
Precision Performance Surgery for PostgreSQL
LLVM–based Expression Compilation, Just in Time

Dennis Butterstein Torsten Grust
Universität Tübingen,
Tübingen, Germany

[dennis.butterstein, torsten.grust]@uni-tuebingen.de

ABSTRACT
We demonstrate how the compilation of SQL expres-
sions into machine code leads to significant query run-
time improvements in PostgreSQL 9. Our primary goal is to
connect recent research in query code generation with one of
the most widely deployed database engines. The approach
calls on LLVM to translate arithmetic and filter expressions
into native x86 instructions just before SQL query execu-
tion begins. We deliberately follow a non-invasive design
that does not turn PostgreSQL on its head: interpreted and
compiled expression evaluation coexist and both are used to
execute the same query. We will bring an enhanced version
of PostgreSQL that exhibits notable runtime savings and
provides visual insight into exactly where and how execu-
tion plans can benefit from SQL expression compilation.

1. WHAT TOOK YOU SO LONG,
POSTGRESQL?

In a discussion of query processing strategies, the evalua-
tion of SQL expressions—here we refer to expressions over
scalar values, notably of number types as well as Booleans—
typically assumes a second-tier role. Still, expression evalua-
tion is pervasive in query plan execution: table scans, filters,
aggregates, projections, and even joins (those which do not
enjoy index support) inherently rely on it. Indeed, in the
case of TPC-H [7], the inefficient evaluation of complex ex-
pressions has been identified as a major choke point [2, see
choke point CP 4.1d “interpreter overhead”]. The premise of
the present work is that significant query runtime improve-
ments are obtained if we can speed up expression evaluation.

Expression Evaluation in the Limelight. Figure 1 shows
query Q1 of the TPC-H benchmark with a particular focus
on the SQL expressions that are embedded in this query:
• a Boolean filter expression 1 that compares values of

type date (the date difference operator - is evaluated
at query compile time and thus is of no concern in the
context of this work) and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

1

2
1 SELECT l_returnflag, l_linestatus,
2 SUM(l_quantity) AS sum_qty,
3 SUM(l_extendedprice) AS sum_base_price,
4 SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,
5 SUM(l_extendedprice*(1-l_discount)*(1+l_tax)) AS sum_charge,
6 AVG(l_quantity) AS avg_qty,
7 AVG(l_extendedprice) AS avg_price,
8 AVG(l_discount) AS avg_disc,
9 COUNT(*) AS count_order

10 FROM lineitem
11 WHERE l_shipdate <= date ’1998-12-01’ - interval ’103 days’
12 GROUP BY l_returnflag, l_linestatus
13 ORDER BY l_returnflag, l_linestatus;

Figure 1: TPC-H Q1. We focus on the evaluation of SQL
expressions (here: 1 and 2) embedded in such queries.

• a group 2 of aggregates whose arguments are arithmetic
expressions over double precision columns and literals.

The execution of query Q1 involves a substantial expres-
sion evaluation effort. Table 1 displays an excerpt of a
function call profile, recorded while PostgreSQL 9 was ex-
ecuting Q1 over a TPC-H instance of scale factor 5. We
see that the scan of table lineitem leads to 29 999 799 in-
vocations of function ExecQual to evaluate filter expres-
sion 1 over the incoming rows (about 520 000 of those do not
qualify such that ExecScan returns 29 477 776 times to its
caller, each time delivering an individual qualifying row).1

Each such row leads to the evaluation of the 8 aggregates
and their arithmetic expressions 2 , yielding a total of 8 ×
29 477 776 ≈ 235 582 212 invocations of ExecProject, the
PostgreSQL function that evaluates expressions in a query’s
SELECT clause. Finally, caller ExecAgg returns 4 times1 to
deliver the rows of aggregates computed by Q1.

This expression evaluation workload has a measurable im-
pact on query runtime. Indeed, in the case of Q1, Post-
greSQL spends the lion share of the execution time on ex-
pression evaluation. The pie charts of Figure 2 detail this
impact for an entire set of TPC-H queries (we have selected
these queries because they embed several and/or complex
SQL expressions—Q19, for example, contains a variety of
filters, see Figure 5 below). Here, the darker pie slices ac-
count for the overall execution time spent in all functions in
the call tree below ExecQual and ExecProject. During the
execution of Q1, PostgreSQL is busy with expressions about
12.1% + 39.8% = 51.9% of the time—for the further queries

1 ExecScan and ExecAgg return one additional time only to
indicate that no more rows will be delivered. PostgreSQL
implements a Volcano-style iterator model [3].

1517

Table 1: PostgreSQL execution profile, focus on the eval-
uation of the expressions 1 and 2 in Q1 (see Figure 1).
Functions under ExecProcNode comprise the expression in-
terpreter (invoked 29 447 787 times).

#Calls Function

29 447 787 ExecProcNode
5 ExecAgg

29 447 776 advance aggregates
235 582 212

2

ExecProject
58 895 550 ExecMakeFunctionResultsNoSets

ExecEvalConst
ExecEvalScalarVarFast
float8pl
float8mul
slot getattr
· · ·

235 582 208 advance transition function
88 343 328 float8 accum

235 582 212 slot getsomeattrs
29 447 776 LookupHashTableEntry

176 686 640 · · · slot getattr
29 447 777 ExecScan
29 999 799

1

ExecQual
29 999 794 ExecMakeFunctionResultNoSets

ExecEvalConst
ExecEvalScalarVarFast
date le timestamp
slot getattr

Q1

12.139.8

48.1

ExecQual

ExecProject

Q3

31.0

68.5
Q6

68.5

30.1

Q10

33.2

64.5
Q14

56.3

40.3 Q19

65.7

34.1

Figure 2: Percentages of overall execution time spent in in-
terpreted arithmetic (ExecProject) and filter (ExecQual)
expression evaluation for selected TPC-H queries.

in the set we observe that the system needs to devote be-
tween 32% and 70% of the query runtime to the evaluation
of SQL expressions.

The Interpreter is Calling. Again. The PostgreSQL
family of Exec· · · functions together form an interpreter
that walks a tree-shaped representation of an expression:
operator nodes hold a pointer to a function that, when in-
voked, will recursively evaluate subexpressions as well as
the operator itself. The leaves of this tree represent literals
(see ExecEvalConst in Table 1), row variables (ExecScalar-
VarFast), or column accesses (slot getattr). While this
style of expression interpreter is pervasive in today’s database
query processors, it has long been identified as CPU-intensive
and outright wasteful on modern computing and memory
architectures [1, 6]. Interpreter-induced function calls need
to prepare/remove stack frames, save/restore registers, and
jump to and from the diverse function bodies, leading to
pipeline flushes and instruction cache pollution.

The resulting interpretation overhead is significant and
may dominate all other tasks of the query processor. Post-

1

Sort (actual time=32516.050..32516.050 rows=4)
Sort Key: l_returnflag, l_linestatus
Sort Method: quicksort Memory: 25kB
-> HashAggregate (actual time=32495.849..32495.852)
-> Seq Scan on lineitem (actual time=0.009..6472.002 rows=29447776)
Filter: (l_shipdate <= ’1998-08-20’)
Rows Removed by Filter: 552019

Total runtime: 32516.153 ms

Figure 3: Query plan and breakdown of the 32 516 ms
elapsed execution time for Q1 (EXPLAIN ANALYZE output).

t0

t1

greSQL’s EXPLAIN ANALYZE output for Q1 (Figure 3) reveals
that the sequential scan of lineitem requires 6472 ms—
3934 ms (12.1% of 32 516 ms, see Figure 2) of this time is
spent in the interpreted evaluation of filter 1 . In the 26 s be-
tween timestamps t0 and t1, PostgreSQL performs grouping
and aggregation—the evaluation of the arithmetic expres-
sions 2 requires one half of this time (39.8% of 32 516 ms).

2. COMPILATION OF SQL EXPRESSIONS
For any given expression e, at query run time the Post-

greSQL interpreter will repeatedly walk the tree for e and
invoke the same Exec · · · functions in the same order. The
promise of compiling SQL expressions into machine code
is to turn this repeated run time effort into a one-time com-
pile time task. The present work is an exploration of how
PostgreSQL can benefit if we trade expression interpretation
for compilation. Cornerstones of the approach are:
• Each arithmetic and filter expression e is seen as a unit

that is compiled into a separate function—to invoke the
evaluation of e, PostgreSQL will thus call a single function.
• The PostgreSQL query optimizer remains unchanged—

expressions are compiled after planning and just before
query execution starts.
• This just-in-time compilation of expressions is based on

the LLVM compiler infrastructure [5] which comes in shape
of a library that we link with the original PostgreSQL
code—LLVM offers high-quality code generation at low
compilation times.
• We adopt a non-invasive approach that—outside of ex-

pression evaluation—retains PostgreSQL’s Volcano-style
pipelining query processor [3].
• Compiled and interpreted expression evaluation coexist;

both can contribute to the execution of the same query.
• Compiled code calls on built-in PostgreSQL routines to

access columns or convert values—this ensures compati-
bility with vanilla PostgreSQL and aids rapid prototyping.
Such routines can be gradually reimplemented in terms of
LLVM code if desired.

Our overall goal is to connect recent research in query code
generation with the internals of a database system that sees
world-wide deployment.

2.1 Compiling with Holes
To provide an impression of the compilation scheme, let

us focus on the treatment of conjunctions and disjunctions
in filters. This still grants insights into general efficiency
considerations, in particular the economy of column access.

Figure 4(a) (left-hand column) shows the LLVM pseudo
code that is emitted for the conjunctive filter expression e ≡
p1(A) AND p2(B). Here, p1(A) is an arbitrary filter expression
that reads column A. In the code, %r denotes LLVM register r

1518

e ≡ p1(A) AND p2(B) e OR p3(A, B)

%a = 〈slot getattr(A)〉
%p1 = 〈p1(%a)〉

� br %p1, label %l0, label %l2
%l0: %b = 〈slot getattr(B)〉

%p2 = 〈p2(%b)〉
br %p2, label %l1, label %l2

%l1: t©
%l2: f©

plugs into t©:

ret true

plugs into f©:

%b = 〈slot getattr(B)〉
%p3 = 〈p3(%a, %b)〉
ret %p3

(a) Compiling filter subexpressions using continuation
holes t©/ f©: code plugged into hole t©may assume that
e has evaluated to true (likewise for f©/false). Note that
hole f© at label %l2 may be reached via two code paths.

e ≡ p1(A) AND p2(B) e OR p3(A, B)

%a = 〈slot getattr(A)〉
%p1 = 〈p1(%a)〉
br %p1, label %l0, label %l2

%l0: %b = 〈slot getattr(B)〉
%p2 = 〈p2(%b)〉
br %p2, label %l1, label %l3

%l1: t©
%l2: f©1
%l3: f©2

t© with R = {A 7→ %a, B 7→ %b}:

ret true

f©1 with R = {A 7→ %a}:

%b = 〈slot getattr(B)〉
%p3 = 〈p3(%a, %b)〉
ret %p3

f©2 with R = {A 7→ %a, B 7→ %b}:

%p3 = 〈p3(%a, %b)〉
ret %p3

(b) Code emitted once hole f© has been split into f©1,2.

Figure 4: Expression compilation: LLVM pseudo-code emitted for the evaluation of the filter
(
p1(A) AND p2(B)

)
OR p3(A, B).

(of which there are arbitrarily many—these will be mapped
onto real CPU registers by code generation). 〈p1(%a)〉 stands
in for the LLVM code for p1, assuming that the value of col-
umn A is available in register %a. Finally, 〈slot getattr(A)〉
represents the LLVM instructions needed to invoke Post-
greSQL’s built-in routine that extracts the value of column A
from the current row.

We see that the first branch instruction br (marked �
in Figure 4(a)) implements Boolean shortcut: if the value
of p1(A), held in register %p1, turns out to be false, we ignore
p2(B) and immediately branch to label %l2. The false hole f©
defines a spot where we can plug in continuing code [4].
Execution reaches the true hole t© at label %l1 only if both
p1(A) and p2(B) evaluate to true.

Code that plugs into hole t© (f©) may be generated un-
der the assumption that subexpression e evaluated to true
(false). We exploit this when we generate code for a contain-
ing expression like e OR p3(A, B), see Figure 4(a) (right-hand
column). According to the semantics of disjunction, there
is thus nothing left to do in hole t© and we immediately
return via ret. At f©, however, the overall result depends
on p3(A, B). We know that column A is definitely available in
register %a but we cannot tell for column B: two code paths
lead to hole f© at label %l2 and only on one has %b been
assigned the value of 〈slot getattr(B)〉. We thus need to
play safe and perform column extraction for B in any case.
This is unfortunate since calls to slot getattr are costly:
the routine (1) checks whether the column has already been
extracted and thus cached, (2) retrieves the external column
representation either from the cache or the row at the cor-
rect offset, and then (3) transforms the value to an internal
main-memory representation.

Hole Splitting. The cost of slot getattr motivates an
improved compilation scheme that uses holes to encode ex-
actly which column values are present in what registers when
execution reaches a hole. In the case of our filter expression e
this leads to a split of the false hole into f©1 and f©2 (Fig-
ure 4(b), left-hand column). At f©1 (label %l2) we know that
e evaluates to false and that %a holds column A, at f©2 we ad-
ditionally know that column B is present in %b. We can make
good use of this and judiciously omit the slot getattr(B)
call in hole f©2. To issue the minimum number of column
loads that need to happen in a specific hole, the expression

3
4

5
6

7

1 SELECT SUM(l_extendedprice*(1-l_discount)) AS revenue
2 FROM lineitem, part
3 WHERE p_partkey = l_partkey
4 AND p_size >= 1
5 AND l_shipmode IN (’AIR’,’AIR REG’)
6 AND l_shipinstruct = ’DELIVER IN PERSON’)
7 AND (p_brand = ’Brand#31’
8 AND p_container IN (’SM CASE’,’SM BOX’,. . .)
9 AND l_quantity >= 4 AND l_quantity <= 14

10 AND p_size <= 5
11 OR p_brand = ’Brand#52’
12 AND p_container IN (’MED CASE’,’MED BOX’,. . .)
13 AND l_quantity >= 12 AND l_quantity <= 22
14 AND p_size <= 10
15 OR p_brand = ’Brand#31’
16 AND p_container IN (’LG CASE’,’LG BOX’,. . .)
17 AND l_quantity >= 29 AND l_quantity <= 39
18 AND p_size <= 15);

Figure 5: Once Q19 has been optimized, PostgreSQL’s in-
terpreter effectively evaluates the highlighted expressions.

translation maintains a compile-time mapping R of columns
to LLVM registers (see Figure 4(b), right-hand column).

Since hole splitting effectively unfolds all possible code
paths through a filter expression at compile time, we pay
for this optimization in terms of code size. For TPC-H
query Q19 featuring complex predicates (see Figure 5), we
indeed find that we now generate about 9 times as many
LLVM instructions (expression 7 yields 156 code paths).
Since SQL expressions are super-brief if compared to general-
purpose programs, we are nevertheless ready to accept this
size increase in order to reap the potential runtime savings.

2.2 The Bottom Line: Performance Gains
We set out to shift effort from query run time to compile

time. This pays off only if the added compilation time does
not eat up the performance gains. With LLVM, we measure
translation times of no more than 40 ms when we handle
TPC-H queries. Hole splitting adds to this but only mod-
erately so: for Q19 we see an increase of about 30%—this
is still negligible for OLAP-class queries. The more rows a
query processes, the more worthwhile expression compila-
tion becomes.

Figure 6 documents the performance gain of expression
compilation when PostgreSQL 9 processes a TPC-H bench-
mark of scale factor 5 (average of 10 runs reported). We see a

1519

interpreted
expressions

32.5 s

23.9 s

25.3
9.4

Q1

12.5 s

11.8 s

24.3

Q3

7.3 s

4.6 s

52.4

Q6

12.5 s

11.5 s

27.0

Q10

7.1 s

5.3 s

47.6

Q14

10.9 s

9.7 s

61.8

Q19

Figure 6: Percentages of overall execution time spent to
evaluate compiled arithmetic and filter expressions (inter-
preted: see Figure 2). After compilation, TPC-H query Q1
executes in 23.9 s (before: 32.5 s).

naive
evaluation

353.9M

Q1

62.0M

Q3

62.7M

58.9%

Q6

65.6M

93.0%

Q10

55.7M

59.8%

Q14

42.8M

94.9%

Q19

Figure 7: Reduction of the number of calls to slot getattr
(column value extraction) after hole splitting.

query runtime reduction of up to to 37% (Q6) for the family
of selected TPC-H queries—in fact, all TPC-H queries ex-
hibit performance improvements. The system now devotes
a smaller slice of its time to expression evaluation: for Q1,
SQL expressions now account for 9.4% + 25.3% = 34.7% of
the overall effort (formerly: 51.9%, compare to Figure 2).

Figure 7 contains evidence that queries do benefit from
hole splitting if an embedded expression repeatedly refers
to the same set of columns. Even moderate repetition suf-
fices to cut down the number of slot getattr calls signi-
ficantly: the filter expressions in Q6 as well as Q14 access
columns l shipdate and l discount twice. No such col-
umn reuse within one expression occurs in Q1 or Q3. Ex-
pression 7 of Q19 (Figure 5) is a prime candidate for hole
splitting—it is because of the high selectivity of the con-
juncts 4 to 6 that we only measure a minor runtime im-
pact: the native code for 7 needs to be hardly ever invoked
by PostgreSQL.

3. DEMONSTRATION SETUP
We will bring an installation of PostgreSQL (version 9)

that has been enhanced with an LLVM-based compiler for
arithmetic and Boolean expressions, as described in Sec-
tion 2.1. The on-site demonstration features a setup cho-
sen to provide cursory as well as deeper impressions of SQL
expression compilation:

Cursory. Our PostgreSQL 9 system comes with a visual
EXPLAIN plan renderer (see Figure 8) that helps to under-
stand how the system spends its time. Colored operator
labels, like largest or slowest , let performance choke points
stick out even if plans get complex. Paired execution time
annotations (after|before) give a quick overview of what is
to be gained by SQL expression compilation for a particu-
lar query. Additionally, we have instrumented PostgreSQL’s

Figure 8: Enhanced visual EXPLAIN, revealing the LLVM-
generated x86 instructions that implement the filter expres-
sion 1 (cf. Figure 1). Plan rendering based on Pev.2

query processor such that execution time breakdowns in the
form of pie charts (after: , before: , recall Figure 2) can
be output on the fly.

Deeper. On a click, EXPLAIN reveals the LLVM intermedi-
ate representation [5] and/or the native x86 instructions for
any expression that underwent compilation. Among other
gory details, this also shows how hole splitting shapes the
generated code. A larger TPC-H instance will be preloaded
to demonstrate the runtime savings we have reported here.
The demonstration does not run on rails, though: we will
also provide toy data sets that allow for quick turnaround
and experimentation. The audience is encouraged to explore
ad-hoc query compilation scenarios and observe the impact
of this PostgreSQL performance surgery.

4. REFERENCES
[1] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:

Hyper-Pipelining Query Execution. In Proc. CIDR,
pages 225–237, 2005.

[2] P. A. Boncz, T. Neumann, and O. Erling. TPC-H
Analyzed: Hidden Messages and Lessons Learned from
an Influential Benchmark. In Proc. TPC Technology
Conference on Performance Evaluation &
Benchmarking (TPCTC), pages 61–76, 2013.

[3] G. Graefe. Volcano—An Extensible and Parallel Query
Evaluation System. IEEE TKDE, 6(1):120–135, 1994.

[4] D. Gries. Compiler Construction for Digital Computers.
John Wiley & Sons, New Jersey, USA, 1971.

[5] The LLVM Compiler Infrastructure Project. llvm.org.
[6] T. Neumann. Efficiently Compiling Efficient Query

Plans for Modern Hardware. In Proc. VLDB, pages
539–550, Seattle, Washington, USA, 2011.

[7] The TPC Benchmark H. tpc.org.

2github.com/AlexTatiyants/pev

1520

