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ABSTRACT
The upsurge in the number of web users over the last two decades
has resulted in a significant growth of online information. This
information growth calls for recommenders that personalize the in-
formation proposed to each individual user. Nevertheless, person-
alization also opens major privacy concerns.

This paper presents D2P , a novel protocol that ensures a strong
form of differential privacy, which we call distance-based differen-
tial privacy, and which is particularly well suited to recommenders.
D2P avoids revealing exact user profiles by creating altered pro-

files where each item is replaced with another one at some distance.
We evaluate D2P analytically and experimentally on MovieLens
and Jester datasets and compare it with other private and non-private
recommenders.

1. INTRODUCTION
In the modern generation of web-based services, the number of

users is increasing exponentially. This number bumped up from
16 million users in 1995 to 3 billion users in 2014. The web has
become a big storehouse of information (about 2.5 billion GB of
data are created everyday), making it impossible for an individual
to explore the whole web contents to extract relevant data. This
clearly calls for personalization [4]. Personalizing the web led
in turn to the advent of recommenders [17]. These systems filter
out user-specific information in real-time, leveraging user activities
and behaviors. Recommenders are primarily used in the context
of e-commerce to suggest books, DVDs (Amazon.com), trips (Tri-
pAdvisor), music (last.fm) and even research papers (Mendeley).
They are also used to filter user-specific news (Google News, Ya-
hoo News).

However, the tendency towards personalization has raised a pri-
vacy concern [27] as more and more personal data is being col-
lected and used. It is often observed that when an Internet user
accesses some service, the provider of this service typically claims
the ownership of any personal information provided by the user.
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The service provider sometimes even distributes the collected in-
formation to third parties like advertising and promotional part-
ners [1]. Even the sharing of anonymised user information like
the Netflix Prize dataset might end up not being secure. For in-
stance, Narayanan et. al presented a de-anonymization attack that
linked the records in the Netflix Prize dataset with the IMDB pro-
files available publicly [24].

Particularly fragile among recommenders are Collaborative Fil-
tering (CF) ones [31]: these are widespread because of their ability
to provide serendipitous recommendations (unexpected but desired
recommendations) [27]. CF recommenders make predictions about
the preferences of the users by collecting suggestions from similar
users (user-based) or finding similar items (item-based) based on
neighborhood. CF recommenders provide significant advantages
over alternatives (e.g. content-based approaches [33]) due to the
substantial number of features they use. Yet, CF recommenders
are particularly vulnerable to privacy attacks as they rely on di-
rect information about user profiles to provide good recommenda-
tions. They aggregate user preferences [28] in ways analogous to
database queries, which can be exploited by adversaries to extract
personal identifiable information about a specific user [27].

Clearly, CF recommenders induce an inherent tradeoff between
privacy and quality [19]. In this paper, we address this tradeoff
by exploring a promising approach where the information used
for computing recommendations is concealed. We present D2P ,
a novel protocol that uses a probabilistic substitution technique to
create the AlterEgo profile of an original user profile. D2P ensures
a strong form of differential privacy [7, 8], which we call Distance-
based Differential Privacy. Differential privacy [7, 8] is a cele-
brated property, originally introduced in the context of databases.
Intuitively, it ensures that the removal of a record from a database
does not change the result of a query to that database - modulo
some arbitrarily small value (ε). In this sense, the presence in the
database of every single record - possibly revealing some informa-
tion about some user - is anonymous as no query can reveal the very
existence of that record to any other user (modulo ε). Applying this
notion in the context of recommenders would mean that - modulo
ε - no user Y would be able to guess - based on the recommenda-
tions she gets - whether some other user X has some item I in her
profile, e.g., whether X has seen some movie I . Such a guarantee,
however, might be considered too weak as nothing would prevent
Y from guessing that X has in her profile some item that is very
similar to I , e.g., that X has seen some movie similar to I .

We strengthen the notion of differential privacy in the context
of CF recommenders to guarantee that any user Y is not only pre-
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vented from guessing whether the profile of X contains some item
I , but also whether the profile of X contains any item I ′ within
some distance λ from I (say any movie of the same category of I):
hence the name Distance-based Differential Privacy (D2P). We
present a protocol, named D2P , which ensures this property.

The basic idea underlying D2P is the following. We build, for
each user profile, an AlterEgo profile corresponding to it. The lat-
ter profile is based on the former one where we probabilistically
replace some of the items with either related or random ones. This
poses of course a challenging technical problem. If the AlterEgo
profile is too far from the original one, the recommendation quality
is impacted: we lose the benefits of collaborative filtering. If the
profile is too close to the original one, privacy remains weak.

We demonstrate in the paper that the quality of the D2P recom-
mendation is still good for values of λ that can hide items within a
reasonable distance from the original profile - what might be con-
sidered a reasonable distance depends on the dataset as we explain
later in the paper.

To illustrate the basic idea, consider traces from Movielens and
the scenario of Figure 1, with a total of 5 movies. Consider a user
who likes Shawshank Redemption (SR). We compute the distance
between the other 4 movies from SR based on their similarity (as
shown later in Equation 1 in Section 2.1). D2P selects movies
(for replacement) with distance less than the upper bound (λ = 0,
1 or 2) with high probability (p) and any random movie from the
dataset, including those close to the item to be replaced, with a low
probability (1− p). If λ is set to 0, then D2P satisfies the classical
differential privacy (with ε given in Equation 12 in Section 3.2.3).
Our results in Section 4 show that even if we consider λ as 6.5, we
still have a good recommendation quality.

Figure 1: D2P Illustration.

We perform a thorough evaluation of D2P: (i) we first analyti-
cally compute the guarantees ensured by D2P , in terms of param-
eters ε and λ, and then (ii) we evaluate experimentally the qual-
ity of recommendations provided on real datasets, namely Movie-
Lens and Jester. Our results show that D2P provides proved pri-
vacy guarantees while preserving the quality of the recommenda-
tion. We demonstrate, for instance, that D2P achieves 1.5 times
the coverage [10] provided by a standard recommender for Movie-
lens dataset. Additionally, we show that the privatization overhead
in D2P is very small compared to [21], which makes it appealing
for real-time workloads.

Interestingly, D2P is a generic protocol. As we show through
our performance results, it applies well in the context of a user-
based as well as an item-based recommender. D2P can also be cus-
tomized for recommendation infrastructures where a KNN compu-
tation is deployed either on the cloud [26] or on user machines [5].

The rest of the paper is organized as follows. Section 2 presents
D2P . Section 3 discusses its privacy guarantees. Section 4 eval-
uates the quality and coverage of its recommendations along with
the privatization overhead. Section 5 discusses related work. We
conclude the paper in Section 6 by discussing future works.

2. D2P RECOMMENDER
D2P considers a general CF recommendation scheme based on

KNN (K Nearest Neighbors [31]). The working principle of such
a scheme is twofold. Firstly, the k most similar neighbors of any
active user are identified in the KNN selection phase. Secondly,
the recommendation algorithm is run to suggest items to the users
leveraging the profiles obtained through the KNN selection.

2.1 Underlying Scheme
We consider a recommender scheme that stores user profiles and

item profiles. The profile of a user U , denoted by PU , consists of all
the items rated (alternatively shared or liked) by U along with the
ratings. In our implementation, we convert the numerical ratings
into binary ratings, a like (1) or a dislike (0). 1 An item profile (PI)
consists of users who rated item I along with the ratings.
D2P relies on the distance between items to create AlterEgo

profiles, as we discuss below. The recommender in D2P operates
in four phases as shown in Figure 2.

Figure 2: D2P Recommendation Scheme.

2.1.1 Grouping Phase.
In this phase, groups are formed for each item: groupGi for item

i contains all the items with distance less than a predefined upper-
bound λ. In our scheme, we define the distance Λi,j between items
i and j as:

Λi,j =
1

Ψ(i, j)
− 1 (1)

Here, Ψ(i, j) denotes the cosine similarity between items i and j.
The neighboring group Gj of a group Gi is defined as a group
with which group Gi shares at least one item. Groups can also be
formed based on item features (e.g. genres, date-of-release in case
of movies) where similarity is measured between the feature vec-
tors of the items. The groups need to be updated periodically to ac-
count for newly added items and ratings. In D2P , the grouping of
1Binary ratings are considered for the sake of simplicity: this
scheme can be generalized to numerical ratings.
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the items in the Grouping Phase is performed by the FormGroups
function shown in Algorithm 1. An item can be included in more
than one groups, e.g., an action-comedy movie X can be present in
the group of an action movie as well as in the group of a comedy
movie.

Algorithm 1 Grouping : FormGroups(ItemSet): Grouping Phase
where ItemSet is the set of all items in Database

1: Parameter: λ � Distance threshold
2: var ItemSet; � Denotes set of all items in the network
3: var λ; � Distance Metric
4: for all iid : item in ItemSet do
5: Groupiid.add(iid);
6: for all rid : item in (ItemSet \ iid) do
7: S = Ψ(iid, rid); � Compute Similarity
8: if S > 0 then
9: Λiid,rid = (1/S)− 1;

10: if Λiid,rid ≤ λ then
11: Groupiid.add(rid);
12: end if
13: end if
14: end for
15: end for
16: return: Group; � The groups for the items

2.1.2 Modification Phase.
D2P relies on the above mentioned groups of items to create

AlterEgo profiles, avoiding to reveal the exact ones. The two core
components of D2P are the Selector, which selects the items to
replace and the Profiler, which determines by which items those
entries should be replaced. The AlterEgo profile of a user U de-
notes the imitation profile of U which hides the user preferences by
substituting items in the user profile by utilizing D2P . The selec-
tor and profiler are in charge of computing these AlterEgo profiles
to preserve (ε, λ)-differential privacy. Details about selector and
profiler are provided later.

2.1.3 KNN Selection Phase.
In user-based CF recommenders, a K-Nearest Neighbors (KNN) [31]

algorithm computes the K most similar users based on some simi-
larity metric. In this phase, we periodically update the top Kusers

similar users for an active user as the neighbors using the AlterEgo
profiles generated in the modification phase.

2.1.4 Recommendation Phase.
In this final phase, the recommendations are computed using

those Kusers neighbors. In the context of this paper, we select the
most popular items among the neighbors of U to be recommended
to U .

Some maintenance operations are needed: (i) Profile update:
When a user U rates an item I, then both PU and PI are up-
dated. Profiles are updated incrementally as in standard online
recommenders. (ii) Group Update: The static nature of the rela-
tionship (similarity) [18, 29] between items stabilizes the grouping
phase. So, the frequency of group updates has little impact on the
quality of the provided recommendations; The groups are updated
periodically after every 10 days in our evaluation. (iii) Recommen-
dation: The new recommendations are delivered to the active user
incrementally whenever an item is rated by the user. In D2P , only
the AlterEgo profiles of the KNN are updated during each recom-
mendation. We take into account the recent ratings provided by the
users to compute recommendations.

Privacy breaches occur in a standard user-based CF recommender
due to leakage of the information of neighboring profiles to the ac-
tive user through recommendations provided to her. D2P protects
the privacy of users in the modification phase through two com-
ponents: Selector and Profiler as conveyed by Figure 3. These
two components conceal the neighbors’ information from the ac-
tive user, preventing this user to correlate the recommendations to
the neighbors’ profiles. The selector and profiler are responsible
for forming the AlterEgo profiles in such a way that the quality is
not impacted too much while privacy is preserved. We now provide
details on these two core components.

Figure 3: D2P Modification Phase.

2.2 D2P Components

2.2.1 D2P Selector
The selector is responsible for selecting the items to replace by

the profiler to form the AlterEgo profiles. We select an item with a
probability p to replace with any possible item at random and with
a probability 1− p to replace with some random item from the re-
spective group (and neighboring groups) for that respective item.
The getSelectProb function mentioned in Algorithms 2 and 3, re-
turns a random real number between 0 and 1. Finally, the selector
outputs a set of actual items (GItems) to be replaced by GroupItems
and another set of actual items (RItems) to be replaced by any item
from the set of all possible items at random.

Algorithm 2 Selector Algorithm: Selector(Pu) where Pu is the
profile of user u

1: Parameter: p � Selector Probability
2: var GItems[U ] = NULL; � Replace with group item
3: var RItems[U ] = NULL; � Replace with any item
4: for all iid : item in PU .getItems() do
5: if getSelectProb() > p then
6: GItems[U ] = GItems[U ] ∪ iid;
7: end if
8: if getSelectProb() ≤ p then
9: RItems[U ] = RItems[U ] ∪ iid;

10: end if
11: end for
12: return: {GItems[U ], RItems[U ]};

2.2.2 D2P Profiler
The profiler builds the AlterEgo profiles which are used in the

KNN selection phase. The profiler replaces items in GItems with
items from their respective group (and neighboring groups) with a
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probability 1 − p∗ and retains the original item with a probability
p∗. We also substitute items in RItems with items from the set of
all possible items with a probability 1−p∗ and preserves the actual
ones with a probability p∗. The SRSI (Select Random Set Item)
function in Algorithm 3 selects randomly an item from the respec-
tive groups’ items. It selects either from GroupItems (based on a
distance metric between items) for all the items in the set GItems or
from the ItemSet for all the items in RItems. In the following sec-
tions, we show thatD2P ensures users’ privacy while preserving a
good recommendation quality.

Algorithm 3 Profiler Algorithm: Profiler(Pu) where Pu is the
profile of user u

1: Parameter: p∗ � Profiler Probability
2: var {GItems[U ], RItems[U ]} = Selector(PU );
3: var Items[U ] = GPI(PU ); � Get items from PU
4: var ItemSet; � Set of all items in the network
5: for all iid : item in PU .getItems() do
6: GroupID = Groupiid;
7: NBGroupIDs = Groupiid.getNeighbors();
8: Groups = GroupID ∪NBGroupIDs;
9: GroupItems =

⋃
G∈GroupsGroup.get(G);

10: if (getSelectProb() > p∗ & iid ∈ GItems[U ]) then
11: rid = SRSI(iid,GroupItems);
12: end if
13: if (getSelectProb() > p∗ & iid ∈ RItems[U ]) then
14: rid = SRSI(iid, ItemSet);
15: end if
16: PU = (PU \ iid) ∪ rid;
17: end for
18: return: PU ; � AlterEgo profile for user U

Interestingly, D2P can also be applied in recommendation in-
frastructures where the KNN is computed by third-party cloud ser-
vices that act as intermediaries between the recommendation server
and users: these servers create the AlterEgo profiles, preserving pri-
vacy with respect to a server. Moreover,D2P can be applied by the
users themselves (in P2P or hybrid infrastructures [5]), preserving
privacy of users against other users.

3. PRIVACY GUARANTEES
Preserving privacy in CF recommenders is challenging. It was

shown using the Netflix Prize dataset that even anonymizing indi-
vidual data before releasing it publicly is not enough to preserve
privacy [24]. Even cryptographic approaches do not preclude the
possibility of the output leaking information about the personal in-
put of individuals [32]. The need for stronger and robust privacy
guarantees motivated the emergence of the notion of Differential
Privacy [7, 8, 9]. First introduced in the context of databases,
differential privacy provides quantifiable privacy guarantees. We
introduce a stronger form of this notion in the context of recom-
menders by accounting for the concept of distance between items.

3.1 Privacy for Recommenders

3.1.1 Differential Privacy
Differential Privacy (DP ) implies that the output of a given func-

tion becomes significantly more or less likely - based on some pa-
rameter ε - if the inputs differ in one record. The basic intuition is
that an observer can extract limited information from the output in
the absence or presence of a specific record in the database.

DEFINITION 1. (DIFFERENTIAL PRIVACY) A randomized function
R provides ε-differential privacy if for all datasetsD1 andD2, dif-
fering on at most one element, and all S ⊆ Range(R), the follow-
ing inequality always holds:

Pr[R(D1) ∈ S]

Pr[R(D2) ∈ S]
≤ eε

Here, eε denotes exp(ε).

3.1.2 Distance-based Differential Privacy
With differential privacy applied in its classical form recalled

above to a recommender, an adversary (a curious user) cannot know
if one item has been rated by a user. However, the adversary can
know about items similar to the rated ones. Hence, the adversary
can infer fairly accurate information about user preferences without
knowing the exact items rated by that user. In this sense, classical
differential privacy is not enough in the context of a recommender.

Our notion of Distance-based Differential Privacy is stronger: it
extends DP to recommenders. We ensure differential privacy for
all the items, rated by that user, and ones that are within a distance
of λ. The distance parameter (λ) determines the closely related
items to form the AlterEgo profiles, thereby concealing the actual
user profiles and preferences. The distance parameter also aids in
tuning the recommendation quality using the AlterEgo profiles as
shown later in Figures 12a and 12b.

It is important to notice that our notion of Distance-based differ-
ential privacy is independent from the underlying recommendation
algorithm used. To define this new notion more precisely, we first
define the notions of Distance-based Group and Adjacent Profile
Sets.

DEFINITION 2. (GROUP DEFINITION ELEMENT-WISE) We denote
by E the set of all elements. For every element x ∈ E, distance
function Λ : E × E → R+ ∪ {0}, and fixed distance threshold λ,
then GRPλ(x) is defined as the collection of all elements xk ∈ E
such that Λx,xk ≤ λ. More specifically:

GRPλ(x) = {xk ∈ E|Λx,xk ≤ λ}
We extend this notion of groups to a set of elements where each

element in the set has a Group defined by Definition 2.

DEFINITION 3. (GROUP DEFINITION SET-WISE) For a set of ele-
ments S, GRPλ(S) is the union of all the groups: GRPλ(s) for
each element s∈ S. More specifically:

GRPλ(S) = ∪
s∈S
GRPλ(s)

We now introduce the notion of Neighboring Groups (used in
Section 3.2.3).

DEFINITION 4. (NEIGHBORING GROUP) We define theKNN groups
(KNN (GRPλ(x))) of GRPλ(x) for an element x as the Top−K
groups sorted in decreasing order by the count of shared elements
with GRPλ(x).

DEFINITION 5. (ADJACENT PROFILE SET) An event in the context
of D2P is an interaction between the system and the user when the
user provides a rating for some item in the system. Two profile sets
D1 and D2 as adjacent profile sets when D1 and D2 differ in only
one event, which implies one user-item rating pattern is different in
these two profile sets.
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Notations
M A mechanism relying on AlterEgo profiles to provide recom-

mendations
U User to whom some recommendation is provided
Pi Accurate ith profile from profile set D
Pri AlterEgo profile of original profile Pi
pri Any random possible AlterEgo profile for original profile Pi
D Original Profile Set
D′ Profile Set which differs with D at an event
S Arbitrary set of elements
NE Total number of elements
π Any possible permutation of numbers in the range {0,..n}

Table 1: Notations

For any arbitrary recommendation mechanismR, which takes a
profile set and a specific user as input, the output is the set of items
that the algorithm recommends to that specific user.

DEFINITION 6. (DISTANCE-BASED DIFFERENTIAL PRIVACY) For any
two adjacent profile sets D1 and D2, where U denotes any arbi-
trary user and S denotes any possible subset of elements, then any
mechanismR is (ε, λ)-private if the following inequality holds:

Pr[R(D1,U) ∈ GRPλ(S)]

Pr[R(D2,U) ∈ GRPλ(S)]
≤ eε (2)

The result of the recommendations for two profile sets that are
close to each other are of the same order probabilistically with a
coefficient of eε. Later in Section 3.2.3, we present the mathe-
matical relationship between ε and λ. D2P conceals the profiles
by anonymizing elements within distance λ from the elements of
the original profile. We get the classic notion of differential privacy
with λ as 0. If we increase λ then the privacy increases but the qual-
ity decreases slightly as shown later in Figure 12a. In a user-level
privacy scheme, more than one event can differ for a profile in two
adjacent profile sets, whereas in an event-level privacy approach a
single event differs for a profile in two adjacent profile sets. The
proofs in the following section assume event-level privacy.

3.2 Privacy Analysis
In this section, we analyze our D2P protocol based on the pri-

vacy parameter ε and the distance parameter λ.

3.2.1 Notations
We fix an arbitrary user U to whom we provide some recom-

mendations. D and D′ are two adjacent profile sets. Additional
notations used later in the proofs are mentioned in Table 1.

3.2.2 Proofs
As D and D′ are two adjacent profile sets, using Definition 5

we know that D and D′ differ at one event which is one user-item
rating pattern in a profile.Pi denotes this profile in profile set D
whereas P ′i denotes this profile in profile setD′. Pi has an element
i0, for which in P ′i there is another element i′0 in place of i0. So,
exactly one rating pattern is different inPi andP ′i . Let the elements
in Pi be i0, i1, ..., in and the elements in P ′i be i′0, i1, ..., in.

PROPOSITION 1. For any given distance metric λ and any
two elements i and j, we denote SUB(i, j) the event of substituting
element i with j in a mechanismM. This substitution probability is
denoted by Pr(SUB(i, j)). Then, for mechanismM, we propose

ε as:

ε = ln(δ)

where δ = max
i,j,k∈E and i6=j

(
Pr(SUB(i,k))
Pr(SUB(j,k))

)
THEOREM 1. Any mechanismM, that relies on the AlterEgo

of a profile Pi, is an (ε, λ)-private mechanism for ε given in Propo-
sition 1.

First, we present some lemmas and corollaries needed to prove
Theorem 1.

LEMMA 1. For three arbitrary elements i, j, k ∈ E and i 6=
j, we get the following inequality:

Pr(SUB(i, k))

Pr(SUB(j, k))
≤ eε

PROOF. Since, any ratio is upper-bounded by its maximum. Hence,
from Proposition 1 we have:

Pr(SUB(i, k))

Pr(SUB(j, k))
≤
(

max
i,j,k∈E and i6=j

Pr(SUB(i, k))

Pr(SUB(j, k))

)
= eε

Therefore, we get:

Pr(SUB(i, k))

Pr(SUB(j, k))
≤ eε

LEMMA 2. LetM be a privacy preserving mechanism which
creates the AlterEgo (Pri ) of a profile Pi. Pr(PS(Pi,Pri )) de-
notes the probability of the substitution event (PS(Pi,Pri )) to cre-
ate the AlterEgo. Then, the following inequality holds:

Pr(PS(Pi,Pri ))

Pr(PS(P ′i,Pri )
≤ eε

PROOF. Denote by π any permutation of {0,..,n}. Let P riπ be a
profile with elements irπ(0), i

r
π(1), ..., i

r
π(n). P

r
iπ denotes one pos-

sible permutation of the elements of Pri . So, for any permutation
π, we compute the probability of changing Pi to Priπ . Then, we
sum over all possible permutations to get the final probability of
the substitution event (PS(Pi,Pri )).

Pr(PS(Pi,Pri )) =
∑
∀π

Pr(PS(Pi,Priπ )) (3)

Now, based on the fact that every element is replaced independently
of the replacement of other elements, we compute:

Pr(PS(Pi,Priπ )) =

n∏
k=0

Pr(SUB(ik, i
r
π(k))) (4)

Based on Equations 3 and 4, we get:

Pr(PS(Pi,Pri )) =
∑
∀π

(
n∏
k=0

Pr(SUB(ik, i
r
π(k)))

)
(5)

In the same way, for P ′i , we have:

Pr(PS(P ′i,Pri ))

=
∑
∀π

Pr(SUB(i′0, i
r
π(0))).

n∏
k=1

Pr(SUB(ik, i
r
π(k))) (6)
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Now, from Equations 5 and 6, we get:

Pr(PS(Pi,Pri ))

Pr(PS(P ′i,Pri ))

=

∑
∀π Pr(SUB(i0, i

r
π(0))).

∏n
k=1 Pr(SUB(ik, i

r
π(k)))∑

∀π Pr(SUB(i′0, i
r
π(0))).

∏n
k=1 Pr(SUB(ik, irπ(k)))

(7)

From Lemma 1, we get for any three arbitrary elements i0, i′0
and ir0:

Pr(SUB(i0, i
r
0))

Pr(SUB(i′0, i
r
0))
≤ eε (8)

So, from Equations 7 and 8, we get:

Pr(PS(Pi,Pri ))

Pr(PS(P ′i,Pri ))

≤
∑
∀π e

ε.P r(SUB(i′0, i
r
π(0))).

∏n
k=1 Pr(SUB(ik, i

r
π(k)))∑

∀π Pr(SUB(i′0, i
r
π(0))).

∏n
k=1 Pr(SUB(ik, irπ(k)))

= eε.

∑
∀π Pr(SUB(i′0, i

r
π(0))).

∏n
k=1 Pr(SUB(ik, i

r
π(k)))∑

∀π Pr(SUB(i′0, i
r
π(0))).

∏n
k=1 Pr(SUB(ik, irπ(k)))

= eε

Hence, we can conclude that:

Pr(PS(Pi,Pri ))

Pr(PS(P ′i,Pri ))
≤ eε

COROLLARY 1. For any two adjacent profile setsD,D′ and
any arbitrary AlterEgo profile setDr , we denote byDS(D,Dr) the
Set Substitution event for D with Dr . We assume the profile sets D
and D′ differ at the ith profile (Pi). Then, we have:

Pr(DS(D,Dr))
Pr(DS(D′,Dr)) ≤ e

ε

PROOF. Using the same approach as in Lemma 2, we get:

Pr(DS(D,Dr))
Pr(DS(D′,Dr)) =

∑
∀π

Pr(PS(Pi,P rπ(i))).
m∏

k=1,k 6=i
Pr(PS(Pk,P rπ(k)))∑

∀π
Pr(PS(P ′i ,P rπ(i))).

m∏
k=1,k 6=i

Pr(PS(Pk,P rπ(k)))

From Lemma 2, we have:

Pr(PS(Pi, P
r
π(i)))

Pr(PS(P ′i , P
r
π(i)))

≤ eε

Therefore, using Lemma 2, we get:

Pr(DS(D,Dr))
Pr(DS(D′,Dr)) ≤

∑
∀π

eε.P r(PS(P ′i ,P rπ(i))).
m∏

k=1,k 6=i
Pr(PS(Pk,P rπ(k)))∑

∀π
Pr(PS(P ′i ,P rπ(i))).

m∏
k=1,k 6=i

Pr(PS(Pk,P rπ(k)))

Hence, we get:

Pr(DS(D,Dr))
Pr(DS(D′,Dr)) ≤ e

ε

PROOF OF THEOREM 1. LetD andD′ be any two adjacent pro-
file sets andDr be any arbitrary AlterEgo profile set. We defineM′
as any mechanism which takes as input the AlterEgo profiles and
the target user to whom we provide recommendations as shown in
Figure 4. So, we can rewrite:

Pr[M(D,U) ∈ GRPλ(S)]

=
∑
Dr

Pr(DS(D,Dr)).P r[M′(Dr,U) ∈ GRPλ(S)] (9)

Using the same approach for the profile set D′, we get the fol-
lowing equation:

Pr[M(D′,U) ∈ GRPλ(S)]

=
∑
Dr

Pr(DS(D′,Dr)).P r[M′(Dr,U) ∈ GRPλ(S)] (10)

Figure 4: Relation between mechanisms M and M’.

From Equations 9 and 10, we arrive at:

Pr[M(D,U) ∈ GRPλ(S)]

Pr[M(D′,U) ∈ GRPλ(S)]

=

∑
Dr Pr(DS(D,Dr)).P r[M′(Dr,U) ∈ GRPλ(S)]∑
Dr Pr(DS(D′,Dr)).P r[M′(Dr,U) ∈ GRPλ(S)]

LetQDr denote the event probability: Pr[M′(Dr,U) ∈ GRPλ(S)],
so we can reformulate the above equation as:

Pr[M(D,U) ∈ GRPλ(S)]

Pr[M(D′,U) ∈ GRPλ(S)]
=

∑
Dr Pr(DS(D,Dr)).QDr∑
Dr Pr(DS(D′,Dr)).QDr

(11)
From Equation 11 and Corollary 1, we have:

Pr[M(D,U) ∈ GRPλ(S)]

Pr[M(D′,U) ∈ GRPλ(S)]
=

∑
Dr Pr(DS(D,Dr)).QDr∑
Dr Pr(DS(D′,Dr)).QDr

≤
∑
Dr e

ε.P r(DS(D′,Dr)).QDr∑
Dr Pr(DS(D′,Dr)).QDr

= eε

Hence, using ε from Proposition 1 for mechanismM, we get:

Pr[M(D,U) ∈ GRPλ(S)]

Pr[M(D′,U) ∈ GRPλ(S)]
≤ eε

Therefore, using Definition 6, we can conclude that mechanismM
satisfies (ε, λ)-privacy.
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3.2.3 Privacy Analysis of D2P
Now, we analyze our D2P privacy in the abstract model which

we introduced in Section 2.
First, we denote the GroupItems for an item i in Algorithm 3

as:

Gλ(i) = (∪j∈KNN (GRPλ(i))GRPλ(j)) ∪ GRPλ(i)

As mentioned in Section 2, the selector selects to replace an ele-
ment s with any random element from E with a probability p and
with any random element from Gλ(s) with a probability 1− p. So,
it finally outputs two sets of elements GItems and RItems for
each user profile. For both of these sets (GItems and RItems),
the profiler retains the original elements with probability p∗. It
replaces elements in GItems with elements from Gλ(s) and ele-
ments inRItemswith any possible element e ∈ E with probability
1− p∗. HereNE is the total number of elements in E.

So, we compute Pr(SUB(s, t)), for any two arbitrary elements
s and t, in this abstract model. We get the following:

Pr(SUB(s, t)) =


p∗ + (1−p)(1−p∗)

|Gλ(s)|
+ p(1−p∗)

NE
if s = t

(1−p)(1−p∗)
|Gλ(s)|

+ p(1−p∗)
NE

if t ∈ Gλ(s) \ s

p(1−p∗)
NE

if t /∈ Gλ(s) .

Let ε(p,p
∗,λ)

D2P denote the ε for D2P with privacy parameters (p,
p∗ and λ) and |Gλ| denote min

s∈E
(|Gλ(s)|). Then, using the above

substitution probabilities, we get:

ε(p,p
∗,λ)

D2P = ln(1 +
p∗ + (1−p)(1−p∗)

|Gλ|
p(1−p∗)
NE

) (12)

So, when we compute using the original profile, we have p∗ =
1, which implies ε(p,1,λ)D2P = ∞ (no privacy). When p∗ = 0 in
Equation 12, so all the items are replaced with some items. Then
we have ε(p,0,λ)D2P as :

ε(p,0,λ)D2P = ln(1 +

(1−p)
|Gλ|
p
NE

) = ln(1 +
(1− p).NE

p.|Gλ|
) (13)

From this ε(p,0,λ)D2P , we see that when p increases, the probability
to replace an item with a random item increases leading to more
privacy and that is evident from the decreasing value of ε(p,0,λ)D2P in
Equation 13. When p = 1 in Equation 13,D2P achieves ε(1,0,λ)D2P =
0 (perfect privacy). For larger λ, the size of the groups becomes
larger, hence privacy increases resulting in smaller εD2P .

4. EXPERIMENTAL EVALUATION
This section presents an exhaustive experimental evaluation of

ourD2P protocol using two real datasets namely Jester and Movie-
Lens. In particular, we compare the recommendation quality and
coverage [10] of D2P with that of a non-private protocol directly
relying on the original user profiles. We also provide a comparison
with [21], one of the closest to our work. Additionally, we discuss
an item-based version ofD2P: i-D2P which we implemented and
evaluated.

4.1 Experimental Setup

4.1.1 Evaluation Metrics
We measure the recommendation quality as follows: we divide

the dataset into a training set (80% of the dataset trace) and a test set
(20%). For each rating in the test set, a set of top recommendations
is selected as the Recommendation Set (RS). We denote the size of

Relevant Irrelevant Total
Recommended tp fp tp+ fp

Not Recommended fn tn fn+ tn
Total tp+ fn fp+ tn N

Table 2: Confusion Matrix for true/false positive/negative recom-
mendations.

the recommendation set as N . The quality is measured in terms
of standard classification accuracy metrics (CAM) [30]. More pre-
cisely, we evaluate the extent to which the recommender is able to
predict the content of the test set while having computed the KNN
on the training set. We use Precision and Recall as classification
accuracy metrics for they are conventionally used in top-N recom-
menders [6]. Table 2 shows the terms needed for defining Precision
and Recall: True Positives (tp), True Negatives (tn), False Positives
(fp), False Negatives (fn).
Precision or True Positive Accuracy (TPA) is the ratio of the num-
ber of relevant recommended items to the total number of recom-
mended items.

Precision = TPA = tp
tp+fp

Recall or True Positive Rate (TPR) is the ratio of the number of
relevant recommended items to the total number of relevant items.

Recall = TPR = tp
tp+fn

To get an estimate of the drop in quality, we measure the decrease
in precision for Top-5 recommendations [22] (denoted by Pr@5),
as most recommenders follow Top-N recommendations, e.g: IMDB
uses Top-6 list to suggest similar movies, Amazon uses Top-4 list
to suggest similar products and last.fm uses Top-5 list to suggest
similar music.
F1-Score is used to access precision and recall simultaneously.

Mathematically, it is the harmonic mean of Precision and Recall.

F1 − Score = 2. Precision.Recall
Precision+Recall

4.1.2 Datasets
We evaluateD2P with two datasets: the MovieLens (ML) dataset [23]

and the Jester one [14]. The ML dataset consists of 100, 000 (100K)
ratings given by 943 users over 1682 movies. The Jester dataset [14]
contains 4.1 million ratings of 100 jokes from 73,421 users. We use
a subset of the Jester dataset with around 36K ratings given by 500
users over 100 jokes. The Jester subset consists of 500 users se-
lected uniformly at random among all users who rated at least 50
jokes. D2P relies on the item-replacement technique, so the qual-
ity of the recommendation provided byD2P depends on how much
two items are connected in the dataset. We thus consider datasets
with diverse characteristics to evaluate D2P .
Diversity: We created 4 diverse datasets from the ML 100K dataset
to cover a variety of characteristics (typically sparsity).

The ratings are stored in a user-item matrix where the rows of
the matrix contain the user-ids and the columns contain the item-
ids. Then, the rows are sorted based on the total number of ratings
given by the users and the columns are sorted based on the total
number of times the items have been rated by different users. The
partitioning of the dataset is shown in Figure 5 as users × items
matrix.

Characterization. To evaluate D2P in different settings, we
characterize the datasets according to Rating Density metric. The
Rating Density (RD) is the ratio of the number of ratings given by
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Figure 5: ML1 Dataset Partitions based on rating density.

Dataset #Users #Items Ratings RD(%)
Jester 500 100 36000 71.01
ML1 940 1680 99647 6.31

MLV1 470 840 76196 19.3
MLV2 470 840 16187 4.1
MLV3 470 840 6317 1.6
MLV4 470 840 750 0.19

Table 3: Datasets characteristics.

the users in the dataset to the total number of ratings possibly given
(number of users multiplied by the number of items).

Table 3 depicts the rating densities of different datasets.

4.2 Results

4.2.1 Impact of Rating Density
Figure 6 shows the recall measured with varying size of the rec-

ommendation set in D2P with parameters p = 0.5, p∗ = 0.5 and
λ = 1. We observe that higher rating density results in better recall
using D2P . As shown in Table 3, the rating density of the Movie-
lens 100K dataset is 6.31% and that of its 4 subsets varies with a
maximum of 19.3% and minimum of about 0.19%. From Figure 6,
we observe thatD2P is not suitable for datasets with too low rating
densities, like MLV3 and MLV4, as these result in lower recall.
However, we observe, for MLV2, D2P provides slightly better
recall compared to a more dense dataset (like MLV1). This hap-
pens because the number of items relevant to a user (in the test set)
is less in MLV2 (more sparse) compared to MLV1 (less sparse).
However, for more sparse datasets like MLV3 or MLV4, collabo-
rative filtering is not effective because the ratings are insufficient to
identify similarities in user interests.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 10  15  20  25  30  35  40  45  50

Re
ca

ll(
N)

N

ML1
MLV1MLV2

MLV3MLV4
Jester

Figure 6: Recall@N with varying Dataset Characteristics.

4.2.2 Privacy-Quality Trade-off

Effect of Profiler probability (p∗).
We vary the value of parameter p∗ from the Profiler algorithm from
a minimum of 0 to a maximum of 1 (no privacy) with other param-
eters λ = 1, p = 0.5.

Movielens. Figures 7a, 7b and 7c demonstrate the performance of
theD2P over several values of p∗ on the Movielens dataset. In Fig-
ure 7a, we observe that the quality drops only by 3.24%, in terms
of Pr@5, when compared to a non-private approach (p∗ = 1).
Jester. Figures 8a, 8b and 8c show the results of the performance
of the D2P over several values of p∗ on Jester workload. In Fig-
ure 8a, we observe that the quality drops only by 2.9% in terms of
Pr@5. Interestingly, we observe in Figure 8b that the recall of a
non-private approach (p∗ = 1) is very similar to the one achieved
by D2P (e.g, at N = 20, the recall values differ by 0.02 only).
This observation also means that D2P provides good recommen-
dation quality in datasets with higher rating densities. The higher
the profiler probability, the better the recommendation quality.

Effect of Selector Probability (p).
Here, we vary the probability p from the Selector algorithm from a
minimum of 0 to a maximum of 0.5 (with λ = 1, p∗ = 0).
Movielens. Figures 9a, 9b and 9c demonstrate the performance of
D2P over several values of p on Movielens.
Jester. Figures 10a, 10b and 10c show the results of the perfor-
mance ofD2P over several values of p on Jester dataset. The lower
the selector probability, the better the recommendation quality.

Effect of distance metric (λ).
We also analyzed the effect of varying the level of privacy using
the distance parameter: λ. We observed the quality of recommen-
dations provided by D2P with several values of λ (with p = 0.5,
p∗ = 0). The results of these experiments are given in Figures 12a
and 12b. We observe that a lower λ provides better quality because
items gets replaced by closer items for lower λ.
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Figure 12: Effect of Distance Metric (λ) on Quality for the ML
Dataset (User-based CF).

4.2.3 Parameter Selection
The distance parameter λ is used to protect user’s privacy. We

now illustrate its usage on two examples. The first one is de-
picted in Figure 13. We consider 3 categories (A,B,C), 3 users
(U1, U2, U3) and 5 movies (I1, I2, I3, I4, I5). We assume that each
user wants to hide some specific category. To hide a Category A for
user U1, we anonymize it with at least one different Category (B or
C). We can achieve this by computing the minimum distance for
items from Category A in U1’s profile (I1,I3) to items in different
categories. For item I1, we get the distance is 2.8 to I2 in Category
B and 3 to I4 in Category C. So, the minimum distance for I1 is
2.8 to I2 in Category B. We get the same for I3 in U1’s profile.
Now, to satisfy the distance for both of these items, we choose the
maximum among them which is 2.8. This gives us the λU1 to hide
Category A forU1. We do the same for usersU2 andU3. Finally, to
set the λ for the system, we get the maximum from all users (which
is 2.8 in the example).
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Figure 7: Effect of Profiler Probability (p∗) on Quality for the ML Dataset (User-based CF).
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Figure 8: Effect of Profiler Probability (p∗) on Quality for the Jester Dataset (User-based CF).
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Figure 9: Effect of Selector Probability (p) on Quality for the ML Dataset (User-based CF).
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Figure 10: Effect of Selector Probability (p) on Quality for the Jester Dataset (User-based CF).

The distance parameter can be also selected as the average dis-
tance for each user profile (λi). Here, λi for user Ui is computed
as the average value of the distance between all pairs of items rated
by user Ui. Figure 14 provides an intuition for this distance pa-
rameter. For the datasets used for evaluation, we get λML1 = 6.5,
λJester = 1.5.

To demonstrate the degradation of ε based on parameters, p and
p∗, we fix the distance parameter (λML1 = 6.5, λJester = 1.5).
Figure 15 demonstrates the degradation of ε based on the privacy
parameters (p, p∗). For Movielens, we obtain good privacy (ε= 2.9)
and good quality (F1-Score=8.5%) with p =0.7, p∗=0.03, λ=6.5.
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Figure 11: Effect of Selector Probability (p) on Quality for the ML Dataset (Item-based CF).

Figure 13: Distance for Personal Choice.

Figure 14: Distance for Average.

For Jester, we obtain good privacy (ε= 0.97) and good quality (F1-
Score=23.1%) with p =0.8, p∗=0.01, λ=1.5.

4.2.4 Coverage Evaluation
Beyond accuracy, there is a variety of other metrics that should

be used to evaluate a recommender [10, 12]. The Coverage of a rec-
ommender is a metric that captures the domain of items over which
it can make recommendations. In particular, we evaluate Catalog
Coverage [10] of D2P and compare it to the coverage provided
by a standard non-private recommender. Consider a set of items
IjK contained in the Top-K list during the jth recommendation in-
stance. Also, denote the total number of items by N . Hence, Cat-
alog Coverage after M recommendation instances can be mathe-
matically represented as follows:

Catalog Coverage =
|∪j=1...M I

j
K
|

N

Figure 16 demonstrates the Catalog Coverage for D2P and com-
pares it with the coverage in a standard recommender for Movie-

(a) Privacy Parameters for Movielens (ML1).

(b) Privacy Parameters for Jester.

Figure 15: Privacy Parameters Comparison.

lens. We observe thatD2P provides 1.5 times better coverage than
a standard recommender when the size of recommendation set is 1.

4.2.5 Overhead Evaluation
We evaluate here the computational overhead of D2P’s privacy

and compare it to the one of [21] which we denote asDPδ . We call
the computations performed for every recommendation as Online
computations and the computations done periodically as Offline
computations. We compare the privacy overhead with the Rec-
ommendation Latency (RL) in D2P . Additionally, we compare
the privacy overhead in D2P with the privacy overhead in DPδ .
As shown in Table 4, the overhead for the offline computations in
D2P is around 26.4 times smaller than that of [21] for Movielens
and around 4.5 times smaller for Jester. All offline computations
are parallelised on a 8-core machine.

4.2.6 Item-based D2P
D2P can be used with any collaborative filtering technique. We

evaluateD2P in another context to illustrate the genericity ofD2P .
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Figure 17: Effect of Profiler Probability (p∗) on Quality for the ML Dataset (Item-based CF).
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Figure 16: Catalog Coverage Comparison.

Datasets D2P Overhead DPδ Overhead
RL Online Offline Offline

ML1 196ms 32ms 4.54s 120s
Jester 24ms 12ms 162ms 740ms

Table 4: Overhead of Privacy.

We implemented an item-based version of D2P: i-D2P . In i-
D2P , the grouping phase is responsible for creating groups of sim-
ilar users based on the distance metric λ. The selector and profiler
components in i-D2P create AlterReplica profiles of the items us-
ing the same approach as in D2P . Finally, the item recommen-
dations are computed using these AlterReplica profiles during the
recommendation phase in i-D2P . Figures 11a, 11b and 11c con-
vey the quality of recommendations provided by i-D2P for varying
values of parameter p (with λ = 1, p∗ = 0). Figures 17a, 17b and
17c convey the quality of recommendations provided by i-D2P for
several values of parameter p∗ (with λ = 1, p = 0.5). In Fig-
ure 17a, we observe that the quality drops by 1.89% in terms of
Pr@5 for the ML dataset. This shows thatD2P also provides good
quality of recommendations in item-based CF recommenders.

5. RELATED WORK
The notion of differential privacy was introduced by Cynthia

Dwork [7, 8, 9]. Most of the research focused on theoretical aspects
and provided feasibility and infeasibility results [15]. In this paper,
we extend differential privacy to the context of recommenders. We
appended the original definition with a distance metric (λ) and pre-
sented an effective way to achieve it through our D2P protocol.

Polat et. al. [25] proposed a randomized perturbation technique
to protect user’s privacy. Zhang et. al. [34] showed however that
a considerable amount of information can be derived from ran-
domly perturbed ratings. Instead of adding perturbations to user
profiles, D2P uses the AlterEgo profiles which are created based
on a distance threshold (λ). Privacy breaches (compromised user
identities) occur when e-commerce sites release their databases to
third-parties for data-mining or statistical reporting [2]. The fact
that with D2P , the third-parties have only access to the AlterEgo
profiles alleviates the risk of revealing user’s identity to those third
parties.

In fact, although, there had been a lot of research work related
to privacy in online recommenders [16, 20] and differential pri-
vacy [7, 8, 9], only a few of these combined these two notions [13,
21]. McSherry et. al. designed a relaxed version of differential
privacy in the context of recommenders [21]. In short, the idea is to
add to the ratings - a limited amount of - Gaussian noise. Our no-
tion of distance-based differential privacy provides a stronger form
of classical differential privacy in the context of recommender sys-
tems. In our case, we replaced items in users profiles with others at
some distance. Other differences between the two approaches in-
clude the way dynamic updates are addressed as well as the under-
lying overhead. McSherry et. al. does not consider updates to the
covariance matrix, and hence is not applicable to a dynamic system
without jeopardizing the privacy guarantee. The AlterEgo profiles
used in D2P can grow naturally without the need to recompute
from scratch like in [21]. Also, the underlying overhead in D2P is
lower. As shown in Table 4, the overhead in D2P is around 26.4
times smaller than that of [21] for Movielens and around 4.5 times
smaller for Jester. The additional overhead in [21] stems from the
compute-intensive preprocessing steps: (i) removal of per-movie
global effects and (ii) centering and clamping process.

6. CONCLUDING REMARKS
While personalization has become crucial on the web, it raises

however privacy concerns as its quality relies on leveraging user
profiles. In this paper, we present an extension of the notion of dif-
ferential privacy to the context of recommenders: systems that per-
sonalize recommendations based on similarities between users. We
introduced D2P which ensures this strong form of privacy. D2P
addresses the tradeoff between privacy and quality of recommen-
dation: it can be applied to any collaborative recommender.

The main intuition behindD2P is to rely on a distance metric be-
tween items so that groups of similar items can be identified. D2P
leverages this notion of group to generate, from real user profiles,
alternative ones, called AlterEgo profiles. These represent differ-
entially private versions of the exact profiles. Such profiles are then
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used to compute the KNN and provide recommendations. We an-
alyze D2P and evaluate experimentally the impact of the privacy
mechanism on the quality of the recommendation in the context
of two datasets: MovieLens and Jester. Our results show that pri-
vacy can be ensured without significantly impacting the quality of
the recommendation. Our experiments demonstrate that D2P can
provide 1.5 times better coverage than a standard recommender for
Movielens. Additionally, D2P incurs a small privatization over-
head compared to other privacy-preserving system like [21] which
makes it comparatively more practical for dealing with real-time
workloads.
D2P could be further extended to other filtering techniques that

rely on user profiles for their recommendation computations. It
would also be interesting to incorporate a hybrid approach in D2P
where the item groups would be formed using content-based filter-
ing [33] while the actual recommendations would be made based
on collaborative filtering techniques. Another interesting direction
for future work is to introduce D2P in matrix factorisation tech-
niques [18].

One limitation of D2P stems from the fact that the users trust
the service-providers with the original user profiles. Privacy could
hence be compromised by online spying on users’ activities [11].
For future work, we would like to study the impact on privacy and
recommendation quality of probabilistically altering or encrypting
user rating [3]: the goal would be to preserve the profile anonymity
even from service-providers. Combining such techniques withD2P
would result in a recommender which is robust to malicious users
and even untrusted service-providers engaged in spying activities.
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