices
L = {u∗|distGi(u

∗, Q) ≥ d, u∗ ∈ Gi} in each iteration i will
improve the efficiency. This improvement indeed works in real ap-
plications. However, in theory, it is possible that |L| = 1 in every
iteration.

Our second observation, is that a vertex u∗ with distGi(u
∗, Q)

= d has at least k − 1 neighbors v with distGi(v,Q) = d − 1.
If we remove L = {u| distGi(u,Q) ≥ d − 1, u ∈ Gi} at each
iteration, then at least k nodes are removed each time. Thus, the
resulting number of iterations is O(n′/k), where n′ = |V (G0)|.

Thus, the number of iterations is improved fromO(min{n′,m′/k})
to O(n′/k) (see Theorem 4). We just proved:

THEOREM 5. Algorithm 4 takes O((|Q|t′ + ρ′)m′) time using
O(m′) space, where t′ ∈ O(n′/k), and ρ′ ≤ min{d′max,

√
m′}.

The approximation quality of Algorithm 4 is characterized be-
low.

THEOREM 6. Algorithm 4 is a (2 + ε)-approximation solution
of CTC-Problem, where ε = 2/diam(H∗).

PROOF. To prove this theorem, we only need to ensure distR(R,Q)
≤ distH∗(H

∗, Q) + 1. Because diam(R) ≤ 2distR(R,Q) ≤
2distH∗(H

∗, Q) + 2 ≤ 2(diam(H∗) + 1) by Lemma 2, then ap-
proximation ratio is 2 + ε, where ε = 2/diam(H∗). The detailed
proof is similar with Lemma 5, which is omitted here, due to space
limitation.

EXAMPLE 6. Continuing with the previous example, we apply
Algorithm 4 on Figure 1(a) to find the closest truss community for
Q = {q1, q2, q3}. InG0, we compute d = maxu∈G0 distG0(u,Q)
= 4, and L = {q1, q3, p1, p2, p3}, as each node u ∈ L has query
distance distG0(u,Q) = 3 ≥ d − 1. After removing L from G0,
the remaining graph does not contain Q, and the algorithm termi-
nates. Thus, Algorithm 4 reports the entire 4-truss G0 as the an-
swer, which has diameter 4, compared to the answer of Figure 1(b)
reported by Algorithm 1, which has diameter 3.

5.2 Local Exploration
In this subsection, we develop a heuristic strategy to quickly find

the closest truss community by local exploration. The key idea is
as follows. We first form a Steiner tree to connect all query nodes,

Algorithm 5 Local-CTC (G, Q)
Input: A graph G = (V,E), a set of query nodes Q = {q1, ..., qr}, a
node size threshold η.
Output: A connected k-truss R with a small diameter.

1: Compute a Steiner Tree T containing Q using truss distance functions;
2: kt ← mine∈T τ(e);
3: Expand T to a graph Gt = {e ∈ G| τ(e) ≥ kt}, s.t. T ⊆ Gt and
|Gt| ≤ η;

4: Extract the maximal connected k-truss Ht containing Q from Gt,
where k ≤ kt is the maximum possible trussness;

5: Apply a variant of BulkDelete algorithm on Ht to identify closest
community.

and then expand it to a graph G′0 by involving the local neighbor-
hood of the query nodes. From this new graph G′0, we find a con-
nected k-truss with the highest k containing Q, and then iteratively
remove the furthest nodes from this k-truss using the BulkDelete
algorithm discussed earlier.

Connect query nodes with a Steiner tree. As explained above,
the Steiner tree found is used as a seed for expanding into a k-
truss. It is well-known that finding a minimal weight Steiner tree
is NP-hard but it admits a 2-approximation [18, 21]. However, a
naive application of these algorithms may produce a result with a
small trussness. To see this, consider the graph G and the query
Q = {q1, q2, q3} in Figure 1(a). Suppose all edges are uniformly
weighted. Then it is obvious that the tree T1 = {(q2, q1), (q1, t),
(t, q3)} with total weight 3 is an optimal (i.e., minimum weight)
Steiner tree for Q. However, the smallest trussness of the edges in
T1 is 2, which suggests growing T1 into a larger graph will yield
a low trussness. By contrast, the Steiner tree T2{(q1, q2), (q2, v4),
(v4, q3)} has the total weight 3 and all its edges have the trussness
at least 4, indicating it could be expanded into a more dense graph.
To help discriminate between such Steiner trees, we define path
weights as follows. Recall the definition of τ̄(S) from Section 2.

DEFINITION 7 (TRUSS DISTANCE). Given a pathP between
nodes u, v inG, we define the truss distance of u and v as ˆdistP (u, v)
= distP (u, v)+ γ(τ̄(∅)−mine∈P τ(e)), where distP (u, v) is the
path length of P , and γ > 0. For a tree T , by ˆdistT (u, v) we mean
ˆdistP (u, v) where P is the path connecting u and v in T .

The difference τ̄(∅) − mine∈P τ(e) measures how much the
minimum edge trussness of path P falls short of the maximum edge
trussness of the graph G and γ controls the extent to which small
edge trussness is penalized. The larger γ is, the more important
edge trussness is in distance calculations. Note that, for the special
case when P consists of a single edge (u, v), the minimum edge
truss in P is just τ(u, v). On the other hand, for a path P of length
more than 1, the penalty only depends on the minimum edge truss-
ness of path P , and does not account for every edge in P . In or-
der to leverage the well-known approximation algorithm of Steiner
tree algorithm [21], we define the truss distance for a path. Recall
the procedure of Steiner tree algorithm [21], given a graph G and
query nodes Q, it firstly constructs a complete distance graph G′

of query nodes where the distance equals its shortest path length
in G. It then finds a minimum spanning tree T of G′, and then
constructs another graph H by replacing each edge of tree T by
its corresponding shortest path in G, and finally finds a minimum
spanning tree of H and deletes leaf edges. We apply the truss dis-
tance function on the path weight for shortest path and minimum
spanning tree construction here. For instance, in the above exam-
ple, τ̄(∅) = 4 and for γ = 3, the truss distance of (q2, q3) in T1 is
ˆdistT1(q2, q3) = distT1(q2, q3) + 3 · (4 − 2) = 3 + 6 = 8, since
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Table 2: Network statistics (K = 103 and M = 106)
Network |VG| |EG| dmax τ̄(∅)

Facebook 4K 88K 1,045 97
Amazon 335K 926K 549 7
DBLP 317K 1M 342 114
Youtube 1.1M 3 M 28,754 19
LiveJournal 4M 35M 14,815 352
Orkut 3.1M 117M 33,313 78

the minimum edge trussness of T1 is τ(q1, t) = 2. On the other
hand, ˆdistT2(q1, q3) = distT2(q1, q3) + 3 · (4− 4) = 3 + 0 = 3.
Obviously, the Steiner tree T2 has a smaller truss distances than T1.
It can be verified that its overall weight is smaller than that of T1.

Find G0 by expanding Steiner tree to graph. After obtaining
the Steiner tree T for the query nodes, we locally expand the tree
to a small graph Gt as follows. We firstly obtain the minimum
trussness of edges in T as kt = mine∈T τ(e). Then, we start from
the nodes in T , and expand the tree to a graph in a BFS manner via
edges of trussness no less than kt, and iteratively insert these edges
into Gt until the node size exceeds a threshold η, i.e., |V (Gt)| ≤
η, were η is empirically tuned. Since Gt is a local expansion of
T , the trussness of Gt will be at most kt, i.e., τ(Gt) ≤ kt. For
ensuring the dense cohesive structure of identified communities, we
apply a truss decomposition algorithm on Gt. Then, we extract the
maximal connected k-truss subgraphHt containingQ by removing
all edges of trussness less than k from Gt, where k ≤ kt is the
maximum possible trussness.

Reduce the diameter of G0. We take the graph Ht with the maxi-
mum trussness k as input, and apply a variant of BulkDelete algo-
rithm onHt for returning the identified community. We implement
a variant of BulkDelete algorithm, which is different from original
BulkDelete w.r.t. the removed vertex setL = {u∗|distGl(u

∗, Q) ≥
d− 1, u∗ ∈ Gl}. We readjust the furthest nodes to be removed, as
L′ = {u∗|distGl(u

∗, Q) ≥ d, u∗ ∈ Gl}. This adjustment makes
the algorithm not as efficient as BulkDelete in asymptotic running
time complexity, but we still find it efficient in practice. On the
other hand, in practice, this strategy can achieve a smaller graph
diameter than BulkDelete. Moreover, in our implementation, in
each iteration, we carefully remove only a subset of nodes in L′,
which have the largest total of distances from all query nodes. As
a result, more nodes with the largest query distance are removed
from the community in the end. The reason is as follows. Sup-
pose the largest query distance we found as d, in the real world, the
number of nodes having query distance d may be large, due to the
small-world property.

6. EXPERIMENTS
We conduct experimental studies using 6 real-world networks

available from the Stanford Network Analysis Project3, where all
networks are treated as undirected. The network statistics are shown
in Table 2. All networks except for Facebook contain 5,000 top-
quality ground-truth communities.

To evaluate the efficiency and effectiveness of improved strate-
gies, we test and compare three algorithms proposed in this paper,
namely, Basic, BD, and LCTC. Here, Basic is the basic greedy
approach Basic in Algorithm 1, which removes single furthermost
node at each iteration. BD is the BulkDelete approach in Algo-
rithm 4, which removes multiple furthermost nodes at each iter-
ation. LCTC is the local exploration approach in Algorithm 5.
For LCTC, we set the parameters η = 1, 000 and γ = 3, where
η = 1, 000 is selected to achieve stable quality and efficiency by
testing η in [500, 2, 000], and γ = 3 is selected to balance the re-
quirements of trussness and diameter for communities searched.
3snap.stanford.edu
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We randomly generate sets of query nodes to test. Three pa-
rameters, query size |Q|, degree rank Qd, and inter-distance l, are
varied for generating different sets of query nodes. Here, |Q| is
the number of query nodes, which is set to 3 by default. Qd is the
degree rank of query nodes. We sort all vertices in descending or-
der of their degrees in a network. A node is said to be with degree
rank of X%, if it has top highest X% degree in the network. The
default value of Qd is 80%, which means that a query node has
degree higher than the degree of 20% nodes in the whole network.
The inter-distance l is the inter-distance between all query nodes.
The default l = 2 indicates that all query nodes are within distance
of 2 to each other in the network.

For the efficiency, we report running time in seconds. We treat
the running time of a query as infinite if it exceeds 1 hour.

For the effectiveness of eliminating “free riders”, we compare
our methods with Truss (Algorithm 2), which finds the connected
k-truss graph containing query nodes with the largest k only.

LetGR be the closest truss community found by LCTC andG0

be computed by Truss. We report two things. One is the percentage
of nodes that are kept in the resulting community by |V (GR)|

|V (G0)|
. The

less percentage the more “free riders” being removed. The other
is the edge density 2|E(g)|/|V (g)|(|V (g)| − 1), where g is either
GR or G0. Clearly, larger the edge density the more desirable the
community.

In addition, to evaluate the quality of closest truss community
found, we implemented two state-of-the-art community search meth-
ods: the minimum degree-based community search (MDC) [25],
which globally finds the dense subgraph containing all query nodes
with the highest minimum degree under the distance and size con-
straints, and the query biased densest community search (QDC)
[28], which shifts the detected community to the neighborhood of
the query by integrating the edge density and nodes proximity to
the query nodes. Here, MDC and QDC are implemented using
the same data structures for the graph, Steiner tree, and hashtable
as we do for LCTC. To compare LCTC with MDC and QDC,
we test the datasets with ground-truth, and show the F1-score to
measure the alignment between a discovered community C and
a ground-truth community Ĉ. Here, F1 is defined as F1(C, Ĉ)

= 2·prec(C,Ĉ)·recall(C,Ĉ)

prec(C,Ĉ)+recall(C,Ĉ)
where prec(C, Ĉ) = |C∩Ĉ|

|C| is the pre-

cision and recall(C, Ĉ) = |C∩Ĉ|
|Ĉ| is the recall.

All algorithms are implemented in C++, and all the experiments
are conducted on a Linux Server with Intel Xeon CUP X5570 (2.93
GHz) and 50GB main memory.
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Exp-1 Different Queries: We test our approaches using different
queries on DBLP and Facebook (Table 2).

First, we vary the query size |Q|. We test 5 different |Q| in {1, 2,
4, 8, 16}. For each value of |Q|, we randomly select 100 sets of |Q|
query nodes, and we report the average running time, the average
percentage of FRE avoidance and the average edge density.4 The
results for DBLP and Facebook are shown in Figure 4 and Figure
5, respectively. LCTC performs the best in terms of efficiency, the
percentage of FRE avoidance, and edge density in all cases. Basic
cannot find communities in DBLP within a 1 hour limit we had
imposed. BD achieves better efficiency in Facebook than DBLP.
This is because Facebook contains only 4K vertices and the global
method BD is effective on such a small network. However, BD
performs worse than Basic on the percentage of FRE avoidance
and edge density for Facebook.

Second, we vary the degree of query nodes. For a graph to be
tested, we sort the vertices in descending order of their degrees,
and partition them into 5 equal-sized buckets. For each bucket, we
randomly select 100 different query sets of size 3, and report the
average running time, the average percentage of FRE avoidance
and the average edge density. The results for DBLP and Facebook
are shown in Figure 6 and Figure 7, respectively. In terms of
running time, percentage of FRE avoidance, and edge density, the
performance is similar to the results obtained by varying the query
sizes. LCTC outperforms all other methods.

Third, we vary the inter-distance l within query nodes from 1 to
5. For each l value, we randomly select 100 sets of 3 query nodes,
in which the inter-distance of query nodes is to be l. We report
the average running time, average percentage of FRE avoidance,
and edge density. The results for DBLP and Facebook are shown
in Figure 8 and Figure 9, respectively. The performance in terms
of running time, percentage of FRE avoidance, and edge density
is similar to previous results. All methods increase the percentage
while the inter-distance l increases. This is because the diameter of
community increases, and therefore the less number of nodes can
be removed from graph. LCTC outperforms the others.
Exp-2 A Case Study on DBLP: We construct a collaboration net-
work from the raw DBLP data set5 for a case study. A vertex rep-
resents an author, and an edge between two authors indicates they
have co-authored no less than 3 times. This DBLP graph contains
234,879 vertices and 541,814 edges.

We use the queryQ = {“Alon Y. Halevy”, “Michael J. Franklin”,
“Jeffrey D. Ullman”, “Jennifer Widom”} to test our closest truss
4Notice that Basic, BD, LCTC are not optimal algorithms.
5http://dblp.uni-trier.de/xml/
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community model for detecting the community. Figure 10(a) shows
G0 that is the maximal connected 9-truss containing Q. This entire
graph has 73 nodes, 486 edges, edge density of 0.18 and diameter
of 4. As we can see, most black nodes are at a long distance from
each other. They are loosely connected with query nodes via some
intermediate nodes. Our method LCTC removes these black nodes
and finds a closest truss community for Q shown in Figure 10(b),
which is a 9-truss of diameter 2. It has 14 authors, 81 edges and the
edge density of 0.89. The community does not include any authors
in a 9-truss that are far away from queried authors.
Exp-3 The Quality by Ground-Truth: To evaluate the effective-
ness of different community models, we compare LCTC with three
other methods MDC, QDC and Truss using the 5 networks, DBLP,
Amazon, Youtube, LiveJournal, and Orkut, with ground-truth com-
munities [29]. We randomly select query nodes that appear in a
unique ground-truth community, and select 1,000 sets of such query
nodes with the size randomly ranging from 1 to 16. We evaluate the
accuracy by the F1-score of the detected community, and report the
averaged F1-score over all query cases.

Figure 11(a) shows the F1-score. Our method achieves the high-
est F1-score on most networks. QDC has the second best per-
formance, which outperforms LCTC on Youtube network. MDC
does not perform well due to the fixed distance and size constraints.
Note that the large overlap of ground-truth communities[29] in Orkut
may makes them difficult to be detected accurately by most meth-
ods. Figure 11(b) shows that LCTC runs much faster than MDC
and QDC, and is close to Truss. Figure 11(c) shows the size of
communities detected by LCTC and Truss, in terms of the number
of vertices and edges. As we can see, the number of nodes (|V |-)
and the number of edges (|E|-) in communities detected by LCTC
are much less than those by Truss on all networks. It confirms the
power of eliminating irrelevant nodes from discovered communi-
ties by our LCTC.
Exp-4 Diameter and Trussness Approximation: We evaluate the
diameter approximation of detected communities by our methods
on Facebook network. Here, we take the lower bound of the opti-
mal diameter (LB-OPT) as the smallest query distance distR(R,Q),
whereR is the community detected by method Basic. We show the
curve of 2distR(R,Q), which serves as the upper bound of small-
est diameter (UB-OPT) by Lemma 2. The averaged diameters of
communities detected by different methods are reported in Figure
12(a), where we vary the inter-distance l. The diameters of de-
tected communities obtained by all our methods are very close to
the lower bound of optimal one. Figure 12(b) shows the maximum
trussness of detected communities by our methods. Basic and BD
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globally search the k-truss containing query nodes on the entire
graph, and the detected communities have the maximum trussness
k. LCTC can detect the trussness of communities which are very
close to Basic and BD, by searching over a small graph locally.
Thus, LCTC balances the efficiency and effectiveness well.

7. RELATED WORK AND DISCUSSION
In this section, we firstly discuss the rationale for our proposed

model, and then review work most related to our study.

7.1 Design Decisions
Here, we discuss several natural candidates for community mod-

els and provide a rationale for our definition of closest truss community.

Diameter vs query distance. Being closely related to the query
nodes is a natural desirable property for nodes to be included in
a community. However, in the literature, small diameter has been
regularly considered as an important hallmark of a good commu-
nity – see e.g., [11, 10, 14, 12]. Thus, minimizing diameter in
identifying communities has a natural motivation.

Secondly, by definition, a community with a small diameter will
also have small query distance from its nodes. On the other hand,
minimizing query distance ignores the distance between non-query
nodes in the community. In this sense, small diameter is a strictly
stronger property than small query distance. Example 3 illustrates
this point and the value of minimizing diameter as opposed to just
query distance.

Trading trussness for diameter. Every k-truss is also a (k − 1)-
truss by definition. Thus, relaxing the maximum trussness require-
ment may allow us to find a community with a smaller diameter
by sacrificing trussness. One problem is that the variation of di-
ameter as trussness decreases, may not be smooth but may face a
sudden drop as trussness decreases to a low value. E.g., continuing
with the example of Figure 1(a) with query Q = {q1, q2, q3}, our
CTC model yields a community with the highest trussness k = 4
and diameter 3, as in Figure 1(b). When k = 3, the 3-truss con-
taining Q with the smallest diameter is still Figure 1(b). How-
ever, when k = 2, the cycle of {(q1, t), (t, q3), (q3, v4), (v4, q2),
(q2, q1)} turns out to be the 2-truss containing Q and its diameter
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is 2. However, this is loosely connected and has a low edge density.
In general, for a small k, the k-truss community found by removing
free riders may have loosely connected structure and thus may be
noisy. One advantage of our approach is that it is parameter-free.
However, if a user would like to explore trading trussness for di-
ameter, it is straightforward to extend our algorithms (Algorithms
1 and 2) to treat the desired trussness k as a constraint instead of
maximizing trussness. Finally, another way of combining trussness
and diameter is using a weighted combination, but this comes with
the challenge of tuning the weights. Our parameter-free approach
of minimizing diameter while keeping trussness at the maximum
value is a reasonable choice.

Constraining community size. At first, it appears that we can
minimize or avoid free riders by bounding the size of a community.
However, sizes of communities may vary widely and it is difficult,
if possible at all, to impose proper bounds on acceptable commu-
nity sizes. Moreover, bounding the size of the community may
render the problem of finding a query driven community inapprox-
imable w.r.t. any factor. Specifically, consider the special case of
finding a k-truss of size at most a given parameter ` that contains
Q = ∅. This subsumes the k-clique problem, which is not approx-
imable within any reasonable factor [15]. By contrast, minimizing
diameter instead of size admits efficient approximation. Indeed, our
formulation does address community size indirectly. The larger the
k, the smaller the size of the k-truss. Our CTC model maximizes
trussness. Furthermore, by minimizing the diameter, it helps re-
move free riders, thus reducing the size in a principled manner. On
the algorithmic side, our LCTC method (Section 5.2) actually uses
a size threshold to prune the search space and improve efficiency.
Thus, LCTC controls the size of a community in a heuristic man-
ner.

7.2 Community Search
Recently, several community search models have been studied,

including k-truss [16], quasi-clique [8], k-core [25, 9], influential
community [19] and query biased densest subgraph [28]. Here, we
compare these models with our proposed closest truss community
model w.r.t. three aspects: (i) consideration of query nodes, (ii)
cohesive structure, and (iii) quality approximation.

Query nodes. Cui et al. [8] have recently studied the problem of
online search of overlapping communities for a query node by de-
signing a new α-adjacency γ-quasi-k-clique model. Huang et al.
[16] propose a k-truss community model based on triangle adja-
cency, to find all overlapping communities of a query node. They
ignore the diameter of the resulting community. Cui et al. [9] find
a k-core community for a query node using local search. In ad-
dition, influential community model [19] finds top-r communities
with the highest influence scores over the entire graph; no query
nodes are considered. Extending any of above models from one (or
zero) query node to multiple query nodes raises new challenges.

Cohesive structure. [25] and [28] support community search of
multiple query nodes similarly to us, thus they are most related to
our work. Sozio et al. [25] proposed a k-core based community
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model, called Cocktail Party model, with distance and size con-
straints. Our proposed closest truss community model is based on
connected k-truss. Conceptually, k-truss is a more cohesive defi-
nition than k-core, as k-truss is based on triangles whereas k-core
simply considers node degree [27]. Most recently, Wu et al. [28]
studied the query biased densest connected subgraph (QDC) prob-
lem for avoiding subgraphs irrelevant to query nodes in the commu-
nity found. While QDC [28] is also defined based on a connected
graph containing Q similarly to CTC, it optimizes a fundamentally
different function called query biased edge density, which is calcu-
lated as the overall edge weight averaged over the weight of nodes
in a community.

Quality approximation. Both problems proposed in [25] and [28]
are NP-hard to compute, and do not admit approximations with-
out further assumptions. [28] gives an approximation solution of
QDC by relaxing the problem. Unfortunately, as the authors show
themselves [28], this could fail in real applications, for two reasons.
First, the algorithm may find a solution consisting of several con-
nected components with query nodes split between them. Second,
the approximation factor can be large, which can deteriorate fur-
ther with a larger number of query nodes. In contrast, we provide
an efficient 2-approximation algorithm for finding the closest truss
community containing any set of query nodes.

7.3 Community Detection
The goal of community detection is to identify all communities

in the entire network. A typical method for finding communities
is to optimize the modularity measure [22]. Generally, community
detection falls into two major categories: non-overlapping [24, 30]
and overlapping community detection [23, 1]. All these methods
consider static communities, where the networks are partitioned
a priori. Query nodes are not considered since their focus is not
community search. Thus these works on community detection are
significantly different from our goal of query driven community
search.

7.4 Dense Subgraph Mining
There is a very large body of work on mining dense subgraph

patterns, including clique [3], quasi-clique [26], k-core [2, 4], k-
truss [6, 27] to name a few. Various studies have been done on core
decomposition and truss decomposition in different settings, in-
cluding in-memory algorithms [2, 6], external-memory algorithms
[4, 27], and MapReduce [7]. None of these works considers query
nodes, which as we have discussed earlier, raise major computa-
tional challenges.
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8. CONCLUSION
In this paper, we study the closest truss community search prob-

lem over a graph, i.e., given a set of query nodes, we find a densely
connected community containing the query nodes, in which nodes
are close to each other. Based on the dense subgraph definition as
a k-truss, we formulate the CTC as a connected k-truss subgraph
containing the query nodes with the largest k, and having the min-
imum diameter among such subgraphs. We developed a greedy

algorithmic framework that provides a 2-approximation to the op-
timal solution, and also designed several efficient search strategies,
such as using a truss index and bulk deletion optimization and local
exploration. Extensive experimental results on large real-world net-
works with ground-truth communities demonstrate the effective-
ness and efficiency of our proposed solutions.
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massive networks. In ICDE, pages 51–62, 2011.
[5] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J.

Comput., 14(1):210–223, 1985.
[6] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. Technical

report, National Security Agency, 2008.
[7] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science and

Engineering, 11(4):29–41, 2009.
[8] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search of overlapping

communities. In SIGMOD, pages 277–288, 2013.
[9] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities in large

graphs. In SIGMOD, pages 991–1002, 2014.
[10] S. R. Doddi, M. V. Marathe, S. Ravi, D. S. Taylor, and P. Widmayer.

Approximation algorithms for clustering to minimize the sum of diameters. In
Algorithm Theory-SWAT 2000, pages 237–250. Springer, 2000.

[11] J. Edachery, A. Sen, and F. J. Brandenburg. Graph clustering using distance-k
cliques. In Proceedings of the 7th International Symposium on Graph Drawing,
pages 98–106, 1999.

[12] J. Edachery, A. Sen, and F. J. Brandenburg. Graph clustering using distance-k
cliques. In Graph drawing, pages 98–106. Springer, 1999.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[14] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.
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