
Kodiak: Leveraging Materialized Views For Very
Low-Latency Analytics Over High-Dimensional Web-Scale

Data

Shaosu Liu
Turn, Inc

shaosu.liu@turn.com

Bin Song
Turn, Inc

bin.song@turn.com

Sriharsha Gangam
Turn, Inc

sriharsha.gangam@turn.com
Lawrence Lo

Turn, Inc
larry.lo@turn.com

Khaled Elmeleegy
Turn, Inc

khaled.elmeleegy@turn.com

ABSTRACT
Turn’s online advertising campaigns produce petabytes of
data. This data is composed of trillions of events, e.g. im-
pressions, clicks, etc., spanning multiple years. In addi-
tion to a timestamp, each event includes hundreds of fields
describing the user’s attributes, campaign’s attributes, at-
tributes of where the ad was served, etc.

Advertisers need advanced analytics to monitor their run-
ning campaigns’ performance, as well as to optimize future
campaigns. This involves slicing and dicing the data over
tens of dimensions over arbitrary time ranges. Many of
these queries need to power the web portal to provide re-
ports and dashboards. For an interactive response time,
they have to have tens of milliseconds latency. At Turn’s
scale of operations, no existing system was able to deliver
this performance in a cost effective manner.

Kodiak, a distributed analytical data platform for web-
scale high-dimensional data, was built to serve this need. It
relies on pre-computations to materialize thousands of views
to serve these advanced queries. These views are partitioned
and replicated across Kodiak’s storage nodes for scalability
and reliability. They are system maintained as new events
arrive. At query time, the system auto-selects the most
suitable view to serve each query.

Kodiak has been used in production for over a year. It
hosts 2490 views for over three petabytes of raw data serving
over 200K queries daily. It has median and 99% query laten-
cies of 8 ms and 252 ms respectively. Our experiments show
that its query latency is 3 orders of magnitude faster than
leading big data platforms on head-to-head comparisons us-
ing Turn’s query workload. Moreover, Kodiak uses 4 orders
of magnitude less resources to run the same workload.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 13
Copyright 2016 VLDB Endowment 2150-8097/16/09.

1. INTRODUCTION
Online advertising campaigns seek best performance, which

can be defined as: given a fixed budget, maximize some goal.
The goal could be as simple as showing maximum number
of ads to users having certain criteria. It can also be more
sophisticated like maximizing amount of sales for a certain
product or subscription to some service. A key control to
maximize these goals is setting the targeting criteria. This is
a non-trivial task as each user often has hundreds or thou-
sands of attributes. Crafting the right criteria allows for
reaching the exact audience of interest and hence maximiz-
ing the impact for a given budget.

Optimizing campaigns’ performance is often an iterative
process. It involves monitoring running campaigns to make
sure they are progressing properly. If performance is un-
satisfactory, targeting criteria can be tuned to improve per-
formance. Moreover, historical data of previous campaigns
can be analyzed to craft the targeting criteria of future cam-
paigns.

Campaigns produce tremendous amounts of data. This
data is comprised of events produced by users. Example
events are ad views (impressions), clicks, actions, etc. At
Turn, we process many billions of events per day. Doing
advanced analytics over this sheer volume of data, while
expecting interactive response time to be served via a web
portal was challenging. No preexisting system was able to do
meet the required level of service in a cost-effective manager.

Hadoop based query engines, like Pig [19], Hive [27], and
Cheetah [7], can scale to handle very large datasets rely-
ing on its cost effective Hadoop Distributed File System
(HDFS). However, they have the fundamental latency limi-
tation of Hadoop’s MapRecuce [13], where query latency is
at best in the order of minutes.

Newer non-MapReduce-based engines like Impala [5], Shark
[31], SparkSQL [4], and Presto [28] provide lower latencies as
they rely on more efficient execution engines and better uti-
lize memory. However, they do not deliver sub-second query
latency [29]. This is fundamentally due to how they are ar-
chitectured. A distributed query is constructed of multiple
tasks launched at different nodes. These tasks work together
to execute the query. Task creation and management intro-
duces an inherent latency and overhead. Moreover, all of
these systems lack out-of-the-box creation and maintenance
of views as well as view selection at query time. Further-

1269



Figure 1: Query routing in the Kodiak analytical plaform.

more, like other Hadoop-based systems, they lack out-of-the-
box indexing support requiring full data scans, even though
most queries have high selectivity, which unnecessarily in-
flates query latency.

Multiple traditional commercial Massively Parallel Pro-
cessing (MPP) warehousing systems, e.g. TeraData and
Netezza, have the facility of building and maintaining mate-
rialized views. Once available, they also select the best view
to serve a query for minimum response time. Moreover, they
have indexing support to expedite high selectivity queries.
However, these systems typically run on specialized hard-
ware for maximum performance. Consequently, they are
often much more expensive than newer systems running on
commodity hardware. Moreover, it is questionable that they
can scale to maintain thousands of views for multi-petabyte
dataset with hundreds of dimensions to achieve sub-second
response time. Even if this was possible, it would be pro-
hibitively expensive to most.

To support analytics slicing and dicing this high dimen-
sional data over arbitrary time ranges in an interactive yet
cost effective way, we took a hybrid approach. First, we re-
lied heavily on pre-computation, aggressively creating ma-
terialized views for different data cubes. Given the high
dimensionality of the data, thousands of materialized views
were needed. Hence, we needed a scalable platform to man-
age all these views. Consequently, we built a system, Ko-
diak, whose sole responsibility is building, maintaining, and
querying views. It is horizontally scalable as it can support
more views by adding more nodes to its cluster. Moreover,
individual views are indexed for fast querying. Kodiak can
be viewed as a cache sitting in front of the primary raw
dataset (stored on HDFS). As shown in Figure 1, queries
that can not be served off Kodiak’s views are routed to our
ad-hoc general-purpose query engine, Cheetah, to be served
off the raw data at HDFS.

Kodiak is distributed analytical database, where time is
treated as a first-class citizen. It is horizontally scalable,
where views can be time-partitioned and replicated for scal-
ability and reliability. The system maintains the views, up-

Figure 2: Overview of the Kodiak ecosystem with all the
key components involved in its operation.

dating the underlying tables as new events arrive. It is also
responsible for view selection, choosing the best view serving
a query to minimize response time. View selection is done
at runtime. This is useful as it does not have to rely on a
fixed list of views available. For example, if a view becomes
unavailable, e.g. due to some intermittent failure or delay
of the asynchronous process updating it, the system chooses
the next best view available.

Kodiak is most useful for serving canned queries for re-
ports from the web portal requiring very fast response time.
It is also used to accelerate ad-hoc queries by trying to serve
queries that it has views for.

The rest of the paper is organized as follows. Section 2
presents the design of Kodiak. Section 3 presents its im-
plementation. Section 4 evaluates Kodiak’s performance
as well characterizing our query workload. Related work
is presented at Section 5. Section 6 concludes the paper.
Zookeeper

2. DESIGN
Kodiak is a highly scalable distributed read-only database

for very large-scale high-dimensional analytical queries. It
is not meant to be a general purpose analytics platform.
Instead, it is purpose built for online advertising data for
Turn’s use case, which is very large scale (PBs), high di-
mensional, temporal dataset. It is used to serve canned
queries powering Turn’s dashboards and reports. In addi-
tion, it powers exploratory ad-hoc queries. It is mainly used
to store, maintain, and query different summaries (views),
rolled up across different dimensions or time granularities.

Raw data is stored on the HDFS and a periodic batch
Extract-Transform-Load (ETL) pipeline is used to construct
or update the views at the Kodiak cluster. The ETL pipeline
transforms raw events with complex schema into a simple
schema that is easy to query by analytical queries. This
simple schema is denormalized by materializing all needed
joins. In addition, the ETL creates and maintains material-
ized rolled up views (data cubes)1 of the data for fast query

1In the rest of the paper cubes and views are used inter-
changeably.

1270



answering. This ETL pipeline is written as a workflow of
MapReduce and Pig jobs and is controlled by an external
driver. It is configurable in a way that it accepts user-defined
cube definitions specifying the required dimensions and mea-
sures. Definitions are written manually based on a careful
study of the query workload to achieve maximum speedup
given the available resources. Aided by the graph at Fig-
ure 3, we arrived at the best set of cubes that maximize our
query coverage given our space budget. The ETL’s opti-
mizer leverages shared execution and shared scans to elim-
inate redundant work, when computing and updating the
views representing overlapping data cubes. Views are main-
tained and updated incrementally as new raw data arrives.
For better performance, updates are not done in real time to
allow raw data to accumulate in meaningful batches to maxi-
mize sharing of execution, while maintaining the data fresh-
ness business requirements. In other words, we adopt the
deferred view maintenance approach for its superior perfor-
mance [8]. Song et al. [26] describes the detail ETL pipeline
and data population of Turn, while this paper focuses on
view storage and query performance.

Kodiak daemons pick up these updates from HDFS to
update the corresponding view tables. Depending on their
size, views of fact tables may be time (range) partitioned,
where shards are distributed among Kodiak nodes.

At query time, the system selects the best view to query
for best performance. In the following sections, we will cover
system architecture and operations of different components
in more details.

2.1 Kodiak’s Architecture
As shown in Figure 2, a Kodiak cluster is composed of

multiple storage nodes. Each storage node runs a relational
database instance (MySQL). In addition, it runs a Kodiak
daemon responsible for maintaining this instance. Daemons
coordinate and receive instructions via a Zookeeper clus-
ter [15]. When the ETL pipeline produces new updates
to the views, it assigns them to different Kodiak nodes.
It then notifies the corresponding daemons via Zookeeper.
Daemons load their updates concurrently off HDFS to up-
date the relevant views on their local databases. Newly
created/updated views are marked ready for querying once
their data is loaded.

Views are stored as database tables on the underlying
database nodes. Based on the configuration, each view can
be sharded and replicated, with a configurable replication
factor. If sharded, views are partitioned based on events’
timestamps. Views and shards are assigned to different Ko-
diak nodes by the ETL pipeline. Aided by information about
sizes and usage of views, the pipeline tries to distribute the
views/shards in a way that balances the load across Kodiak
nodes with respect to storage and query load.

Kodiak also maintains metadata about stored views. For
each view, the metadata tracks its shards as well as the phys-
ical tables backing them on the corresponding database. If
the view is replicated, it also tracks different replicas. If
the view has multiple versions, the metadata tracks these
versions too. Metadata is 3-way replicated across 3 storage
nodes for fault tolerance. Updates to the metadata, when
views are updated, are asynchronously replicated to other
replicas relaxing consistency for better performance. We
use master-master replication for that. This has the ben-
efit of simplifying our design and implementation as well

as increasing the performance of metadata updates. Any
live replica can be used as the master to write updates to.
Consequently, if the current master dies, another replica is
chosen with no further action required. Master-master repli-
cation is suitable for this use case as there is one writer to
the database, so there are no conflicts. This single writer
is the ETL, when it updates the mappings in the metadata
after each iteration.

As a consequence of asynchronous replication, a client
may query an older version of a view if it uses metadata
from a replica that is behind. However, this may only hap-
pen for very brief periods of time as replicas should catch
up promptly. This only slightly affects data freshness. In
any case, Kodiak does not promise realtime data, so this is
inconsequential.

For availability, if one storage node hosting a metadata
replica goes down, another storage node is selected to replace
it. Metadata is replicated to it asynchronously. A cluster
master daemon is responsible for monitoring replicas and in
the event of failure, it is responsible for selecting an alternate
node to host the data of the failed node. The master also
acts as the driver of the ETL pipeline. It is responsible for
launching the pipeline periodically.

2.2 Selecting Views To Materialize
Views are built to cache the computation of constructing

them, i.e. build once and query many. Specifically, many
of the queries, if executed against the raw data, would in-
volve very expensive operations like joining very large fact
tables together (Tables of raw events like clicks or impres-
sions), or doing rollups over very large tables. Caching the
computation improves overall system throughout as it elim-
inates redundant work. In addition, it substantially reduces
query latency, allowing responses to be available virtually
instantaneously.

The ETL pipeline is responsible for creating and maintain-
ing these views. For its inputs, it operates on the schema
of fact tables of raw events and their corresponding dimen-
sion tables. It produces a simplified denormalized schema,
with all required expensive operations precomputed. This
simplified schema is what is exposed for querying.

2.2.1 Formal Problem Definition
Choosing which views or cubes to materialize can be mod-

eled as the following optimization problem. Find the best
set of views to materialize to minimize the weighted aver-
age query latency for our query workload, while respecting
our space limitations as well as respecting the Service Level
Agreement (SLA) for SLA-bound queries.

Formally, it can be stated as follows. Given an overall
set of queries Qall, with a subset Qsla representing queries
having tight SLA (e.g. queries servicing a web portal with
low latency requirement), and a set of materialized views V :

minimize:
qi

∑
i

wiδi ∀qi ∈ Qall

subject to:

latency(qj) ≤ L ∀qj ∈ Qsla∑
k

size(vk) ≤ S ∀vk ∈ V

(1)

wi is the weight of query i. For example, canned queries
serving the web portal could be given higher priorities, which

1271



translates to higher weights. Also, queries serving a more
important web page, e.g. front page, can be given even
higher weight than other canned queries. δi is the average
query latency for query i. Qall is the set of all queries served
by the platform. This can be approximated using the list
of queries seen at our query logs. In addition, any incoming
new canned queries can be added as well. Conversely, Qsla

is the set of all SLA-bound queries. Hence it should be a
subset of Qall. L is the maximum allowed latency for a SLA-
bound query. V is the set of views chosen to be materialized
and size(vk) is the size of view k.

2.2.2 Examples Of Materialized Operations
The two most notable operations that are materialized

are joins and rollups. The ETL materializes all expensive
instances of these operations.

Other than joins with dimension tables, there are two
key join operations between huge fact tables that are pro-
hibitively expensive to do at query time.

Click Deduplication: This operation eliminates dupli-
cate clicks by the same user to the same advertisement. Du-
plicates are often due to software bots. In any case, ad-
vertisers care for one click per advertisement per user. To
cost bound this very expensive operation, we time bound
the look-back window searching for duplicates to a fixed
amount, e.g. thirty days. Duplicates are eliminated using
an auxiliary table maintaining users’ histories keyed by the
user id. This technique allows for the incremental elimina-
tion of duplicates as when new clicks arrive, they are joined
with the auxiliary table.

Action Reconciliation: Actions represent users doing
an event desirable to the advertiser, e.g. buying an item. In
this case, the advertiser sends an event to Turn called beacon.
Beacons’ fact table is joined with impressions’ fact table
to construct actions. An action record is generated if and
only if a new beacon record matches a preceding unmatched
impression. Similarly, a fixed look-back window is used to
cost bound this join, e.g. 30 days. Also similarly, the join
is done with the help of an auxiliary user history table to
allow the operation to be performed incrementally as new
events arrive.

2.2.3 Choosing Data Cubes To Materialize
Most of the queries involve doing rollups on a set of di-

mensions. Given the sheer volume of raw data, evaluating
these rollups from scratch at query time is very expensive
and often prohibitively expensive. To solve this, different
data cubes are materialized. Given the high dimensionality
of the data (many hundreds of dimensions), the number of
possible cubes is tremendous. Kodiak’s scalable architec-
ture allows us to manage and store a very large number of
cubes. Nevertheless, our platform is optimized to be cost ef-
fective. In other words, for a given space budget, it tries to
maximize its query coverage. Aided by business knowledge,
query logs, and statistics in Figure 3 we arrive at the best set
of dimensions to materialize rollups for for maximum query
coverage.

The most naive approach is to have one large cube com-
prising all these dimensions in question. This has two short-
comings though. First, given this cube is very large, some
rollup queries may require a significant additional amount of
aggregation at query time if only a smaller set of dimensions
is needed. This can violate the web portal’s SLA. Conse-

quently, for web-portal canned queries, given these queries
are known a-priori, other coarser-grained cubes are added to
materialize rollups further. This consumes more space but in
practice, the finest-grained cube/table dominates the space
requirements, especially that individual canned queries usu-
ally only involve a handful of dimensions. Second, having
one large cube comprised of all the dimensions of question
assumes that any subset of dimensions can be used together.
In practice though, we have learned that some of these di-
mensions are mutually exclusive. This created the opportu-
nity to partition this large cube into multiple smaller ones.
Even though these smaller cubes had overlapping sets of di-
mensions, some very high cardinality dimensions were mu-
tually exclusive, which hugely reduced the size of the cross
product of these dimensions resulting in much less space
requirements to store these smaller cubes. For example,
the two dimensions geo-location and the domain name at
which the advertisement was served are not used simultane-
ously at queries in practice. Each of these dimensions have
tremendous cardinality. So, separating them into separate
cubes reduces the overall space requirements significantly.
Specifically, for our workload, having one large cube requires
25TB of space. Partitioning it into three smaller cubes as
explained above, reduced the total space requirements to
9.5TB – a 62% reduction.

2.3 View Maintenance
Materialized views are typically summaries of data rolled

up across different dimensions or date ranges. As new raw
events arrive, e.g. new impressions or clicks, they are logged
on HDFS, then the relevant views need to be updated. Sim-
ilarly, when events pass their retention periods, they need
to be purged off their corresponding views.

The controller daemon drives the ETL pipeline by peri-
odically launching it to maintain these views by updating
their summaries. The pipeline includes multiple jobs. Each
job is launched with a minimum acceptable frequency to up-
date its corresponding summaries. For example, for a rollup
job updating a daily summary, it needs to run once a day.
Whereas for a monthly summary, the job only needs to run
once a month. Given the batch nature of these jobs, views’
data is not guaranteed to be fresh. This is a pragmatic
tradeoff we made, trading freshness for performance, which
was acceptable from a business perspective. It is worth not-
ing that this is a common practice in data warehousing as
more freshness usually involves higher costs. Depending on
the business needs, after some point one starts receiving di-
minishing returns from more freshness. Finally, the ETL
pipeline has an optimizer that tries to maximize the shared
execution, as well as the scans of input data for all the main-
tenance jobs.

Jobs often have to update summaries of older time periods
(opposite to just newly unprocessed time period since last it-
eration). This is because some events arrive many days late
because of many of the complexities of the inter-workings of
different ad-serving platforms spanning multiple companies.
An example of events arriving late is Actions. Actions can
have different definitions depending on the use case they are
serving. A possible definition of an action is a shopping cart
checkout after an advertisement has been served. To con-
struct an action event for this, a shopping-cart-completion
event needs to be matched with its corresponding impres-
sion event in a preprocessing phase. The action is given the

1272



timestamp of the impression2, which can be many days be-
fore the actual purchase is made. Consequently, view main-
tenance includes insertions of new rows as well as updates
to existing rows.

Each iteration/run updates its corresponding view incre-
mentally. It produces new updates on HDFS. The controller
daemon then assigns updates and new views to different Ko-
diak nodes. It tries to balance the load as well as guaran-
tee that replicas lie on different nodes. Then, it notifies
the Kodiak daemons, via Zookeeper, that there are updates
ready for pickup from HDFS. Zookeeper These views power
Turn’s web portal, which needs to be always available. Con-
sequently, Kodiak is designed to always keep its views avail-
able for querying, even while being updated. Moreover, for
consistency, it guarantees that all updates to a view from one
ETL iteration are transactional. In other words, it provides
snapshot isolation. To accomplish this, each maintenance
iteration recreates the updated shards of each view. Specifi-
cally, if a shard needs to be updated at the current iteration,
a new version is created for it. New (updated) shards are
then bulk loaded to Kodiak as new tables at the end of the
iteration. Finally, Kodiak’s metadata is updated to point
to the newly loaded tables as the backing store of the up-
dated view/shard. Only at this point, the updates become
visible for querying. Note that we made the design choice
to overwrite parts of the view that may have not changed
since the last iteration and hence doing redundant work.
The cost of this is mitigated by bulk loading opposite to
updating individual records in the view that have changed.
Also, if a view did not change since the last iteration, it
is not updated. Our design gives up some performance for
availability.

In more details, updates are loaded into Kodiak as fol-
lows. After the ETL produces the updates on HDFS, it up-
dates Kodiak’s metadata at Zookeeper signaling that there
are new updates ready for pickup. Kodiak daemons, mon-
itoring Zookeeper, get the signal and each bulk loads its
corresponding updates, which are new tables constructing
the view’s new version. After loading is done successfully,
daemons update metadata mappings making them point to
the new tables holding the new version of the shards/views.
Kodiak always maintains two versions of each shard/view.
This is useful for Kodiak clients, which cache copies of the
mappings of views to tables. Even if a client’s cached map-
ping becomes stale, the client can access the view. It will
just hit the older version of the view. Since clients update
their mappings periodically, quickly they will get the new
mappings.

Finally since Kodiak maintains two versions of each shard
or view, after loading daemons check if more than two ver-
sions exist. If this is the case, older versions are dropped to
free space.

2.4 Query Execution
As shown in Figure 2, queries to Kodiak first arrive at a

cluster of query servers. The cluster is composed of identi-
cal servers. For load balancing, each client picks one of the
servers and submits its query to it. This cluster along with
the Kodiak nodes running MySQL instances as well as the

2This is because, like impressions, actions should be confined
to the campaign’s date range. Purchases happening after
the end of the campaign, but resulting from ads belonging
to the campaign should still be attributed to the campaign.

Kodiak daemons constitute Kodiak’s distributed execution
engine. Queries typically aggregate data, grouping it over a
set of dimensions and/or time. Filters are also often applied
on dimensions, e.g. :

Select AdvertiserID, CampaignID,

Count(Impressions), Count(Clicks) from EventsTable

where (AdvertiserID = 123) and (CampaignID = 789)

and (Date >= ’02/25/2015’)

Group By AdvertiserID, CampaignID

In other words, queries only involve dimensions, mea-
sures, and filters applied to the dimensions. This is be-
cause the pre-constructed simplified schema captures all the
needed information from the raw events, making it possible
to query it with such simple query constructs. This simpli-
fied schema and query structure, largely simplify execution
at query time. Further, this simplifies adoption of optimiza-
tions, like what is described in Section 2.5, making execution
much more efficient.

After the query server selects the best view to serve this
query as explained in Section 2.5, aided with information
about the locations of shards for the view in question, it
time-partitions the query into one or more query fragments.
Each fragment is then sent to the storage node hosting the
current version of the corresponding view shard, where it is
executed locally on the local database server. Result frag-
ments are then returned to the query server, where it does
the final aggregation, sending the final result to the client.

The mapping of shards to storage nodes is maintained by
all query servers. They periodically load it from Kodiak’s
metadata tables. Again, a relaxed consistency model is used
here. However, this only slightly impacts data freshness.
For example, mappings can briefly point to older versions
of views/shards. This is inconsequential for this application
though.

2.5 Answering Queries Using Views
At a high level, whenever a query server receives a query,

it tries to select the best view to answer it. The best view
is the one having most of the query precomputed, allow-
ing for the response to be returned fastest. To this end,
the query server tries to identify the smallest view that can
answer the query as usually this means that most of the
query’s rollup work is already precomputed. For simplic-
ity, we use heuristics to identify the smallest view or cube.
The first heuristic is the number of dimensions the cube
has as it is an approximate proxy for the cardinality and
hence the cube’s size. Query servers maintain a list of avail-
able views as well as the columns they cover. When receiv-
ing a query, the server extracts the required columns and
they are matched against available views, selecting the one
with minimum number of dimensions. If multiple views with
minimum dimensions can serve the query, heuristics about
which dimensions have smaller cardinality are used to select
the smallest view. These heuristics are based on the under-
standing of our schema and workload, e.g. geo-location, and
domain name at which the ad was served are known to have
the highest cardinalities.

After the view is selected, based on the data range in the
query, Kodiak nodes hosting the relevant shards are iden-
tified. Then, the query is rewritten for each shard to only
query the data available at this shard. After receiving the re-

1273



sponses from all the shards, the query server compiles them
into a single response, sending it back to the client.

2.6 Fault Tolerance And Recovery
Failures in this environment are not uncommon given its

complexity. A common root cause is Hadoop failures due to
software or hardware problems.

Fault tolerance for the controller daemon is fairly straight-
forward. For example, after the controller daemon comes
up it can detect whether it is recovering from an inter-
rupted/failed iteration or it was gracefully shutdown. This is
because for each successfully completed iteration a flag is set
(implemented as a file on HDFS). If there are updates from
the last iteration on HDFS, but no corresponding comple-
tion flag is found, this means the previous iteration failed. In
this case, the controller does a roll-forward recovery of this
iteration. More specifically, it reruns the ETL pipeline in-
structing it to only generate the missing updates/views from
the failed iteration. Then, it instructs the Kodiak cluster to
load these updates and finally writes the completion flag. If
the daemon finds the completion flag for the last iteration,
it just moves forward to the next iteration as no recovery is
required.

Failures of storage nodes are handled by the controller.
The controller monitors the liveness of the storage nodes
through Zookeeper. If a node is detected to have failed, it
redistributes its load on other live storage nodes. This is
to prevent under-replication of the shards of the views the
failed node owned. It does this by asynchronous replication
from another live shard. For subsequent updates from main-
tenance jobs, it routes them to the newly selected replica via
Zookeeper.

Rebalancing happens after the node is detected to have
been down for an extended period of time. This is to avoid
unnecessary expensive rebalancing if the node’s failure is
ephemeral. After a storage node comes up, it checks with
Zookeeper if it has updates that it is supposed to load. If
this is the case, it loads them from HDFS to maintain its
data freshness.

2.7 Discussion
Kodiak is custom built for Turn’s analytics use case. Aided

with intimate knowledge of our workload and constraints, we
were able to tailor our design choices to serve these needs
best. Even though the system is not general purpose, we
believe that many of the lessons learned can be useful to a
broader audience.

In the rest of this section, we will discuss our design
choices with respect to the overall architecture as well as
our choice for the backing store.

2.7.1 Alternative Design
In our design, we chose to have a separate system that

is responsible for maintaining the different views. This sys-
tem is outside our data warehouse, i.e. HDFS, where all our
raw data resides. An alternative design could have been to
have a unified system responsible for maintaining both the
raw data as well as the data views – the same way tradi-
tional data warehouses do it. Had we used Kodiak, with
mysql nodes as its backing store, as our unified warehouse,
we could have leveraged its querying capabilities for view
maintenance instead of building something else. However,

it would still be challenging doing rollups over arbitrary di-
mensions for very large datasets as this involves grouping
large numbers of records across database nodes. In addition,
there are multiple other reasons, mostly efficiency related,
that pushed us away from this alternative.

First, raw data has to reside on HDFS as it is accessed
by other kinds of jobs, e.g. doing different kinds of machine
learning computations like classification or clustering. So,
duplicating the raw data across two systems will be waste-
ful, especially given its very large size. Second, view mainte-
nance is compute intensive as it involves updating thousands
of materialized views in our case. Given our relaxed fresh-
ness requirement on the views, doing the view maintenance
in a batch mode becomes a natural fit. This allows for multi-
query optimization and shared execution. Unfortunately,
this is not supported by Kodiak’s underlying query engine –
mysql. Writing our own MapReduce view-maintenance en-
gine allowed us to exploit the overlap across these mainte-
nance queries as they update overlapping data cubes. More-
over, running these maintenance jobs on Hadoop is more
efficient as it allows us to multiplex a big shared compute
resource (large Hadoop cluster) instead of provisioning Ko-
diak’s storage nodes for these heavy tasks. Furthermore, this
performance isolates interactive queries from maintenance
ones providing more deterministic response times. Finally,
it is cheaper to store raw data on raw flat files as it does not
require having and maintaining indices for it, which makes
HDFS a natural fit for it.

2.7.2 Alternative Backing Store
Another design alternative was to construct the views on

Hadoop, but store them and serve them off a different sys-
tem than a traditional database – mysql in our case. For
example, they could have been stored on a NoSQL plat-
form like HBase [2] 3 or Cassandra [3] 4, where it offers a
global out-of-the-box index making queries run much faster.
Also, they provide out-of-the-box sharding and replication
for fault tolerance and scalability. However these systems
do not have a query engine. So to support arbitrary queries
over the views, we need to implement our engine. Another
alternative is to store the views on HDFS and then use a
platform like SparkSQL or Impala to query them. This
way we leverage the same storage infrastructure for both
raw data as well as the views. The draw back of this ap-
proach is that these systems do not offer the low sub-second
latency needed by our application. This is mainly due to
two reasons: (1) lack of indexing and (2) task maintenance
during query execution. Consequently, we chose traditional
database nodes as our underlying backing store.

3. IMPLEMENTATION
In our current implementation, storage nodes are running

MySQL RDBMs. Asynchronous replication of metadata is
done via Tungsten [30], which is an open source replication
engine. Daemons are implemented in Java.

In our previous implementation, we used Oracle Cluster-
ware [21] for the storage layer. Clusterware abstracts a clus-
ter as a single machine. Even though Clusterware has mul-
tiple servers serving requests, four in our case, they all share

3BigTable’s [6] open-source implementation.
4Dynamo’s [11] open-source implementation.

1274



0.00%	  

10.00%	  

20.00%	  

30.00%	  

40.00%	  

50.00%	  

60.00%	  

70.00%	  

80.00%	  

90.00%	  

100.00%	  

1	   2	   4	   8	   16	   32	   64	   128	   256	   512	  

Co
ve
ra
ge
	  P
er
ce
nt
ag
e	  

Number	  of	  Columns	  

Figure 3: This graph shows how much coverage in our
query workload is achieved by subsets of the columns in
our dataset. The x-axis has logarithmic scale. It lists all the
columns appearing in our query workload sorted descend-
ingly by popularity. The y-axis shows the cumulative query
coverage achieved by adding more columns.

the same disk, which can become a bottleneck. More specif-
ically, updating the views can be time consuming as all up-
dates go to the same disk. This will be covered in details
at Section 4. Our newer implementation is significantly su-
perior as the system is fully distributed and read and write
operations going to different nodes do not content on shared
resources.

4. EVALUATION
This section provides the experimental evaluation of dif-

ferent aspects of the Kodiak system.
First, we give a workload characterization showing the

distribution of the popularity of different columns in our
data set with respect to the query load. We also quantify
the minimum amount of space needed to materialize cubes
covering these columns. In these studies, we consider a 24
hour trace of our query workload.

Second, we evaluate the performance of the system with
respect to querying as well as view maintenance. Many of
the experiments conducted compare the performance of Ko-
diak to its predecessor described in Section 3.

All measurements are made off the following two setups.
The Kodiak cluster has 40 commodity storage nodes. Each
server is running MySQL version 5.5.28 instance. They all
have Solid State Drives (SSD) for better performance. The
previous generation system is run on a 4-node Oracle Clus-
ter version 11g release 11.2. The cluster uses Oracle’s Auto-
matic Storage Management (ASM) [20]. This storage layer
has 27 disks, where data is stripped and replicated for per-
formance and reliability. The cluster is connected to the
ASM layer via a Storage Area Network (SAN).

4.1 Workload Characterization
In this experiment, we present a study of our workload,

which we used to optimize our system choosing which views
or cubes to maximize our coverage and consequently maxi-
mize our performance gains.

Figure 3 shows how much coverage in our query work-
load is achieved by subsets of the columns in our dataset.

1.E+01	  

1.E+02	  

1.E+03	  

1.E+04	  

1.E+05	  

1.E+06	  

1.E+07	  

1.E+08	  

1.E+09	  

1	   2	   4	   8	   16	   32	   64	   128	   256	   512	  

Sp
ac
e	  
(M

B
)	  

Number	  of	  	  Columns	  

Figure 4: This graph shows the minimum amount of space
required to materialize views covering the the different num-
bers of columns. Both x-axis and y-axis have logarithmic
scale. X-axis lists all the columns appearing in our query
workload sorted descendingly by popularity. The y-axis
shows the minimum space required by views to cover the
corresponding columns.

In other words, the x-axis lists all the columns appearing
in our query workload sorted descendingly by popularity.
The y-axis shows the cumulative query coverage achieved
by adding more columns. Note that, the x-axis has loga-
rithmic scale. We note that a small fraction of the columns
(64 columns) achieves very large query coverage (over 90%).

Moreover, some of these columns are never queried to-
gether and hence they form disjoint sets. Consequently,
multiple smaller views (with fewer number of columns) can
be used instead a larger one to achieve the same coverage.
For example, if we have n columns, we can use two views
with r and q columns to achieve the same coverage, where
both r and q are smaller than n and the columns of both
views are subsets of the n columns. The views with smaller
number of columns usually have significantly smaller car-
dinalities resulting in significant reduction in size. If the
aggregate size of the two smaller views is smaller than the
larger view, then it is a win. In addition, smaller views have
better query performance than larger ones as data is preag-
gregated more. This happens often in our workload, where
the aggregate size of the partitions is smaller than the large
unpartitioned view. By carefully studying our workload and
then exploiting this, we achieve better query coverage and
performance using much smaller amount of space.

Figure 4 plots the minimum amount of space required to
materialize views covering the different numbers of columns.
Similarly, the x-axis lists columns sorted descendingly in the
order of their popularity in the query workload. The y-axis
shows the minimum space required by views to cover the
corresponding columns. Both axes have logarithmic scale.
Note that the amounts listed is the minimum amounts of
space required to cover the corresponding columns. For bet-
ter performance, more views are added. So in practice, the
amount of space used is usually more. By monitoring and
studying our workload, we add more views for queries requir-
ing speedup. These are summary views though, so usually
they have smaller cardinalities than the basic views. Hence,
they usually use less space.

1275



0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

1.E+01	   1.E+02	   1.E+03	   1.E+04	   1.E+05	   1.E+06	   1.E+07	   1.E+08	   1.E+09	  

Q
ue

ry
	  C
ov
er
ag
e	  

Space	  (MB)	  

Figure 5: This graph shows the space required to materialize
views to achieve different query coverage. The x-axis lists
required space. The y-axis shows the query coverage with
the different space.

Scenario # Tables Space (GB)
A 140 11.74
B 189 45.19
C 70 53.13
D 433 117.90
E 103 126.64
F 438 194.38

Table 1: Details for different view maintenance scenarios

Figure 5 plots the minimum amount of space required
to materialize views to achieve maximum query coverage.
This figure is produced by combining data from Figure 3
and Figure 4. We note that with a fairly small amount of
space (1 TB), we can cover over 98% of our query workload.

Also note that it takes under 1 PB to get 100% query
coverage, while we have a raw corpus of data of over 3 PBs.
This is because raw data is cleaned and only a fraction of it
is exposed to our query system.

4.2 View Maintenance Evaluation
In this section we evaluate the performance of view main-

tenance/creation. Since our design choice was to trade per-
formance for availability by rewriting entire tables holding
modified views/shards, we wanted to evaluate the cost of
these updates. To this end, we study the performance of
six different production-inspired scenarios of view mainte-
nance/creation. Each scenario has a combination of views
created/updated with different sizes. Table 1 shows the de-
tailed information for our evaluation scenarios.

For each scenario, its corresponding tables are loaded into
both systems, Kodiak and its predecessor, representing a
variant of a view maintenance iteration. Each scenario is run
for 3 days on production data against both systems: Kodiak
and its predecessor. Average loading times were recorded.
Figure 6 shows these results. We see that Kodiak has a
significantly better performance than its predecessor with
a speedup exceeding 4X in some cases. As expected, with
increasing the amount of data loaded, the speedup increases
too. This is because of Kodiak’s scalability leveraging many
underlying database instances.

0	

20	

40	

60	

80	

100	

120	

140	

A	 B	 C	 D	 E	 F	

Lo
ad

in
g	
5m

e	
(m

in
s)
	

Scenario	

Predecessor	

Kodiak	

Figure 6: Average loading times for different scenarios for
both Kodiak and its predecessor.

Overall Maintenance Cost In Production
In production, one iteration updating all the views produces
8TB of updates data. Data is two way replicated, so the
actual size loaded to Kodiak is 16TB. Even though views
are updated incrementally, this large volume is generated
each iteration due to some events arriving late, resulting
in updates to data from older dates. Bulk loading into a
distributed cluster mitigates the cost of the update process.

4.3 Query Performance Evaluation
In this section, we study Kodiak’s query performance by

analyzing the distribution of queries’ latency.

4.3.1 Query performance In Production
In production, we serve about 200,000 queries daily. Fig-

ure 7 shows the distribution for different query response
times measured at our query servers. Note that the x-
axis has logarithmic scale. From the figure, we see that
our system has median response time of 8 ms and a 99
percentile response time of 252 ms. Note that this graph
has capped to query latencies to only 40 minutes. How-
ever in our workload, some queries have latencies going over
10 hours. The graph’s long tail is capped for presentation
purposes. Queries with these very high latencies are a tiny
fraction of the overall query population (under 0.1%). These
queries are served by the Cheetah system running on top of
Hadoop as they do not have views to cover them and hence
the very high response time.

4.3.2 Kodiak Vs. Predecessor
In this section, we compare Kodiak’s query latency to that

of its predecessor described at Section 3. Hence, we exclude
queries served by the Cheetah system from this workload.
Unlike its predecessor, Kodiak has multiple share-nothing
instances. While this distributed architecture offers hori-
zontal scalability, which is critical for this workload, in some
cases it comes at a slight cost. For example, Kodiak might
compile a query result from multiple result fragments re-
ceived from different instances. This compilation happens
outside the RDBMS, introducing some extra overhead. Fig-
ure 8 shows the distributions of query latencies for both
Kodiak and its predecessor. In this experiment, we only

1276



0.00%	

10.00%	

20.00%	

30.00%	

40.00%	

50.00%	

60.00%	

70.00%	

80.00%	

90.00%	

100.00%	

2	 4	 8	 16
	

32
	

64
	

12
8	

25
6	

51
2	

2^
10
	

2^
11
	

2^
12
	

2^
13
	

2^
14
	

2^
15
	

2^
16
	

2^
17
	

2^
18
	

2^
19
	

2^
20
	

2^
21
	

Q
ue

ry
	P
er
ce
nt
ag
e	

Response	Time	(ms)	

Figure 7: Distribution of query latency in production. This
includes queries served by the Kodiak cluster as well the
ones served by the Cheetah query engine. Note that x-axis
has logarithmic scale. Also, note that the x-axis is capped
to 40 minutes. However, the maximum time experienced for
a query was over 10 hours. Larger values are capped for pre-
sentation purposes. Queries with these very high latencies
are a tiny fraction of the overall query population (under
0.1%)

consider queries, where responses arrive from multiple Ko-
diak instances to study the effects of partitioning and dis-
tributing the data across multiple machines. We note that
at the head of the distribution function, Kodiak has lower
latencies due to parallelism. However, we also note that Ko-
diak’s query latency distribution function has a heavier tail.
This is because the more instances involved in the query, the
more likely one of them will get unlucky and stall due to a
system issue (e.g. disk or network heavy activity), delaying
the entire query response.

4.3.3 Kodiak Vs. Cheetah Vs. Spark
In this section, we compare Kodiak to Cheetah, Turn’s ad-

hoc MapReduce-based query engine, to Spark, which repre-
sents the next generation, high performance big data query
engines. We compare two key metrics: query latency and
resource consumption by queries, which is a proxy for sys-
tem throughput. To this end, we use a family of queries very
popular in our workload. For Cheetah, queries are executed
on data in raw events form. For Kodiak, queries are exe-
cuted against materialized data cubes. For Spark, queries
are executed against the same data cube used for Kodiak.
The only difference is that the cube is materialized on HDFS
– Spark’s standard data source.

The family of queries used have the form:

Select AdvertiserID, Count(Impressions),

Count(Clicks), Count(Actions) from EventsTable

where (AdvertiserID = 123)

and (Date >= date1) and (Date < date2)

Group By AdvertiserID

Cheetah runs on a 640 node Hadoop cluster. Whereas
Kodiak runs on the cluster described above. Spark runs on
a 10 node test cluster. This cluster could not accommodate
all the raw data, so we limited the Spark experiments to

0.00%	

10.00%	

20.00%	

30.00%	

40.00%	

50.00%	

60.00%	

70.00%	

80.00%	

90.00%	

100.00%	

2	 4	 8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	

Q
ue

ry
	P
er
ce
nt
ag
e	

Response	Time	(ms)	

Kodiak	

Predecessor	

Figure 8: Kodiak performance evaluation Vs. previous gen-
eration for the query user cases when Kodiak hits multiple
instances.

ones running on materialized views. The view size used was
approximately 1GB, which could fit easily on the cluster –
both from storage and processing perspectives.

Figure 9 shows the results of running the above query on
the three platforms, when varying the date range from one
to ten months.

Figure 9a studies the query latencies across the three plat-
forms. We note that Kodiak is three orders of magnitude
faster than Spark and more than four orders of magnitude
faster Cheetah. This is mostly due to the superior relational
database (MySQL) performance with key features like in-
dexing. Conversely, Spark has to scan all the data. Also,
its execution relies on distributed tasks, which is costly to
launch and coordinate. Cheetah’s experiments, unlike those
of Spark and Kodiak, run on raw events data opposite to
materialized views. Hence, they have to aggregate and filter
all events by AdvertiserID at query time. This explains its
very high latency. Also, note that all queries rollup data
on the time dimension at query time depending on the re-
quested date range. This explains the increased latency for
all platforms as the date range increases. In conclusion, nei-
ther Spark nor Cheetah or any other Hadoop-based query
engine is suitable to serve a workload like Turn’s with a tight
latency SLA for a web portal. Conversely, Kodiak is able to
easily support it.

For multiple reasons, it is hard to have an apples-to-apples
comparison of throughput of these different systems. First,
each runs on different hardware optimized for its own archi-
tecture. Second, it is hard to come up with workload that
would not favor one platform over the other. For example,
for Kodiak, certain queries hit specific nodes, depending on
where the required data is located. To guarantee that the
workload evenly spreads across all nodes, it requires care-
ful design of its queries as well as the dataset, which is
non trivial. To avoid this problem, we adopt a different
approach than directly measuring throughput. Figure 9b
studies the resources needed by the three platforms to exe-
cute a query. Basically, this can be a proxy for throughput.
Given that the three systems are very heterogeneous with
different execution models, we tried to normalize their re-
source usage to a unified metric (Machine.millisecond). For
Cheetah, the metric is approximated as follows. Hadoop has

1277



1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

Q
ue

ry
	  la
te
nc
y	  
(m

s)
	  

Daterange	  (months)	  

Kodiak	  

Cheetah	  

Spark	  

(a) Comparing Kodiak Vs. Cheetah Vs. Spark with re-
spect to query latency time in milliseconds.

0.1	  

1	  

10	  

100	  

1000	  

10000	  

100000	  

1000000	  

10000000	  

1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

M
ac
hi
ne

	  4
m
e	  
(m

s)
	  

Daterange	  (months)	  

Kodiak	  

Cheetah	  

Spark	  

(b) Comparing Kodiak Vs. Cheetah Vs. Spark with re-
spect to estimated machine time in milliseconds.

Figure 9: Kodiak Vs Cheetah Vs Spark performance comparison. Note that the y-axis has logarithmic scale.

the concept of slots, where each machine is split into slots,
where Hadoop executes its tasks. For each completed job,
Hadoop reports the total slot milliseconds it used. Dividing
this by the number of slots per machine, we get the to-
tal Machine.milliseconds the job took. Similarly, Spark has
the concept of virtual CPUs. Dividing the reported vCPU
milliseconds by the number of vCPUs per machine, we get
the total Machine.milliseconds the job took. For Kodiak, it
is a little harder as MySQL does not have the concept of
evenly dividing the machine across queries. To approximate
this, we used the number of physical CPUs per machine as
a proxy for that as most queries are executed sequentially
in a single thread. Consequently, we computed this met-
ric by dividing the query latency by the number of physical
CPUs per machine multiplied by the number of machines
(shards) were used to execute the query. We recognize that
our model may have some inaccuracies. However, this was
the best way we could come up with to compare resource
usage across very different systems. While our results are
approximate, we are confident that they are qualitatively ac-
curate, especially given the number of orders of magnitude
difference between different platforms.

In Figure 9b, we note that Spark consumes four orders of
magnitude more machine ms than Kodiak. Cheetah, con-
sumes seven orders of magnitude more machine ms. Also, we
note that resource consumption increases as the date range
increases due to the increased work of aggregation over time.
So, latency aside, we also conclude it is very costly to exe-
cute a workload like Turn’s solely on Spark or Cheetah.

5. RELATED WORK
The classical way of doing large scale analytics is using

MPP systems. MPP systems like TeraData, Netezza, and
Vertica are very established systems in this arena. However,
it is questionable if they can support sub-second latencies
for complex analytical queries over web-scale data without
materialized views. For high-dimensional data, thousands of
views could be needed. It is questionable that these classical
MPP systems can scale to handle this number of views for
web-scale data. Even if this was possible, it is questionable
it would be able to scale to handle hundreds of thousands of

queries per day in addition to maintaining all these views.
Finally, if all of this is possible, it would be prohibitively
expensive to many as these systems rely on high-end propri-
etary hardware.

Another approach is to use NoSQL [17] systems like HBase
or Cassandra. These systems solve the scaling issue faced
by RDBMS. However, they have the problem that they do
not support SQL. Both systems provide a distributed in-
dex, but only provide very rudimentary key value opera-
tions. Aggregation and group by operations could only be
done on client side. Cassandra provides its own query lan-
guage CQL, which is not very mature and could not fulfill
our need. In addition to the lack of SQL support, HBase
and Cassandra also present an operational challenge. Since
we are loading large amount of data, data compactions are
inevitable. During our tests data compaction on both these
tools is very resource intensive; it sometimes renders the
system unusable when the compaction is underway.

MapReduce based query engines like Pig, Hive, and Chee-
tah provide rich querying facilities. However, they are fun-
damentally limited by Hadoop’s latency. Newer systems like
Impala, Presto, and SparkSQL support low latency SQL as
they do not run on top of Hadoop’s MapReduce. However,
they do not automatically provide sub-second latencies for
web-scale data due to lack of native indexing and material-
ized views support.

Systems like PNUTS [9] and Espresso [22] were built to be
horizontally scalable, while relying on traditional RDBMS
as their backing stores. This way they harness the power
of RDBMS, when the queried data sits in one RDBMS in-
stance, while supporting web-scale. Similarly, F1 [25] was
built to be horizontally scalabale and fault tolerance but
it was built on top of Spanner [10]. However, these sys-
tems were built for realtime data serving and not low-latency
warehousing and analytics. Hence, their design choices are
optimized for data freshness, unlike for Kodiak, which is
optimized for performance.

Druid [32] promises realtime data ingestion and ad-hoc
analytics at scale. It does not rely on materialized views
and evaluates its queries at real time. Instead, it relies on
columnar storage as well as compression to enhance its scal-
ability. More importantly, it tries to keep all its data in

1278



memory for faster access. It has the advantage over Kodiak
of not being limited by available materialized views that it
has to fall back to a much slower MapReduce-based sys-
tem like Cheetah, if no view is available to serve the query.
However, Druid has the fundamental scalability problem of
relying on memory. For peta-byte-scale workloads having
hundreds of thousands of expensive queries per day, this
can become prohibitively expensive. Moreover, even if com-
pressed and stored in memory, scanning a peta-byte-scale
dataset is fundamentally expensive.

Elmeleegy et al. [12] presented an overview of Turn’s Data
Management Platform (DMP). The paper’s focus though
was data models used and ingestion techniques and man-
agement opposite to this paper, where the primary focus is
on optimizing query performance. Song et al. [26] showed
Turn’s ETL pipeline and performance data population. How-
ever, this paper focuses on data storage with optimized
query performance.

Finally, view maintenance in general has received a lot
of attention in the literature in the past [8, 23, 18, 16, 14,
24]. More recently, Agrawal et al. [1] have worked on view
maintenance for very large scale databases. In their work,
they adopt a more eager approach to view maintenance than
Kodiak, where updates to base tables are either reflected im-
mediately or shortly to their corresponding views. Kodiak
takes a different approach, where updates are batched into
large batches and affected shards of the view are recom-
puted to include these updates. This comes at the expense
of views’ data freshness. Fortunately, degraded freshness is
acceptable for our application. Further, even though recom-
puting entire shards is often wasteful as it includes redun-
dant work because many records in the view do not change
between maintenance iterations, batching updates and bulk
loading mitigates this problem. In addition, Kodiak’s scal-
ability can handle any extra load. In return, our approach
provides snapshot-consistency required for our application.
This also significantly simplifies fault tolerance as updates
do not need to be tracked at the record level.

6. CONCLUSIONS
This paper presents Turn’s analytics platform for online

advertising performance data – Kodiak. The platform is
horizontally scalable enabling it to efficiently handle petabytes
of data. It is designed for high performance and very low
latency response time.

Kodiak’s current version is used in production for over
a year. It serves over 200,000 queries every day. These are
complex high-dimensional aggregation queries. Still, Kodiak
achieves very good performance with a median query latency
of 8 ms and a 99 percentile latency of 252 ms.

It achieves this performance by leveraging materialized
views. Views are user defined and system maintained. The
system has the intelligence to select the best view for each
query it receives. Kodiak trades data freshness for better
performance, which complies with Turn’s use case. Specifi-
cally, views are updated lazily in batches to reduce the main-
tenance cost.

Kodiak is fault tolerant. It supports Turn’s web portal
providing analytics to its customers. Hence, it is expected to
have high availability. Consequently, it relies on replication
to tolerate failures.

7. ACKNOWLEDGMENTS
We would like to thank the reviewers for their valuable

feedback. We also thank the rest of our team members:
Lijie Heng, Haoran Li, Brian Peltz, David Rubin, Arjun
Satish, Pooya Shareghi, Thomas Shiou, Serkan Uzunbaz,
Chuck Zhang, and Margaret Zhang for their help and sup-
port.

8. REFERENCES
[1] P. Agrawal, A. Silberstein, B. F. Cooper,

U. Srivastava, and R. Ramakrishnan. Asynchronous
view maintenance for vlsd databases. In Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’09, pages 179–192,
New York, NY, USA, 2009. ACM.

[2] HBase: the Hadoop database.
http:///hbase.apache.org/.

[3] The Apache Cassandra database.
http:///cassandra.apache.org/.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu,
J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin,
A. Ghodsi, and M. Zaharia. Spark sql: Relational data
processing in spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’15, pages 1383–1394, New York, NY,
USA, 2015. ACM.

[5] A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching,
A. Choi, J. Erickson, M. Grund, D. Hecht, M. Jacobs,
I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li,
I. Pandis, H. Robinson, D. Rorke, S. Rus, J. Russell,
D. Tsirogiannis, S. Wanderman-Milne, and M. Yoder.
Impala: A modern, open-source sql engine for hadoop.
In CIDR, 2015.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. ACM Trans. Computer Systems,
26(2), 2008.

[7] S. Chen. Cheetah: A high performance, custom data
warehouse on top of mapreduce. Proc. VLDB Endow.,
3(1-2):1459–1468, Sept. 2010.

[8] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and
H. Trickey. Algorithms for deferred view maintenance.
In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’96, pages 469–480, New York, NY, USA,
1996. ACM.

[9] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, Aug. 2008.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally-distributed database. In Proceedings
of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 251–264,
Berkeley, CA, USA, 2012. USENIX Association.

1279



[11] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[12] H. Elmeleegy, Y. Li, Y. Qi, P. Wilmot, M. Wu,
S. Kolay, A. Dasdan, and S. Chen. Overview of turn
data management platform for digital advertising.
PVLDB, 6(11):1138–1149, 2013.

[13] K. Elmeleegy. Piranha: Optimizing short jobs in
hadoop. Proc. VLDB Endow., 6(11):985–996, Aug.
2013.

[14] A. Gupta and I. S. Mumick. Materialized views.
chapter Maintenance of Materialized Views:
Problems, Techniques, and Applications, pages
145–157. MIT Press, Cambridge, MA, USA, 1999.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: wait-free coordination for internet-scale
systems. In USENIXATC’10: Proceedings of the 2010
USENIX conference on USENIX annual technical
conference, pages 11–11, 2010.

[16] K. Y. Lee and M. H. Kim. Efficient incremental
maintenance of data cubes. In Proceedings of the 32Nd
International Conference on Very Large Data Bases,
VLDB ’06, pages 823–833. VLDB Endowment, 2006.

[17] C. Mohan. History repeats itself: Sensible and
nonsensql aspects of the nosql hoopla. In Proceedings
of the 16th International Conference on Extending
Database Technology, EDBT ’13, pages 11–16, New
York, NY, USA, 2013. ACM.

[18] I. S. Mumick, D. Quass, and B. S. Mumick.
Maintenance of data cubes and summary tables in a
warehouse. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’97, pages 100–111, New York, NY, USA,
1997. ACM.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In Proc. ACM SIGMOD, 2008.

[20] Oracle. Automatic Storage Management.
http://docs.oracle.com/cd/E11882_01/server.

112/e18951/asmcon.htm.

[21] Oracle Clusterware. http://www.oracle.com/
technetwork/database/database-

technologies/clusterware/overview/index.html.

[22] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman,
B. Ghosh, A. Curtis, O. Seeliger, Z. Zhang,
A. Auradar, C. Beaver, G. Brandt, M. Gandhi,
K. Gopalakrishna, W. Ip, S. Jgadish, S. Lu,
A. Pachev, A. Ramesh, A. Sebastian, R. Shanbhag,
S. Subramaniam, Y. Sun, S. Topiwala, C. Tran,
J. Westerman, and D. Zhang. On brewing fresh
espresso: Linkedin’s distributed data serving platform.
In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’13, pages 1135–1146, New York, NY, USA,
2013. ACM.

[23] K. A. Ross, D. Srivastava, and S. Sudarshan.
Materialized view maintenance and integrity
constraint checking: Trading space for time. In

Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’96,
pages 447–458, New York, NY, USA, 1996. ACM.

[24] K. Salem, K. Beyer, B. Lindsay, and R. Cochrane.
How to roll a join: Asynchronous incremental view
maintenance. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’00, pages 129–140, New York, NY,
USA, 2000. ACM.

[25] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Littlefield,
D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed sql
database that scales. In VLDB, 2013.

[26] B. Song, S. Liu, S. Kolay, and L. Lo. Antsboa: A new
time series pipeline for big data processing, analyzing
and querying in online advertising application. In
First IEEE International Conference on Big Data
Computing Service and Applications, BigDataService
2015, Redwood City, CA, USA, March 30 - April 2,
2015, pages 223–232, 2015.

[27] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
A warehousing solution over a map-reduce framework.
Proc. VLDB Endow., 2(2):1626–1629, Aug. 2009.

[28] M. Traverso. Presto: Interacting with petabytes of
data at Facebook.
https://www.facebook.com/notes/facebook-

engineering/presto-interacting-with-petabytes-

of-data-at-facebook/10151786197628920.

[29] Big Data Benchmark - AMPLab.
https://amplab.cs.berkeley.edu/benchmark.

[30] VMware, Inc. Tungsten Replicator 3.0 Manual.
Technical report, VMware, Inc, 2015.

[31] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: Sql and rich
analytics at scale. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 13–24, New York, NY,
USA, 2013. ACM.

[32] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino,
and D. Ganguli. Druid: A real-time analytical data
store. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’14, pages 157–168, New York, NY, USA,
2014. ACM.

1280


