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ABSTRACT
The rising need for custom machine learning (ML) algo-
rithms and the growing data sizes that require the ex-
ploitation of distributed, data-parallel frameworks such as
MapReduce or Spark, pose significant productivity chal-
lenges to data scientists. Apache SystemML addresses these
challenges through declarative ML by (1) increasing the
productivity of data scientists as they are able to express
custom algorithms in a familiar domain-specific language
covering linear algebra primitives and statistical functions,
and (2) transparently running these ML algorithms on dis-
tributed, data-parallel frameworks by applying cost-based
compilation techniques to generate efficient, low-level ex-
ecution plans with in-memory single-node and large-scale
distributed operations. This paper describes SystemML on
Apache Spark, end to end, including insights into various
optimizer and runtime techniques as well as performance
characteristics. We also share lessons learned from porting
SystemML to Spark and declarative ML in general. Finally,
SystemML is open-source, which allows the database com-
munity to leverage it as a testbed for further research.

1. INTRODUCTION
Data scientists are challenged in today’s data economy

due to (1) the need for very sophisticated, custom machine
learning (ML) algorithms—beyond off-the-shelf library al-
gorithms, (2) the growing amount of data, partially spurred
by the Internet of Things (IoT) in industries such as man-
ufacturing, mobile, automotive, and health care, and (3)
the resulting need to run these custom ML algorithms
on distributed, data-parallel systems such as MapReduce
(MR) [14], Spark [41], or Flink [2] for scalability and perfor-
mance on cost-efficient commodity clusters.

Overview of SystemML: Apache SystemML [6] ad-
dresses these challenges through declarative ML [10] that
aims at a high-level specification of ML algorithms to sim-
plify the development and deployment of ML algorithms
by separating algorithm semantics from underlying data
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representations and runtime execution plans. This separa-
tion provides tremendous benefits and opportunities, such
as (1) a data-scientist-centric algorithm specification which
improves the productivity of data scientists, (2) algorithm
reusability and simplified deployment for varying data char-
acteristics and runtime environments, and (3) automatic op-
timization of runtime execution plans. Data scientists ex-
press their custom ML algorithms in a domain-specific lan-
guage with precise semantics as well as abstract data types
and operations, independent of their implementation. Sys-
temML’s language is expressive enough to cover a broad
class of ML algorithms: descriptive statistics, classification,
clustering, regression, matrix factorizations, dimensions re-
duction, and survival models for training and scoring. Gen-
erally, algorithms that can be expressed using vectorized
operations are a good fit for SystemML. The SystemML
cost-based compiler automatically generates hybrid runtime
execution plans that are composed of single-node and dis-
tributed operations depending on data and cluster charac-
teristics such as data size, data sparsity, cluster size, memory
configurations, while exploiting the capabilities of underly-
ing data-parallel frameworks such as MR or Spark.

SystemML on Spark: SystemML started off with an
implementation on MR as the data-parallel framework de-
jour [15] in order to share cluster resources with other MR-
based systems, and later evolved to utilize the more general
YARN [36]. Apache Spark [5] further offered a number of
advantages over MR such as a unification of SQL, graph,
stream, and ML processing by providing a common RDD
data structure, a general DAG execution engine with lazy
evaluation, and distributed in-memory caching. These ca-
pabilities make Spark particularly attractive for ML, which
often requires custom data preparation and repeated, read-
only data access in iterative ML algorithms. However, im-
plementing ML algorithms directly against Spark compro-
mises the benefits of declarative ML and requires substantial
effort. Hence, we decided to fit SystemML into the Spark
ecosystem by (1) providing Spark APIs for a seamless in-
tegration, and (2) automatically compiling ML algorithms
into efficient execution plans on top of Spark. Declarative
ML allowed us to transition from MR to YARN and Spark as
well as to support these frameworks simultaneously without
the need for any ML algorithm changes.

Contributions: Our major contribution is an end-to-end
description of declarative ML on Spark. We share lessons
learned, describe implementation choices, introduce several
techniques that tackle challenges of memory handling and
lazy evaluation, and discuss performance insights through
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an empirical evaluation of end-to-end ML algorithms. Our
detailed contributions reflect the structure of this paper:

• Background: We give an up-to-date overview of Sys-
temML as a representative system for declarative ML
in Section 2, and introduce our running example in the
context of the SystemML’s Spark APIs.

• Optimizer Integration: We explain optimizer exten-
sions for our Spark backend in Section 3. This covers
rewrites, memory estimates and constraints, operator
selection, as well as parfor optimizer extensions.

• Runtime Integration: We describe the Spark runtime
backend in Section 4. This includes matrix repre-
sentations, the buffer pool integration, partitioning-
preserving operations, as well as specific optimizations.

• Experiments: We present end-to-end experimental re-
sults for a variety of ML algorithms, data characteris-
tics, and spark-specific optimizations in Section 5.

• Discussion and Related Work: Finally, we discuss
lessons learned from rebasing SystemML on Spark in
Section 6, and compare SystemML to related work in
the larger context of large-scale ML in Section 7.

2. BACKGROUND
In this section, we provide a current overview of Sys-

temML and its high-level architecture with various execu-
tion backends, including Spark. We introduce our running
example in the context of the Spark ecosystem. This exam-
ple is used throughout the paper to explain declarative ML,
APIs, optimizations, runtime, and performance insights.

2.1 SystemML Architecture
ML algorithms are expressed in a declarative, high-level

language, called DML (Declarative ML). SystemML com-
piles and optimizes these algorithms into hybrid runtime
plans of multi-threaded, in-memory operations on a single
node (scale-up) and distributed MR or Spark operations on
a cluster of nodes (scale-out). SystemML’s high-level archi-
tecture consists of the following components.

Language: DML (with either R- or Python-like syntax)
provides linear algebra primitives, a rich set of statistical
functions and matrix manipulations, as well as user-defined
and external functions, control structures including parfor
loops, and recursion [6]. The language component parses a
given DML script into a hierarchy of statement blocks and
statements as defined by control structures, and performs
syntactic analysis, live variable analysis, and semantic vali-
dation (e.g., matching matrix dimensions). During that pro-
cess we also retrieve input data characteristics—i.e., format,
number of rows, columns, and non-zero values—as well as
infrastructure characteristics, which are used for subsequent
optimizations. Finally, we construct directed acyclic graphs
(DAGs) of high-level operators (HOPs) per statement block.

Optimizer: The SystemML optimizer [8, 9, 19] works
over programs of HOP DAGs, where HOPs are operators on
matrices or scalars, and are categorized according to their
access patterns. Examples are matrix multiplications, unary
aggregates like rowSums(), binary operations like cell-wise
matrix additions, reorganization operations like transpose or
sort, and more specific operations. We perform various opti-
mizations on these HOP DAGs, including algebraic simplifi-
cation rewrites, intra-/inter-procedural analysis for statistics

propagation into functions and over entire programs, and
operator ordering of matrix multiplication chains. We com-
pute memory estimates for all HOPs, reflecting the mem-
ory requirements of in-memory single-node operations and
intermediates. Each HOP DAG is compiled to a DAG of
low-level operators (LOPs) such as grouping and aggregate,
which are backend-specific physical operators. Operator se-
lection picks the best physical operators for a given HOP
based on memory estimates, data, and cluster characteris-
tics. Individual LOPs have corresponding runtime imple-
mentations, called instructions, and the optimizer generates
an executable runtime program of instructions.

Runtime: We execute the generated runtime program lo-
cally in CP (control program), i.e., within a driver process.
This driver handles recompilation, runs in-memory single-
node CP instructions (some of which are multi-threaded),
maintains an in-memory buffer pool, and launches MR or
Spark jobs if the runtime plan contains distributed compu-
tations in the form of MR or Spark instructions [8, 15]. For
the MR backend, the SystemML compiler groups LOPs—
and thus, MR instructions—into a minimal number of MR
jobs (MR-job instructions), whereas for the Spark backend,
we rely on Spark’s lazy evaluation and stage construction.
CP instructions may also be backed by GPU kernels [7].
The multi-level buffer pool caches local matrices in-memory,
evicts them if necessary, and handles data exchange between
local and distributed runtime backends. Both CP and dis-
tributed operations for descriptive statistics and aggrega-
tions are numerically stable [35]. The core of SystemML’s
runtime instructions is an adaptive matrix block library,
which is sparsity-aware and operates on the entire matrix
in CP, or blocks of a matrix in a distributed setting. Fur-
ther key features include parallel for-loops for task-parallel
computations [8], and dynamic recompilation for runtime
plan adaptation addressing initial unknowns [9].

2.2 Running Example
As our running example, we introduce a DML script of

the popular alternating least squares (ALS) algorithm for
matrix completion [43]. In the context of collaborative fil-
tering in recommender systems, ALS tries to decompose
a partially observed user-item-rating matrix X (m × n)
into two factor matrices U (m × r representing user fac-
tors) and V (r × n representing item factors) of low rank
r � min (m,n), such that X ≈ UV. In our example,
the quality of the approximation is measured as L2 reg-
ularized squared loss over the observed entries of X with
L =

∑
i,j Wij(Xij − [UV]ij)

2 + λ
(
‖U‖2F + ‖V‖2F

)
, where

‖·‖F is the Frobenius norm and Wij = |sgn Xij |. ALS re-
peatedly keeps one of the unknown matrices fixed and opti-
mizes the other; when fixing U or V, we obtain a quadratic
least-squares problem, one per row (column) of U (V) with
a globally optimal solution. To solve these least-squares
problems jointly, we use the conjugate gradient method.

Example ALS-CG Script: Below DML script imple-
ments the outlined ALS algorithm. It reads an input matrix
X (line 1). After initializing the parameters (lines 2-6), we
compute the user and item factors in two nested loops: (1)
the outer while loop repeats alternating minimization of fac-
tor matrices (U if is U is true, V otherwise) for a fixed number
of iterations mi; (2) the inner while loop performs conjugate
gradient steps to optimize one of the factor matrices at a
time. In R syntax, we write %*% for matrix multiplication
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and * for element-wise multiplications. Finally, we output
the fitted factor matrices U and V (lines 32-33).

1: X = read($inFile);
2: r = $rank; lambda = $lambda;
3: U = rand(rows=nrow(X), cols=r, min=-1.0, max=1.0);
4: V = rand(rows=r, cols=ncol(X), min=-1.0, max=1.0);
5: W = (X != 0);
6: mi = $maxiter; mii = r; i = 0; is_U = TRUE;
7: while(i < mi) {
8: i = i + 1; ii = 1;
9: if (is_U)

10: G = (W * (U %*% V - X)) %*% t(V) + lambda * U;
11: else
12: G = t(U) %*% (W * (U %*% V - X)) + lambda * V;
13: norm_G2 = sum(G ^ 2); norm_R2 = norm_G2;
14: R = -G; S = R;
15: while(norm_R2 > 10E-9 * norm_G2 & ii <= mii) {
16: if (is_U) {
17: HS = (W * (S %*% V)) %*% t(V) + lambda * S;
18: alpha = norm_R2 / sum (S * HS);
19: U = U + alpha * S;
20: } else {
21: HS = t(U) %*% (W * (U %*% S)) + lambda * S;
22: alpha = norm_R2 / sum (S * HS);
23: V = V + alpha * S;
24: }
25: R = R - alpha * HS;
26: old_norm_R2 = norm_R2; norm_R2 = sum(R ^ 2);
27: S = R + (norm_R2 / old_norm_R2) * S;
28: ii = ii + 1;
29: }
30: is_U = ! is_U;
31: }
32: write(U, $outUFile, format = "text");
33: write(V, $outVFile, format = "text");

Script Customization: The above DML script uses ma-
trix W as an indicator for observed entries in X (line 5). In
other application scenarios, W may represent weights for the
entries in X, and may be dense. For example, let W be an
outer product of two weight vectors w1 and w2, i.e., W = w1

%*% t(w2). Lines 10, 12, 17, and 21 in the above script
would not adequately exploit the modified W, because we
compute U %*% V for every cell where Wij 6= 0. This can be
circumvented by applying the following matrix equalities:

# Replace U with S for Line 17
(W * (U %*% V)) %*% t(V) = (U*w1) %*% (V*t(w2)) %*% t(V)
# Replace V with S for Line 21
t(U) %*% (W * (U %*% V)) = t(U) %*% (U*w1) %*% (V*t(w2))

where, for example, U*w1 denotes a matrix-vector element-
wise multiplication that logically replicates w1 for every col-
umn in U. SystemML is now able to exploit the matrix-
product associativity, and order the multiplications in a way
that avoids dense intermediates in the size of X. A data sci-
entist may simply apply the outlined changes to customize
the above ALS algorithm to the needs of her application sce-
nario, whereas changing a tuned large-scale ALS algorithm
implementation would be a non-trivial endeavor.

MLContext API: SystemML provides an API called
MLContext (in Scala, Java, and Python), that allows the
user to register RDDs and DataFrames (previously created
through Spark SQL or other libraries) as input and output
variables of a DML script. This enables SystemML to seam-
lessly integrate into the entire Spark ecosystem. The follow-
ing Python example code uses PySpark to read the Movie-
Lens dataset to produce and manipulate a Spark DataFrame
(lines 2). The MLContext API allows to register and pass the

DataFrame to the ALS algorithm (line 4), invoke the ALS
algorithm with parameters (line 7), get the output factor
matrices as DataFrames (lines 8), and invoke a DML script
for scoring (line 9, script not shown). We use Spark SQL to
perform further data post-processing (lines 12/13).

1: from SystemML import MLContext
2: X = csvReader.load("ratings.csv").drop("timestamp")
3: ml = MLContext(sc)
4: ml.registerInput("X", X)
5: ml.registerOutput("U", U)
6: ml.registerOutput("V", V)
7: outputs = ml.execute("ALS.dml", params)
8: U = outputs.getDF(sqlContext, "U") ...
9: outputs1 = ml.execute("ALS_predict.dml", params)

10: predictIds = outputs1.getDF("OutP")
11: movies = csvReader.load("movies.csv")
12: prediction = movies.join(
13: predictIds.C1==movies.movieId).select("title")

SystemML provides further APIs, all of which can use
exactly the same DML script, which simplifies deployment.

3. OPTIMIZER INTEGRATION
Given the DML scripts passed in through the various

APIs, SystemML automatically generates efficient execution
plans [9]. Optimizer extensions at different levels are re-
quired to exploit Spark in a robust and effective way. In
this section, we describe Spark-specific rewrites, the han-
dling of memory budgets and constraints, physical operator
selection, as well as parfor optimizer extensions.

3.1 Spark-Specific Rewrites
Data independence is one of the major goals of declarative

ML [10]. Hence, in contrast to other DSLs [24], SystemML
does not expose physical properties like caching and parti-
tioning and thus, needs to handle these automatically. We
introduce Spark-specific rewrites which address decisions on
distributed caching, checkpointing, and partitioning.

Caching/Checkpoint Injection: Spark allows an RDD
to be persisted into various storage levels for distributed
caching. We introduce two simple rewrite rules for in-
jecting these checkpoints, similar but less aggressive than
in other systems [3]. By default, we use a storage level
MEMORY AND DISK in order to exploit caching without dese-
rialization, and to prevent repeated lazy evaluation of ex-
pensive operations. First, we inject checkpoints after every
persistent read or reblock (e.g., conversion of text to binary
block) in order to prevent repeated read from HDFS, text
parsing and shuffle. Second, we inject checkpoints before
loops for all read-only variables in the loop body. Only for
parfor loop bodies, checkpoint injection is deferred until par-
for optimization. These checkpoints also bring matrices into
read optimized form. We coalesce the number of partitions
according to the HDFS block size if necessary. Further, for
sparse matrices, we convert matrix blocks into a memory-
efficient CSR representation, and for ultra-sparse matrices,
we use the storage level MEMORY AND DISK SER if the esti-
mated size exceeds the aggregate data memory to prevent
unnecessary spilling. Finally, as a cleanup step, we remove
unnecessary checkpoints: for example, checkpoints in simple
update chains or for small datasets that fit into the driver.

Repartition Injection: Operations like join or
reduceByKey that cause shuffle are very expensive opera-
tions on Spark because shuffle significantly dominates exe-
cution time compared to reads from distributed cache. This
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Table 1: Physical Spark Matrix Multiply Operators.
Operator Pattern Constraints
MapMM XY M(X, out) < M̄B

∨ M(Y, out) < M̄B

MapMMChain X>
(
w � (Xv)

)
M(w) +M(v) < M̄B

∧ ncol(X) ≤ Bc

TSMM X>X ncol(X) ≤ Bc

ZIPMM X>Y ncol(X) ≤ Bc

∧ ncol(Y) ≤ Bc

CPMM XY –
RMM XY –
PMM rmr(diag(v))X M(v) < M̄B

is especially true if shuffle requires spilling. However, Spark
avoids unnecessary shuffle if, for example, the inputs to a
join are partitioned with the same partitioning function
because it guarantees co-partitioning but not necessarily co-
location. We exploit this optimization feature in Spark with
partitioning-preserving operations like zipmm that avoids key
changes to retain co-partitioning. Our rewrite rule for repar-
tition injection is to introduce explicit repartition operations
before loops if the loop contains operations that can po-
tentially exploit the created partitioning in order to avoid
repeated shuffling of large datasets per iteration.

3.2 Memory Budgets and Constraints
As a basis for operator selection and more advanced op-

timizations, we need to clarify memory estimates and con-
straints in terms of memory budgets first. A valid execution
plan, satisfies these constraints for all operations.

Memory Budgets: Given a configuration of Spark
driver memory MD, executor memory ME, number of ex-
ecutors |E|, data fraction δ, and shuffle fraction σ, we
derive SystemML’s effective memory budgets as follows.
Our control program memory budget M̄CP for in-memory
single-node operations is given by M̄CP = αMD (default
α=0.7). The broadcast memory budget M̄B is derived with
M̄B = βδME (default β=0.3) as broadcasts are managed in
data space. Similarly, the total data memory is calculated
as |E|δME. Dynamic memory management—introduced in
Spark 1.6—increases our memory budgets by removing σ
and thus, increasing δ but all constraints still apply.

Memory Estimates: SystemML relies on worst-case
memory estimates per operationM(op) [8], reflecting mem-
ory requirements of an in-memory single-node operation.
This estimate is the sum of memory estimates of all inputs,
intermediates and outputs, as each operation pins all its in-
puts and outputs into memory. M(X) denotes the memory
estimate of a single-block matrix and M(XP) denotes the
memory estimate of a block partitioned matrix as described
in Subsection 4.1. These matrix size estimates are impor-
tant constraints for operator selection with regard to execu-
tion types and broadcast-based operators. All estimates are
based on size information, i.e., dimension and sparsity, prop-
agated from the program inputs over the entire program.

Optimization Objective: Finally, our optimization ob-
jective φ is to minimize total program execution time sub-
ject to memory constraints over all operations and execution
contexts (e.g., driver or distributed tasks).

3.3 Operator Selection
Similar to SystemML on MapReduce, by default we com-

pile hybrid runtime plans including operators with execution
type of in-memory single-node (CP) and operators with ex-

Figure 1: Example Weighted Squared Loss.

ecution type Spark. The choice of execution type has high
impact on both performance and robustness.

Basic Spark Execution Type: Apart from more ad-
vanced optimizers, SystemML uses a simple heuristic for
execution type selection that typically works very well for
data-intensive machine learning tasks. Given the memory
estimate of an operationM(op), we schedule op to Spark if
M(op) > M̄CP; otherwise to CP.

Transitive Spark Execution Type: Exploiting the low
latency of Spark jobs, we further transitively pull certain
operations into Spark execution type if the main input to
an operation op already has the Spark execution type even
though M(op) ≤ M̄CP. For example, consider sum(Xv)
and assume that X is large but the output of Xv is moder-
ately small. Although we could execute the sum in CP, we
execute it in Spark in order to reduce data transfer between
executors and the driver. We do this for unary aggregates,
unary and matrix-scalar operations, as well as matrix multi-
plications, but only if the Spark input does not have multiple
consumers and is not triggering computation via an action.

Physical Operator Selection: Depending on the cho-
sen execution type, we select physical operators according
to data and cluster characteristics. For example, consider
Spark distributed matrix multiplication. Table 1 shows the
physical operators that the optimizer can choose from, based
on operation patterns, validity constraints and costs. A
common approach is to avoid shuffle by (1) broadcasting one
of the two input matrices (e.g., mapmm, mapmmchain, pmm),
(2) partitioning-preserving operations (e.g., zipmm), or (3)
special pseudo-unary operations (e.g., mapmmchain, tsmm, or
pmm). If none of these shuffle-avoiding operations apply—for
example, due to violated memory or block size constraints—
we fall back to cpmm or rmm [15]. The cost model for this de-
cision on Spark is—similar to the decision for MapReduce—
based on estimated shuffle costs weighted by effective paral-
lelism. Similar operator selection decisions are being made
for many different operators including matrix-vector binary
element-wise operations, right indexing, and more complex
fused matrix multiplication operators.

Fused Physical Operators: In addition to the basic
physical matrix multiplication operators described so far,
SystemML also provides a variety of fused operators in or-
der to (1) exploit sparsity via selective computation, (2)
reduce the number of intermediate results, and (3) for in-
memory single-node computation, to reduce buffer pool evic-
tions. For example, consider the inner loop of our running
ALS example, where W is the non-zero indicator matrix of
our sparse input matrix X. Computing the update rules
(W� (U V))V> and U>(W� (U V)) näıvely would create
huge dense intermediates for U V in the dimensions of X.
Similar patterns occur in other factorization algorithms like
PNMF and ENMF [22], deep learning, and loss computa-
tion such as weighted squared loss sum(W � (U V −X)2).
Figure 1 shows—by example of computing the weighted
squared loss—how we exploit sparsity for selective compu-
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Table 2: Fused Physical Spark Operators.
Operator Example Patterns

Map/Red WSLoss sum(W � (UV> −X)2)
sum((X−W � (UV>))2)

Map/Red WSigmoid X� sigmoid(UV>)
X� log(sigmoid(−(UV>)))

Map/Red WDivMM (W � (UV>))V, (W/(UV>))V
(U>(W � (UV>)))>

Map/Red WCeMM sum(X� log(UV>))
Map/Red WuMM X� exp(UV>), X/(UV>)2

tation. We use the sparse matrix W and the sparse-safe
multiply � as a sparse driver, where we only iterate over
non-zero entries and selectively compute necessary entries
in U V. Due to row-major representation, we support the
pattern sum(W� (U V>−X)2) (with additional transpose
if required) for cache-friendly access to V. Table 2 sum-
marizes special fused physical Spark operators along with
example patterns for which these operators apply. All of
these operators can be executed via broadcasts (map) or join
(reduce), where we apply the broadcast-based operators if
M(U) +M(V) ≤ M̄B, and we have only three inputs or
W = (X 6= 0); otherwise we fall back to join-based realiza-
tions which requires a shuffling of the large matrices (unless
co-partitioned) but we still broadcast U or V if possible.
Our running example applies various instances of wdivmm

and wsloss. Finally, SystemML supports many more fused
physical operators for common basic patterns like sum(X2).

3.4 Extended ParFor Optimizer
Besides data-parallel computation, SystemML also sup-

ports task-parallel computation via so-called parallel for
(parfor) loops as well as hybrid parallelization strategies that
involve both [8]. Examples are descriptive statistics, ensem-
ble learning/cross validation, and algorithms like KMeans,
and Multiclass SVM. In addition to the previously described
general optimizer extensions, the parfor runtime optimizer
requires Spark-specific extensions.

Physical ParFor Operators: Our Spark backend
supports—similar to our MapReduce backend—three phys-
ical operators to execute the entire parfor loop. First, local
parfor executes multi-threaded workers in the driver which
allows for multi-threaded single-node execution and concur-
rent Spark jobs. Second, remote parfor executes the entire
loop as a single map-side Spark job. Third, remote dp parfor
partitions a given input matrix into disjoint slices and exe-
cutes the parfor body per slice. There are also separate jobs
for data partitioning and result merge. The major difference
of remote operators to MapReduce is the memory handling.
Since multiple tasks share a common executor process, they
also share the same buffer pool which is beneficial for I/O re-
duction. However, due to separate data and shuffle memory
in Spark, there is less memory available (α(1 − δ − σ)ME)
for computation and intermediate results per task.

Deferred Checkpoint/Repartition Injection: In or-
der to allow for all parfor operators, we defer Spark-specific
rewrites on caching/checkpointing and repartitioning (see
Subsection 3.1) in the parfor body until parfor optimiza-
tion during runtime. The parfor optimizer then only injects
these operators in case of local parfor. Checkpoint compila-
tion takes into account the resulting memory budget based
on the degree of parallelism. Similarly, we inject repartition-
ing only if there is a zipmm or cpmm (due to unknowns) in the
body that would benefit from existing partitioning. These

rewrites have high impact: for example, the repartitioning
creates a ShuffledRDD once, avoiding shuffle per iteration.

Eager Checkpointing/Repartitioning: In case of lo-
cal parfor with repartitioning or pending checkpointing, the
parfor optimizer performs eager execution via a simple count
action, before starting the local workers and with that con-
current Spark jobs. This is beneficial for concurrent Spark
jobs that all access a shared but non-cached input RDD be-
cause it overcomes thread contention on the block manager
and avoids persisting individual partitions multiple times.

Fair Scheduling for Concurrent Jobs: For fair
scheduling across concurrent Spark jobs, we use by default
Spark’s fair scheduler via spark.scheduler.mode=FAIR. In
case of local parfor, every worker then setups a thread-local
scheduler pool, with FAIR scheduling across pools but FIFO

scheduling within each pool. This improves performance for
two major reasons. First, it allows for implicit scan shar-
ing, especially for out-of-core matrices that are evicted from
aggregated memory. Second, fair scheduling can increase
temporal locality because with FIFO, cached intermediates
are more likely to be evicted by other jobs.

Degree of Parallelism: The parfor optimizer decides—
based on memory estimates and budgets—on the degree
of parallelism. To reflect the runtime memory require-
ments, we extended the parfor memory estimates for Spark.
First, distributed RDD operations also require local driver
memory if they broadcast inputs. We discuss the broad-
cast mechanism for partitioned matrices in detail in Sub-
section 4.1. Second, both collect and parallelize—as
used for the transfer between single-node and distributed
operations—require more than twice the memory of read or
write. SystemML ensures robustness via so-called guarded
collect and parallelize, which redirect the transfer over HDFS
if needed. To avoid unnecessary I/O, the parfor optimizer
on Spark uses a more conservative degree of parallelism for
local parfor by optimizing against a memory constraint of
M̄CP/2 if the parfor body includes Spark operations.

4. RUNTIME INTEGRATION
Our Spark backend leverages Spark’s Java API and lazy

evaluation, which greatly simplifies the runtime integration.
In this section, we give an overview of SystemML’s Spark
backend with regard to distributed matrix representations,
hybrid runtime plans via buffer pool integration, implica-
tions for dynamic recompilation, partitioning-preserving op-
erations, and specific optimizations.

4.1 Distributed Matrix Representation
SystemML supports various text and binary input for-

mats, all of which are internally converted to binary block
matrices. Most operations then work on these binary block
matrices, which simplifies the compiler and runtime.

Binary Block Matrices: Distributed matrices in Sys-
temML are partitioned into fixed size blocks and rep-
resented as JavaPairRDD<MatrixIndexes, MatrixBlock>,
where MatrixIndexes are (long,long)-pairs of row/column
block indexes. Similar structures of tiles, chunks, or blocks,
are widely used in existing large-scale ML systems [18, 33,
40]. The fixed block size leads to variable physical sizes but
simplifies join processing for binary operations. Figure 2(a)
shows an example of a distributed matrix. We use square
blocks of size Bc = 1K, which has two benefits. First, the
small dimensions lead to a maximum size of 8 MB for dense
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(a) Logical

e.g., hash(3,2) 99,994 % 2 = 0

(b) Physical Partitioning

Figure 2: Distributed Matrix Representation.

blocks, which is less than common L3 cache sizes. This does
not restrict the degree of parallelism and leads to cache-
friendly behavior, especially for long chains of pipelined op-
erations. At the same time, these blocks are large enough to
amortize per-block overheads. Second, having square blocks
also simplifies various operations. For example a transpose
X> can be realized by flipping block indexes and a transpose
per block, avoiding the need for data shuffle across blocks. In
such a distributed block representation, each block is rep-
resented in either sparse or dense format, allowing block-
local format decisions and robustness with regard to spar-
sity skew. Sparse matrix blocks use a modified compressed
sparse row (MCSR) format that allows efficient incremen-
tal construction. On checkpoints, however, we convert these
blocks into the more memory-efficient CSR format to avoid
unnecessary spilling. We also materialize empty blocks to
allow sparse-unsafe operations like X+7. However, the com-
piler injects filters for non-empty blocks in case of chains of
sparse-safe operations with consumers like single-node oper-
ations. For single-node computation, we represent the entire
matrix as a single matrix block to enable reuse and consis-
tency of runtime operations across backends.

Serialization and Partitioning: Shuffle is a major bot-
tleneck for SystemML on Spark. We aim to reduce this
overhead by (1) minimizing the serialized size of shuffled
RDDs, and (2) avoiding shuffle via co-partitioning. First,
for small serialized size, we redirect the Java serialization
via externalizable to our custom block serialization, where
we support four formats: empty, dense, sparse, and ultra-
sparse. Empty blocks have only a small overhead of 9 B,
and dense blocks store values of all matrix cells. Sparse
blocks, however, store either rows of column-index/value
pairs (sparse) or triples of row-index/column-index/value
(ultra-sparse). Space-efficient block formats together with
Spark’s shuffle compression ensure small transfers. Second,
we consistently use the default hash partitioner to (1)
achieve good load balance, and (2) avoid breaking DAGs
of partitioning-preserving operations (as discussed in Sub-
section 4.4). Figure 2(b) shows an example of physical RDD
partitions with hash partitioning. Only checkpointing and
repartitioning change the number of partitions via coalesce

to the HDFS block size to increase local aggregation.

4.2 Buffer Pool Integration
Hybrid runtime plans, composed of single-node operations

and distributed Spark operations pose the challenges of ex-
changing intermediates between runtime backends and ro-
bustness with regard to lazy evaluation. In this subsection,
we describe the buffer pool integration of Spark operations
and related abstractions, which overcome these challenges.

Basic Buffer Pool Integration: SystemML executes
a compiled program of program blocks and instructions by

acquireRead

acquireModify

release

exportData

[MatrixBlock]
RDDObject

BroadcastObject

(shared per JVM)

FS

Meta
Data

(a) MatrixObject / WriteBuffer

JavaPairRDD; MatrixObject 
#refs=0; checkpoint
List<LineageObject>

…; #refs=1 …; #refs=1

HDFS; #refs=1

(b) Lineage Tracking

Figure 3: Buffer Pool Integration.

passing along an execution context that holds the symbol
table of currently live matrix objects and scalars. Matrix ob-
jects are meta data handles to in-memory or distributed ma-
trices and internally interact with the buffer pool. In mem-
ory operations call basic primitives described below. Fig-
ure 3(a) shows the integration of RDDs and broadcasts into
this architecture. The execution context (that also holds
the Spark context), then provides two additional (*) prim-
itives to obtain RDDs and broadcasts for a given variable,
where we set spark.driver.maxResultSize to unlimited, to
enable arbitrarily large transfers between backends.

• acquireRead pins a matrix block into memory. This
includes potential read from HDFS or evicted matri-
ces, and triggers pending RDD operations via collect.

• acquireModify sets and pins a newly created matrix
block, which puts the matrix object in state dirty.

• release unpins a matrix block, handing new blocks
over to a lazy write buffer that handles evictions.

• exportData writes a matrix object to HDFS if its state
is dirty or the format differs from the existing one.

• getRDD(*): An RDD might be obtained from various
states: (1) an existing RDD handle (not cached), (2)
a cached matrix block that we would pin, prepare as
list of blocks, and parallelize, or (2) an HDFS file
where we would create the RDD via hadoopFile.

• getBroadcast(*): Similar to getRDD, broadcasts are
either (1) reused broadcast handles, or (2) created
from in-memory blocks obtained via acquireRead.

Lineage Tracking: A major issue with regard to cleanup
of variables is lazy RDD evaluation since related RDDs or
broadcasts might still be referenced in pending RDD oper-
ations. We address this issue by explicit lineage tracking as
shown in Figure 3(b). Every Spark instruction that creates
an output RDD maintains the lineage to input RDDs and
broadcasts. During runtime, we build up a lineage graph
of RDD and broadcast objects and their data dependencies.
Each lineage object also holds back references to its matrix
object and additional meta data such as reference counts r.
On cleanup, we clear the back reference and check r of the
associated lineage objects. In case of r = 0, we unpersist the
given RDD or broadcast, cleanup associated files on HDFS,
decrement r of children, and recursively cleanup child lin-
eage objects until the first object with r > 0. This approach
ensures robustness with lazily evaluated RDDs and provides
access to all data-dependent RDDs, enabling advanced opti-
mizations like short-circuit read/collect and cache handling.

Guarded Collect/Parallelize: In contrast to data ex-
change over HDFS, collect or parallelize have more than
twice the memory requirements of a given matrix because
we have to hold the matrix and a collection of partitioned
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blocks. This would lead to potential out-of-memory situa-
tions or unnecessary memory overestimation for all opera-
tions. We address this issue by guarded collect and guarded
parallelize where the data transfer is redirected over HDFS if
necessary. Exchange over HDFS is significantly faster than
toLocalIterator because it avoids repeated scans and job
latency per partition. The constraint for a plain in-memory
collect isM(X) +M(XP) +M(C) ≤ M̄CP, whereM(C)
is the size of currently pinned matrices (tracked below the
matrix object interface and in a thread-local manner).

Partitioned Broadcast Variables: Broadcasting ma-
trices is crucial for performance because it prevents shuf-
fle and simplifies runtime operators. However, the de-
fault broadcast mechanism of Broadcast<MatrixBlock> has
two major problems. First, it requires function-local par-
titioning or repeated slicing to enable block-wise oper-
ations. Function-local partitioning is not applicable be-
cause it increases memory requirements in the number
of cores per executor. Second, Spark has a limitation
of 2 GB for broadcast variables. We address these issues
with two-level broadcast partitioning encapsulated in a
PartitionedBroadcastMatrix. At the first level, we create
an array of broadcasts each guaranteed to be smaller than
2 GB. Each broadcast holds a PartitionedMatrixBlock

consisting of individual matrix blocks with default block
size, which is the second level. Partitioning is done at the
driver, requiring M(X) +M(XP) memory, which is an ad-
ditional constraint for operator selection. This abstraction
enables random access of shared (i,j)-blocks by reference.

4.3 Dynamic Recompilation
Dynamic recompilation is applied at natural boundaries

between program blocks or artificial recompilation points,
created by the optimizer [9]. The goal is to adapt the runtime
plan to changing or initially unknown data characteristics.

In contrast to our MapReduce backend, recompilation in
the context of Spark poses additional challenges. At the time
of recompilation, the size of certain intermediates might still
be unknown due to lazy evaluation. We address this by best
effort maintenance of output characteristics in all Spark in-
structions. Many linear algebra operations, element-wise
computations, and statistical functions allow to exactly in-
fer the output dimensions for known input characteristics.
Several operations like transpose or sort, even preserve all
input characteristics. Given the unconditional scope of run-
time maintenance, this often allows us to infer—despite ini-
tial unknowns—at least the dimensions. For data-dependent
operators like table, aggregate, or removeEmpty, we exploit
the operation-internally computed output sizes to update
the meta data. Finally, we explicitly trigger RDD evalua-
tion if matrix characteristics are still unknown but opera-
tions require them for correctness (e.g., nrow(X)).

4.4 Partitioning-Preserving Operations
Since Spark leverages co-partitioned inputs to prevent

shuffle, we explicitly inject repartition operations to avoid
repeated shuffle as discussed in Subsection 3.1. In order to
fully exploit co-partitioning, we additionally need to (1) pre-
serve partitioning over chains of operations, and (2) exploit
partitioning through custom physical operators.

Partitioning-Preserving Operations: With hash-
partitioning, operations are generally partitioning-preserv-
ing if keys do not change; or more precisely, if Spark detects

that keys do not change. Unfortunately, even a single oper-
ation can lose partitioning and with that break entire DAGs
of co-partitioned intermediates into multiple stages. There-
fore, we carefully implemented all applicable operations in
a partitioning-preserving manner, which follows two general
schemes. First, we use more restrictive APIs like mapValues

(without key access) instead of mapToPair for operations
like unary, matrix-scalar, or certain unary aggregates (e.g.,
rowSums(X) if ncol(X) ≤ Bc). Second, if restrictive APIs
are not applicable, we fallback to full partition computa-
tion, declared as partitioning-preserving. For example con-
sider a matrix-vector element-wise operation like X�v with
broadcast of v. This operation is partitioning-preserving but
needs the input keys for broadcast block lookups. Hence, we
use mapPartitionsToPair(...,true) to indicate preserved
partitioning. We also return lazy iterators instead of materi-
alized outputs per partition to reduce memory requirements.

Partitioning-Exploiting Operations: RDD opera-
tions can exploit the preserved partitioning to avoid shuffle
(implicit or explicit). Implicit partitioning-exploiting oper-
ations such as matrix-matrix element-wise operations use
primitives like join or cogroup. Spark automatically ex-
ploits partitioning if input and output have the same num-
ber of partitions. Hence, we refrain from changing the
number of partitions on these operations. In addition, we
introduced explicitly partitioning-exploiting operations like
zipmm for the common matrix multiplication pattern X>Y
(under constraint ncol(X) ≤ Bc ∧ ncol(Y) ≤ Bc). The
transpose X> would flip block indexes and thus destroy par-
titioning. A subsequent cpmm would then create custom join
indexes over the common dimension. Given the block size
constraint, however, zipmm realizes the matrix multiplication
as a zipper-like 1-1 join on the original keys, leveraging ex-
isting partitioning. This makes zipmm a great fallback when
we cannot select the broadcast-based mapmm anymore.

An Example: To summarize, consider Multiclass SVM
(with an one-against-the-rest approach) as an example al-
gorithm, sketched in the following script snippet. Assume
characteristics where vectors in nrow(X) neither fit into the
driver nor the broadcast budget and ncol(X) ≤ Bc.

1: parfor(iter_class in 1:num_classes) {
2: Y_local = 2 * (Y == iter_class) - 1
3: g_old = t(X) %*% Y_local ...
4: while( continue ) {
5: Xd = X %*% s
6: ... inner while loop (compute step_sz)
7: Xw = Xw + step_sz * Xd;
8: out = 1 - Y_local * Xw;
9: out = (out > 0) * out;

10: g_new = t(X) %*% (out * Y_local) ...

The parfor optimizer injects a repartition of X because two
large matrix multiplications (lines 3, 10) are compiled to
zipmm that benefits from partitioning. The mapmm for line 5
is also partitioning-preserving because ncol(X) ≤ Bc, which
implicitly propagates over subsequent binary vector opera-
tions (lines 6-10). Both inputs for the zipmm on line 10 are
known to be co-partitioned because Xd (line 5) originates
from X, preserves partitioning, and is joined back to X.

4.5 Specific Runtime Optimizations
Additionally, we introduced the following Spark-specific

runtime optimizations to overcome unnecessary overhead.
Lazy Spark-Context Creation: On creation of the

Spark context, executors are allocated and initialized, which
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can take up to 20 s. With hybrid runtime plans, this causes
large unnecessary overhead if all operations are single-node
operations that execute in a few seconds. Hence, we lazily al-
locate the context on demand when it is first accessed (e.g.,
when creating an RDD), which avoids context creation for
pure single-node computation. Also, for EXPLAIN and pro-
grams with initial unknowns, we defer the access to the con-
text (e.g., for memory budgets) as long as possible.

Short-Circuit Read: Due to conservative checkpoint
compilation, a single-node operation might directly consume
a cached RDD, which causes unnecessary overhead for read-
ing the matrix into distributed memory and transfering it
back to the driver via collect. Our short-circuit read by-
passes the checkpoint based on lineage information and di-
rectly reads the matrix from HDFS into the driver.

Short-Circuit Collect: Our short-circuit collect gener-
alized upon the concept of short-circuit read, and bypasses
RDD caching, if the given RDD is marked for caching but
not yet actually cached. Avoiding caching reduces the over-
head of unnecessary reads and memory pressure.

5. EXPERIMENTS
We study end-to-end performance characteristics of Sys-

temML on Spark over a variety of ML algorithms and data
characteristics as well as specific optimization techniques.

5.1 Experimental Setting
Cluster Setup: We ran all experiments on a 1+6 node

cluster, i.e., one head node of 2x4 Intel E5530 @ 2.40 GHz-
2.66 GHz with hyper-threading enabled and 64 GB RAM,
as well as 6 nodes of 2x6 Intel E5-2440 @ 2.40 GHz-
2.90 GHz with hyper-threading enabled, 96 GB DDR3
RAM @1.33 GHz, 12x2 TB disks, 10Gb Ethernet, and Cen-
tOS Linux 7.1. As the runtime environment, we used Open-
JDK 1.8.0 65 64bit, Hadoop 2.7.0, Spark 1.5.2, and Sys-
temML as of 02/2016. We ran Spark in yarn-client mode
from the head node, with 6 executors, 20 GB driver mem-
ory, 55 GB executor memory, and 24 cores per executor. For
map/reduce tasks, we configured a maximum heap size of
1.6 GB (2 GB container size) and 384 MB sort buffer. Fi-
nally, SystemML’s memory budget ratio was α = 0.7.

ML Algorithms: Our experiments cover a variety of
common ML algorithms for regression, binomial and multi-
nomial classification, as well as clustering. Table 3 summa-
rizes the used algorithms and parameters (number of itera-
tions, convergence tolerance, regularization, intercept, num-
ber of classes/centroids/rank, use of parfor loops), which
also indicates essential characteristics such as iterative al-
gorithms, nested loop structures, etc. In detail, we use
L2SVM (L2-regularized Support Vector Machines), GLM
(Generalized Linear Models, binomial with probit link func-
tion), LinregCG (Linear regression with a conjugate gradi-
ent method), LinregDS (Linear regression with a direct solve
method), MLogreg (Multinomial logistic regression), MSVM
(Multiclass L2SVM), Näıve Bayes, KMeans, and ALS. Note
that KMeans uses 10 runs all of which with Maxi=20.

Datasets: We evaluate the training performance of the
previously described algorithms on synthetic datasets. To
isolate scalability effects, we keep the number of features
(columns) constant at n = 1,000, and the sparsity (fraction
of non-zeros to cells) constant at sp = 0.9, but vary the num-
ber of rows m ∈ {104, 105, 106, 107, 108}, which corresponds

Table 3: Characteristics of Used ML Algorithms.
Algorithm Maxi ε λ Icpt #C ParFor

L2SVM 20/∞ 1e-6 1e-2 N 2 N
GLM 20/∞ 1e-6 1e-2 N 2 N

LinregCG 20 1e-6 1e-2 N N/A N
LinregDS N/A N/A 1e-2 N N/A N
MLogreg 20/∞ 1e-6 1e-2 N 5 N
MSVM 5× 20/∞ 1e-6 1e-2 N 5 Y

Näıve Bayes N/A N/A N/A N 5 Y
KMeans 10× 20 1e-4 N/A N 10 Y

ALS 6/50* 0 1 N/A 50 N

to 80 MB, 800 MB, 8 GB, 80 GB, and 800 GB in dense bi-
nary representation. As a shorthand, we call these scenarios
XS, S, M, L, and XL. Given the driver memory budget of
M̄CP = α ·20 GB = 14 GB, we can fit XS, S, and M into the
driver. Furthermore, given the total executor data memory
of |E|δME = 6·0.6·55 GB = 198 GB, scenario L fits into the
distributed cache, whereas XL is an out-of-core scenario. We
use these scenarios for all algorithms except ALS because its
common data characteristics are largely different and hence,
separately introduced in Subsection 5.6.

Baseline Comparisons: To understand the character-
istics of SystemML on Spark, we compare three different
execution modes, namely cp+mr, cp+spark, and spark. By
default, SystemML uses the hybrid execution modes, but the
full spark execution mode—where every matrix operation is
executed as a distributed operation—serves as a baseline to
evaluate hybrid runtime plans. These execution modes al-
low for a systematic evaluation because they share the same
runtime block operations. We refrain from comparisons to
existing machine learning libraries like MLlib [25] due to (1)
different abstraction levels of algorithm specification, and
(2) different algorithm choices and parameters. A fair com-
parison would require a benchmark including both accuracy
and runtime, which is beyond the scope of this paper.

5.2 End-to-End Performance
In the first set of experiments, we investigate the end-to-

end performance of our default cp+spark execution mode
compared to spark and cp+mr modes, making use of the
spark-submit and hadoop invocation scripts. We report to-
tal execution time including invocation overhead, I/O from
HDFS and Spark context creation. Figure 4 shows the re-
sults for all algorithms and scenarios except ALS.

Basic Comparison of Spark Execution Modes: In
all cases—except for LinregDS and Kmeans on scenario M
—cp+spark outperforms full spark execution on average by
6.1x for relatively small datasets (XS, S, M) and by 1.9x for
larger datasets (L and XL). There are three main reasons.
First, unlike the spark backend, cp+spark can exploit lazy
Spark context creation and thus, avoids the start-up over-
head of up to 20 seconds on small scenarios. The cases when
SystemML cp+spark backend does not create a SparkCon-
text are annotated with “X” in Figure 4. Note, in these
cases, both cp+spark and cp+mr backends compile identical
CP-only plans and hence have similar performance. Second,
for scenarios with many operations over small input data
and intermediates, in-memory single-node computation is
faster than distributed computation on Spark due to multi-
threaded implementations (exploiting full single-node par-
allelism independent of the number of partitions), overhead
of distributed operator implementations, and additional job
and task latency in the distributed case. For example, con-
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Figure 4: End-to-End Performance of Different Algorithms with Different Execution Modes.

sider a matrix-vector multiplication on scenario S (800 MB).
By exploiting full single-node parallelism, this operation sat-
urates QPI memory bandwidth at 25.6 GB/s, resulting in an
execution time of 30 ms. Many pure vector operations even
run in sub-milliseconds and hence, even a small Spark job
latency of 100 ms creates significant relative overhead. On
L and XL scenarios, the improvements are mostly due to
the overhead of distributed implementations. Third, lazy
evaluation leads to partial repeated execution, whereas in-
memory single-node outputs are materialized.

Compute-Intensive Use Cases: A counter example to
above given reasoning is LinregDS with its core operation
X>X, which for 1,000 features is actually compute-intensive
such that SystemML’s heuristic of execution type selection
does not hold on scenario M. For this scenario, cp+spark

compiles an in-memory tsmm whereas for spark we run a
distributed tsmm. Due to the data size of 8 GB, we have 63
HDFS partitions and hence a higher degree of parallelism
for distributed computation compared to single-node com-
putation with 16 threads. Accordingly, spark outperforms
cp+spark on scenario M. For larger scenarios, both backends
compile a distributed tsmm and achieve similar performance.

ParFor Use Cases: The algorithms MSVM and KMeans
exploit parfor loops for task-parallel computation of multiple
classes and runs, respectively. Hybrid runtime plans are im-
portant for these algorithms because pure CP instructions in
the body enable distributed task-parallel computation with
remote parfor. However, we see that these algorithms do
not exploit lazy Spark context creation, even on small input
data. This is because the parfor runtime optimizer always
probes the Spark context for current cluster characteristics.
Both cp+spark and spark benefit from optimizations like
repartitioning injection, eager caching, and fair scheduling.
We discuss detailed experiments with regard to these parfor-
specific optimizations in Subsection 5.4. Finally, note that
cp+mr applied runtime piggybacking to batch parallel jobs
into fewer jobs for scan sharing in scenarios L and XL.

Comparison of MR Execution Mode: In comparison
to our cp+mr backend, the cp+spark backend is 5-10x faster

for scenario L (i.e., when the input data fits into aggregated
cluster memory but not a single node). This speedup is due
to (1) automatic checkpoint injection by SystemML that
avoids repeated HDFS reads, and (2) significantly smaller
latency of Spark jobs compared to MR. The use cases where
this applies are annotated with “Y” in Figure 4. In these
cases, cp+mr repeatably reads from HDFS, whereas on Spark
we only have a single read from HDFS and subsequent
reads from memory. On the 800 GB datasets—where the
data does not fit into aggregated memory—cp+spark is still
1.1 to 2.8x faster than cp+mr. The slight performance im-
provement is due to faster task scheduling with standing
Spark executors and because SystemML uses the storage
level MEMORY AND DISK for injected RDD checkpoints, which
allows for read from local FS after initial read from HDFS.
However, we also observed that an aggressive injection pol-
icy of RDD checkpointing can result in performance degra-
dation due to frequent evictions from Spark’s in-memory
cache to disk. Also note that cp+mr sometimes compiles a
different parfor plan due to a larger task memory budget.

5.3 Runtime per Iteration
We further investigate the runtime per iteration of Lin-

regCG and L2SVM. Figure 5 shows the runtime per iteration
for in-memory (80 GB) and out-of-core (800 GB) datasets,
where iteration 0 refers to all operations before the outer
loop. For both algorithms, iteration 0 covers initial read,
triggered by a matrix-vector multiplication X>y. Unlike
LinregCG, L2SVM has a nested while loop, where the outer
loop minimizes the objective using conjugate gradient steps
and the inner loop optimizes the step size using Newton’s
method in the direction of the gradient. The L2SVM plots
are annotated with the number of inner iterations.

In-Memory Scenario (L, 80 GB): Due to two passes
over X per outer iteration for L2SVM, cp+mr shows higher
execution time for iterations 1-8 than for iteration 0. In
contrast, RDD caching significantly reduces the time per
iteration for cp+spark and spark, after initial read in itera-
tion 0. This leads to significant improvements of both Spark
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Figure 5: Runtime per Iteration of LinregCG and L2SVM with Different Execution Modes.

Table 4: ParFor-Specific Optimizations for MSVM.
Scenario Runtime tak+* zipmm

All optimizations 1,470 s 3,142 s 564 s
Without eager caching 1,885 s 4,081 s 540 s
Without fair scheduling 2,088 s 3,974 s 378 s
Without repartitioning 9,102 s 17,030 s 18,322 s

execution modes compared to cp+mr, which carries over to
end-to-end improvements as the number of iterations un-
til convergence increases. Iteration 0 is more expensive for
cp+spark due to lazy Spark context creation on the first
Spark instruction, whereas for spark it is created during
compilation. On L2SVM, cp+spark also performs signifi-
cantly better than spark because SystemML compiled pure
in-memory, single-node operations for the entire inner loop.
In contrast, for LinregCG, the plans were almost identical
except for very small vector operations in the number of
features and hence there are no major differences.

Out-of-Core Scenario (XL, 800 GB): For the XL
scenario, we see that every iteration requires reads of X
and hence the differences of cp+mr and cp+spark reduce to
around 2x. The small improvements for cp+spark are again
due to partial read from memory and local disk, as well as
smaller Spark job and task latency. On L2SVM, we see that
even for large datasets, hybrid runtime plans matter be-
cause in-memory single-node operations avoid unnecessary
overhead and reduce memory pressure. For LinregCG, we
have only a single pass over X per iteration and hence see
that the first read from HDFS is significantly slower than
subsequent reads. With regard to such out-of-core scenar-
ios, all backends benefit from special physical operations like
mapmmchain avoiding an unnecessary pass over X.

5.4 ParFor-Specific Optimizations
We ran additional experiments to analyze the impact of

various parfor optimizations and partitioning-preserving op-
erations. We used MSVM with a modified L scenario of
250M×40 dimensions (80 GB) as well as a driver memory of
5 GB, which leads to violated memory budget constraints of
mapmm and hence a fall-back to the join-based zipmm matrix
multiplications. Furthermore, any operators over vectors in
nrow(X) are now compiled to distributed Spark operations
as well. In this scenario, the instructions zipmm and tak+*

(for sum(v1 · v2 · v3), used twice in the inner loop) con-
stitute actions and hence trigger computation. The DML
script for MSVM was already discussed in Subsection 4.4.

Table 4 shows the results with individual optimizations
disabled and all optimizations enabled. We report the to-
tal elapsed runtime and the total execution time of zipmm

and tak+*, where the total elapsed time can be smaller
than individual operation runtimes due to a parfor degree

Table 5: Sparse Matrix Formats for LinRegCG.
Scenario CSR MCSR Ser. MCSR

sp = 0.002 (5M× 1000K) 349 s 764 s 2,152 s
sp = 0.02 (5M× 100K) 126 s 159 s 165 s

of parallelism of 5. We see huge impact of repartitioning
because—together with partitioning-preserving and exploit-
ing operations—we avoid shuffle per iteration. Both eager
caching and fair scheduling give additional benefits due to
avoided thread contention and better locality.

5.5 Memory-Efficient Sparse Matrices
We further study the effect of converting sparse matri-

ces into more memory-efficient representations on check-
points as described in Subsection 3.1. In detail, we compare
MCSR (without serialization) as a baseline, as well as MCSR
(with serialization, i.e, storage level MEMORY AND DISK SER)
and CSR. We run LinregCG with the same parameters as
the end-to-end experiments over synthetic datasets (110 GB)
with varying sparsity and number of columns. Table 5
shows the results. Checkpointing the sparse matrix blocks
in the memory-efficient CSR format allows SystemML to ef-
ficiently utilize Spark’s in-memory cache and avoid unneces-
sary spilling or deserialization overhead. Hence, we observe
2.2x speedup for sparsity of sp = 0.002 and 1.3x speedup for
sparsity of sp = 0.02 compared to MCSR with serialization.
Also, we observe that the overhead of deserialized MCSR
format (in particular with few non-zeros per block row, i.e.,
sp = 0.002) leads to a slowdown of up to 6.2x.

5.6 ALS End-to-End Experiments
Finally, we compare the end-to-end performance of our

running ALS example using different execution modes:
cp+mr, cp+spark, and spark, in terms of efficiency and scal-
ability on synthetic datasets of varying sizes. To reduce the
number of iterations of the inner loop, we used a heuristic
to dynamically change the tolerance threshold of the inner
loop tt by exponential decay: starting from an initial value
t 0=0.1, we halved parameter tt in every outer iteration.

Datasets: To reflect common data characteristics, we
keep the number of columns (representing items) constant
at n = 105, and the sparsity constant at sp = 0.01, but vary
the number of rows (representing users) m ∈ {105, 106, 107},
which correspond roughly to 1.2 GB, 12 GB, and 120 GB in
sparse binary representation. We refer to these datasets as
S, M, and L, respectively. We generated the datasets by first
creating two rank-50 matrices L∗m×50 and R∗50×n with en-
tries sampled independently from Normal(0,1) distribution
and then taking the absolute value to ensure non-negativity.
We obtained the data matrix by sampling N = sp ·m ·n ran-
dom entries from L∗R∗ and adding Normal(0,0.1) noise.
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Table 6: ALS End-to-End Performance.
Scenario cp+mr cp+spark spark

S (105 × 105, 0.01, 1.2 GB) 131 s 136 s 135 s
M (106 × 105, 0.01, 12 GB) 1,088 s 342 s 432 s
L (107 × 105, 0.01, 120 GB) >24 h 10,537 s 15,487 s

Setup: We used the same configuration as described in
Section 5.1 across all execution modes, except for a driver
memory of 15 GB for the S and M dataset and 30 GB for the
L dataset. In our experiments, we compute a rank r = 50
factorization by minimizing the L2 regularized squared loss
with the regularization parameter λ = 1.0 throughout. In
each case, we ran the ALS algorithm for 6 iterations.

Comparison Results: Table 6 summarizes the results
of the end-to-end runtime comparison (including the time
to read the input matrix, fitting the model, and writing the
computed factor matrices) of ALS for all three execution
modes. We see that running ALS on cp+spark is clearly
beneficial across all datasets. On the S dataset, all three
execution modes perform similar, even though ALS with
cp+mr or cp+spark run purely in CP mode (multi-threaded
on the head node), whereas ALS with spark utilizes all the
cluster nodes. For the larger M and L scenarios, however,
the cp+spark generates hybrid execution plans including CP
and Spark instructions and outperforms the other execu-
tion modes. ALS in cp+mr did not terminate within 24 h on
dataset L, since the user-factors (matrix U in our running
example from Subsection 2.2) did not fit into the memory
of map/reduce tasks. Consequently, replication and shuf-
fling led to repeated spilling. In contrast, both spark and
cp+spark execution modes generated broadcast-based oper-
ators as U is shared across executor cores.

6. DISCUSSION
Finally, we share major lessons learned with regard to Sys-

temML on top of Spark, but also declarative ML in general.
Spark over Custom Framework: SystemML on MR

was motivated by sharing cluster resources with other MR-
based systems. With YARN things changed as it enables
multi-tenancy across frameworks. Before deciding for a
Spark backend, we discussed alternatives including a custom
framework implemented from scratch. Eventually we have
chosen Spark, not just because it is a well-engineered frame-
work with strong contributor base, but mostly to provide
users the flexibility of seamless data preparation and feature
engineering, which is invaluable for end-to-end pipelines.

Stateful Distributed Caching: The ability to exploit
distributed caching (of deserialized objects) via standing
executors together with Spark’s fast task scheduling really
made a performance difference for SystemML. However, it
also came with challenges like (1) reduced working memory
for task-parallel computation, (2) state-dependent memory
constraints, (3) global effects of update-in-place, and (4) fair
resource management in shared clusters.

Memory-Efficiency: In contrast to SystemML on MR,
where we process one block at-a-time, memory-efficiency is
far more important on Spark to avoid unnecessary cache
spilling. Examples of how to reduce memory pressure
are custom serialization via externalizable, compact data
structures for sparse, read-only matrices (e.g., CSR format),
and lazy iterators for partition-wise execution.

Lazy RDD Evaluation: Some major advantages but
also challenges of SystemML’s Spark backend were related

to lazy evaluation. First, lazy evaluation removed the need
for custom piggybacking, i.e., grouping distributed opera-
tions into jobs for scan sharing. Job execution based on ac-
tions usually works very well, except special cases where (1)
separate actions trigger multiple passes over a shared input,
or (2) complex DAG structures cause repeated execution of
compute-intensive operations. Second, lazy evaluation also
made the execution of compiled runtime plans more diffi-
cult. Examples are variable cleanup, driver memory man-
agement, statistics profiling, runtime plan cost estimation,
and dynamic recompilation. Third, lazy evaluation allows
to exploit meta data information of inputs such as existing
partitioning, which was highly beneficial for SystemML.

Declarative ML: Creating the Spark backend also made
a great case for declarative ML in general. Data inde-
pendence of ML algorithms allowed us to leverage RDDs
and related operations without changing a single algorithm.
Similarly, we were able to automatically exploit distributed
caching and partitioning by newly introduced Spark-specific
rewrites. The separation of concerns between ML algorithm
semantics as well as underlying data structures and execu-
tion plan generation also ensures independence of runtime
frameworks like MapReduce or Spark. This independence
allowed us to adapt to new technology like Spark yet main-
taining support for MapReduce v1, which overall protects
investments in created custom ML algorithms.

7. RELATED WORK
We review related work with regard to alternative speci-

fications and implementations of large-scale ML algorithms.
Low-Level Primitives: Beside data-parallel frame-

works like MapReduce [14], Spark [41], or Flink [2], there
exist frameworks that provide low-level distributed primi-
tives for ML algorithms. For instance, R’s rmr [27] package
exposes map and reduce primitives, HP’s Distributed R [37]
package supports operations on distributed arrays, and
REEF [38] provides a scheduler framework designed for ML-
specific iterative task life-cycle management on YARN. Fur-
thermore, graph processing systems like GraphLab [23] often
provide vertex-centric abstractions for graph-parallel oper-
ations. Users of these frameworks are burdened with the
tasks of devising distributed runtime plans, and optimizing
them for performance and scalability.

ML Libraries: A common approach to large-scale ML
is to provide pre-canned distributed implementations of se-
lected ML algorithms as libraries. Examples include Ma-
hout [4], Spark MLlib [25], MADlib [17], Vowpal Wab-
bit [21], Revolution R ScaleR [28], SkyTree ML software [29],
and H2O [16]. Such fixed implementations do not fit all sce-
narios, cannot be adapted to changing data properties, and
do not allow for algorithm customizations without modify-
ing the distributed algorithm implementation.

ML UDF-Centric Systems: At a slightly higher ab-
straction level, there are frameworks that provide users
with building blocks and UDF support to construct ML
models. Examples are TensorFlow [1] that executes data
flow graphs of black-box kernels, DMTK [26] that pro-
vides a parameter-server-based framework, MLI [31], ML-
PACK [13], Shogun [30], Tupleware [12], and Emma [3].
These systems, however, only provide limited automatic op-
timization of runtime plans and/or data independence.

Declarative ML: Systems for declarative ML can be
classified into declarative ML algorithms and declarative ML
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tasks [10]. Example systems aiming for declarative ML al-
gorithms are OptiML [34], SystemML [15], SimSQL [11],
SciDB [33], Cumulon [18], DMac [39], and Mahout Samsara
[24]. These systems provide a simple yet flexible specifica-
tion of ML algorithms, and some of them data independence,
and automatic optimization and parallelization. Similar to
SystemML, DMac and Mahout Samsara also leverage Spark
for distributed operations. Frameworks like MLBase [20,
32] or Columbus [42] further enable declarative ML tasks of
model or feature selection, where they optimize both model
accuracy and performance of ML algorithms.

8. CONCLUSIONS
In this paper, we have presented an up-to-date overview

of SystemML, necessary engine extensions to deeply ex-
ploit Spark, and solutions to unique implementation chal-
lenges on Spark such as memory handling and lazy evalua-
tion. Spark-specific key optimizations are automatic injec-
tion of RDD caching/checkpointing and repartitioning, as
well as partitioning-preserving operations to minimize the
number of data scans and shuffles. We use fair schedul-
ing of concurrent Spark jobs issued from multiple parfor
threads. Our Spark backend leverages Spark’s Java API and
lazy evaluation. We also explained our distributed matrix
representation in RDDs, explicit lineage tracking for robust
cleanup of broadcast and RDD variables, explicit triggering
of RDD evaluations for eager caching and repartitioning,
dynamic recompilation as well as careful implementation of
partitioning-preserving and exploiting operations. Our ex-
periments show that hybrid execution plans are crucial for
performance, and when compared to MR backend, our Spark
backend provides up to 5-10x speedup when the data fits in
memory and up to 2x improvement for datasets larger than
the aggregated memory. We also want to note that the rich
Spark API significantly simplified the backend implementa-
tion for Spark compared to MR. SystemML is open source,
and we welcome community contributions.
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Optimizations for Feature Selection Workloads. In
SIGMOD, 2014.

[43] Y. Zhou et al. Large-Scale Parallel Collaborative Filtering
for the Netflix Prize. In AAIM, 2008.

1436


	1 Introduction
	2 Background
	2.1 SystemML Architecture
	2.2 Running Example

	3 Optimizer Integration
	3.1 Spark-Specific Rewrites
	3.2 Memory Budgets and Constraints
	3.3 Operator Selection
	3.4 Extended ParFor Optimizer

	4 Runtime Integration
	4.1 Distributed Matrix Representation
	4.2 Buffer Pool Integration
	4.3 Dynamic Recompilation
	4.4 Partitioning-Preserving Operations
	4.5 Specific Runtime Optimizations

	5 Experiments
	5.1 Experimental Setting
	5.2 End-to-End Performance
	5.3 Runtime per Iteration
	5.4 ParFor-Specific Optimizations
	5.5 Memory-Efficient Sparse Matrices
	5.6 ALS End-to-End Experiments

	6 Discussion
	7 Related Work
	8 Conclusions
	9 References

