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ABSTRACT
Analyzing large graphs provides valuable insights for social
networking and web companies in content ranking and rec-
ommendations. While numerous graph processing systems
have been developed and evaluated on available benchmark
graphs of up to 6.6B edges, they often face significant dif-
ficulties in scaling to much larger graphs. Industry graphs
can be two orders of magnitude larger - hundreds of bil-
lions or up to one trillion edges. In addition to scalability
challenges, real world applications often require much more
complex graph processing workflows than previously evalu-
ated. In this paper, we describe the usability, performance,
and scalability improvements we made to Apache Giraph,
an open-source graph processing system, in order to use it
on Facebook-scale graphs of up to one trillion edges. We
also describe several key extensions to the original Pregel
model that make it possible to develop a broader range of
production graph applications and workflows as well as im-
prove code reuse. Finally, we report on real-world operations
as well as performance characteristics of several large-scale
production applications.

1. INTRODUCTION
Graph structures are ubiquitous: they provide a basic

model of entities with connections between them that can
represent almost anything. Facebook manages a social graph
[41] that is composed of people, their friendships, subscrip-
tions, likes, posts, and many other connections. Open graph
[7] allows application developers to connect objects in their
applications with real-world actions (such as user X is lis-
tening to song Y). Analyzing these real world graphs at the
scale of hundreds of billions or even a trillion (1012) edges
with available software was very difficult when we began
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a project to run Facebook-scale graph applications in the
summer of 2012 and is still the case today.

Table 1: Popular benchmark graphs.
Graph Vertices Edges
LiveJournal [9] 4.8M 69M
Twitter 2010 [31] 42M 1.5B
UK web graph 2007 [10] 109M 3.7B
Yahoo web [8] 1.4B 6.6B

Many specialized graph processing frameworks (e.g. [20,
21, 32, 44]) have been developed to run on web and social
graphs such as those shown in Table 1. Unfortunately, real
world social network are orders of magnitude larger. Twit-
ter has 288M monthly active users as of 3/2015 and an esti-
mated average of 208 followers per user [4] for an estimated
total of 60B followers (edges). Facebook has 1.39B active
users as of 12/2014 with more than 400B edges. Many of
the performance and scalability bottlenecks are very differ-
ent when considering real-world industry workloads. Several
studies [14, 24] have documented that many graph frame-
works fail at much smaller scale mostly due to inefficient
memory usage. Asynchronous graph processing engines tend
to have additional challenges in scaling to larger graphs
due to unbounded message queues causing memory over-
load, vertex-centric locking complexity and overhead, and
difficulty in leveraging high network bandwidth due to fine-
grained computation.

Correspondingly, there is lack of information on how ap-
plications perform and scale to practical problems on trillion-
edge graphs. In practice, many web companies have chosen
to build graph applications on their existing MapReduce in-
frastructure rather than a graph processing framework for a
variety of reasons. First, many such companies already run
MapReduce applications [17] on existing Hadoop [2] infras-
tructure and do not want to maintain a different service that
can only process graphs. Second, many of these frameworks
are either closed source (i.e. Pregel) or written in a lan-
guage other than Java (e.g. GraphLab is written in C++).
Since much of today’s datasets are stored in Hadoop, having
easy access to HDFS and/or higher-level abstractions such
as Hive tables is essential to interoperating with existing
Hadoop infrastructure. With so many variants and versions
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of Hive/HDFS in use, providing native C++ or other lan-
guage support is both unappealing and time consuming.

Apache Giraph [1] fills this gap as it is written in Java and
has vertex and edge input formats that can access MapRe-
duce input formats as well as Hive tables [40]. Users can in-
sert Giraph applications into existing Hadoop pipelines and
leverage operational expertise from Hadoop. While Giraph
initially did not scale to our needs at Facebook with over
1.39B users and hundreds of billions of social connections,
we improved the platform in a variety of ways to support
our workloads and implement our production applications.
We describe our experiences scaling and extending existing
graph processing models to enable a broad set of both graph
mining and iterative applications. Our contributions are the
following:

• Present usability, performance, and scalability improve-
ments for Apache Giraph that enable trillion edge graph
computations.

• Describe extensions to the Pregel model and why we
found them useful for our graph applications.

• Real world applications and their performance on the
Facebook graph.

• Share operational experiences running large-scale pro-
duction applications on existing MapReduce infras-
tructure.

• Contribution of production code (including all exten-
sions described in this paper) into the open-source
Apache Giraph project.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 provides a summary of Gi-
raph, details our reasons for selecting it as our initial graph
processing platform, and explains our usability and scalabil-
ity improvements. Section 4 describes our generalization to
the original Pregel graph processing model for creating more
powerful application building blocks and reusable code. Sec-
tion 5 details Giraph applications and their performance for
a variety of workloads. In Section 6, we share our graph pro-
cessing operational experiences. In Section 7, we conclude
our work and describe potential future work.

2. RELATED WORK
Large-scale graph computing based on the Bulk Synchronous

Processing (BSP) model [42] was first introduced by Malewicz
et al. in the Pregel system [33]. Unfortunately, the Pregel
source code was not made public. Apache Giraph was de-
signed to bring large-scale graph processing to the open
source community, based loosely on the Pregel model, while
providing the ability to run on existing Hadoop infrastruc-
ture. Many other graph processing frameworks (e.g. [37,
15]) are also based on the BSP model.

MapReduce has been used to execute large-scale graph
parallel algorithms and is also based on the BSP model. Un-
fortunately, graph algorithms tend to be iterative in nature
and typically do not perform well in the MapReduce com-
pute model. Even with these limitations, several graph and
iterative computing libraries have been built on MapReduce
due to its ability to run reliably in production environments

[3, 30]. Iterative frameworks on MapReduce style comput-
ing models is an area that has been explored in Twister [18]
and Haloop [13].

Asynchronous models of graph computing have been pro-
posed in such systems as Signal-Collect [39], GraphLab [20]
and GRACE [44]. While asynchronous graph computing
has been demonstrated to converge faster for some appli-
cations, it adds considerable complexity to the system and
the developer. Most notably, without program repeatabil-
ity it is difficult to ascertain whether bugs lie in the system
infrastructure or the application code. Furthermore, asyn-
chronous messaging queues for certain vertices may unpre-
dictably cause machines to run out of memory. DAG-based
execution systems that generalize the MapReduce model to
broader computation models, such as Hyracks [11], Spark
[45], and Dryad [28], can also do graph and iterative com-
putation. Spark additionally has a higher-level graph com-
puting library built on top of it, called GraphX [21], that al-
lows the user to process graphs in an interactive, distributed
manner.

Single machine graph computing implementations such as
Cassovary [23] are used at Twitter. Another single machine
implementation, GraphChi [32], can efficiently process large
graphs out-of-core. Latency-tolerant graph processing tech-
niques for commodity processors, as opposed to hardware
multithreading systems (e.g. Cray XMT), were explored in
[34]. In Trinity [38], graph processing and databases are
combined into a single system. Parallel BGL [22] paral-
lelizes graph computations on top of MPI. Piccolo [36] exe-
cutes distributed graph computations on top of partitioned
tables. Presto [43], a distributed R framework, implements
matrix operations efficiently and can be used for graph anal-
ysis. Several DSL graph languages have been built, includ-
ing Green-Marl [25], which can compile to Giraph code, and
SPARQL [26], a graph traversal language.

3. APACHE GIRAPH
Apache Giraph is an iterative graph processing system

designed to scale to hundreds or thousands of machines and
process trillions of edges. For example, it is currently used
at Facebook to analyze the social graph formed by users
and their connections. Giraph was inspired by Pregel, the
graph processing architecture developed at Google. Pregel
provides a simple graph processing API for scalable batch
execution of iterative graph algorithms. Giraph has greatly
extended the basic Pregel model with new functionality such
as master computation, sharded aggregators, edge-oriented
input, out-of-core computation, composable computation,
and more. Giraph has a steady development cycle and a
growing community of users worldwide.

3.1 Early Facebook experimentation
In the summer of 2012, we began exploring a diverse set of

graph algorithms across many different Facebook products
as well as related academic literature. We selected a few
representative use cases that cut across the problem space
with different system bottlenecks and programming com-
plexity. Our diverse use cases and the desired features of
the programming framework drove the requirements for our
system infrastructure. We required an iterative computing
model, graph-based API, and easy access to Facebook data.
We knew that this infrastructure would need to work at the
scale of hundreds of billions of edges. Finally, as we would
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Figure 1: An example of label propagation: In-
ferring unknown website classifications from known
website classifications in a graph where links are
generated from overlapping website keywords.

be rapidly be developing this software, we had to be able to
easily identify application and infrastructure bugs and have
repeatable, reliable performance. Based on these require-
ments, we selected a few promising graph-processing plat-
forms including Hive, GraphLab, and Giraph for evaluation.
We used label propagation, among other graph algorithms,
to compare the selected platforms. Label propagation is an
iterative graph algorithm that infers unlabeled data from
labeled data. The basic idea is that during each iteration
of the algorithm, every vertex propagates its probabilistic
labels (for example, website classifications - see Figure 1) to
its neighboring vertices, collects the labels from its neigh-
bors, and calculates new probabilities for its labels. We
implemented this algorithm on all platforms and compared
the performance of Hive 0.9, GraphLab 2, and Giraph on a
small scale of 25 million edges.

We ended up choosing Giraph for several compelling rea-
sons. Giraph directly interfaces with our internal version
of HDFS (since Giraph is written in Java) as well as Hive.
Since Giraph is scheduled as a MapReduce job, we can lever-
age our existing MapReduce (Corona) infrastructure stack
with little operational overhead. With respect to perfor-
mance, at the time of testing in late summer 2012, Giraph
was faster than the other frameworks. Perhaps most impor-
tantly, the BSP model of Giraph was easy to debug as it
provides repeatable results and is the most straightforward
to scale since we did not have to handle all the problems of
asynchronous graph processing frameworks. BSP also made
it easy to implement composable computation (see Section
4.3) and simple to do checkpointing.

3.2 Platform improvements
Even though we had chosen a platform, there was a lot of

work ahead of us. Here are some of the limitations that we
needed to address:

• Giraph’s graph input model was only vertex centric,
requiring us to either extend the model or do vertex
centric graph preparation external to Giraph.

• Parallelizing Giraph infrastructure relied completely
on MapReduce’s task level parallelism and did not
have multithreading support for fine grain parallelism.

• Giraph’s flexible types and computing model were ini-
tially implemented using native Java objects and con-
sumed excessive memory and garbage collection time.

Figure 2: Giraph leverages HiveIO to directly access
Hive tables and can run on MapReduce and YARN.

• The aggregator framework was inefficiently implemented
in ZooKeeper and we needed to support very large ag-
gregators (e.g. gigabytes).

We selected three production applications, label propaga-
tion, variants of PageRank [12], and k-means clustering, to
drive the direction of our development. Running these ap-
plications on graphs as large as the full Facebook friendship
graph, with over 1 billion users and hundreds of billions of
friendships, required us to address these shortcomings in Gi-
raph. In the following sections, first, we describe our efforts
with flexible vertex and edge based input to load and store
graphs into Facebook’s data warehouse. Second, we detail
our performance and scalability enhancements with paral-
lelization approaches, memory optimization, and sharded
aggregators. In addition, whenever relevant, we add a ci-
tation in the form of GIRAPH-XXX as the Giraph JIRA
number associated with the work described that can be ref-
erenced at [5].

3.2.1 Flexible vertex/edge based input
Since Giraph is a computing platform, it needs to interface

with external storage to read the input and write back the
output of a batch computation. Similarly to MapReduce,
we can define custom input and output formats for various
data sources (e.g., HDFS files, HBase tables, Hive tables).
The Facebook software stack is shown in Figure 2.

Datasets fed to a Giraph job consist of vertices and edges,
typically with some attached metadata. For instance, a label
propagation algorithm might read vertices with initial labels
and edges with attached weights. The output will consist
of vertices with their final labels, possibly with confidence
values.

The original input model in Giraph required a rather rigid
layout: all data relative to a vertex, including outgoing
edges, had to be read from the same record and were as-
sumed to exist in the same data source, for instance, the
same Hive table. We found these restrictions suboptimal
for most of our use cases. First, graphs in our data ware-
house are usually stored in a relational format (one edge
per row), and grouping them by source vertex requires an
extra MapReduce job for pre-processing. Second, vertex
data, such as initial labels in the example above, may be
stored separately from edge data. This required an extra
pre-processing step to join vertices with its edges, adding
unnecessary overhead. Finally, in some cases, we needed to
combine vertex data from different tables into a single one
before running a Giraph job.
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To address these shortcomings, we modified Giraph to
allow loading vertex data and edges from separate sources
(GIRAPH-155). Each worker can read an arbitrary subset
of the edges, which are then appropriately distributed so
that each vertex has all its outgoing edges. This new model
also encourages reusing datasets: different algorithms may
require loading different vertex metadata while operating on
the same graph (e.g., the graph of Facebook friendships).

One further generalization we implemented is the abil-
ity to add an arbitrary number of data sources (GIRAPH-
639), so that, for example, multiple Hive tables with dif-
ferent schemas can be combined into the input for a single
Giraph job. One could also consider loading from differ-
ent sources from the same application (e.g. loading vertex
data from MySQL machines and edge data from Hadoop
sequence files). All of these modifications give us the flex-
ibility to run graph algorithms on our existing and diverse
datasets as well as reduce the required pre-processing to a
minimum or eliminate it in many cases. These same tech-
niques can be used in other graph processing frameworks as
well.

3.2.2 Parallelization support
Since a Giraph application is scheduled as a single MapRe-

duce job, it initially inherited the MapReduce way of paral-
lelizing a job, that is, by increasing the number of workers
(mappers) for the job. Unfortunately, it is hard to share
resources with other Hadoop tasks running on the same
machine due to differing requirements and resource expec-
tations. When Giraph runs one monopolizing worker per
machine in a homogenous cluster, it can mitigate issues of
different resource availabilities for different workers (i.e. the
slowest worker problem).

To address these issues, we extended Giraph to provide
two methods of parallelizing computations:

• Adding more workers per machine.

• Use worker local multithreading to take advantage of
additional CPU cores.

Specifically, we added multithreading to loading the graph,
computation (GIRAPH-374), and storing the computed re-
sults (GIRAPH-615). In CPU bound applications, such as
k-means clustering, we have seen a near linear speedup due
to multithreading the application code. In production, we
parallelize our applications by taking over a set of entire ma-
chines with one worker per machine and use multithreading
to maximize resource utilization.

Multithreading introduces some additional complexity. Tak-
ing advantage of multithreading in Giraph requires the user
to partition the graph into n partitions across m machines
where the maximum compute parallelism is n/m. Addition-
ally, we had to add a new concept called WorkerContext
that allows developers to access shared member variables.
Many other graph processing frameworks do not allow multi-
threading support within the infrastructure as Giraph does.
We found that technique this has significant advantages in
reducing overhead (e.g. TCP connections, larger message
batching) as opposed to more coarse grain parallelism by
adding workers.

3.2.3 Memory optimization

In scaling to billions of edges per machine, memory opti-
mization is a key concept. Few other graph processing sys-
tems support Giraph’s flexible model of allowing arbitrary
vertex id, vertex value, vertex edge, and message classes
as well as graph mutation capabilities. Unfortunately, this
flexibility can have a large memory overhead without care-
ful implementation. In the 0.1 incubator release, Giraph
was memory inefficient due to all data types being stored as
separate Java objects. The JVM worked too hard, out of
memory errors were a serious issue, garbage collection took
a large portion of our compute time, and we could not load
or process large graphs.

We addressed this issue via two improvements. First, by
default we serialize the edges of every vertex into a byte ar-
ray rather than instantiating them as native Java objects
(GIRAPH-417) using native direct (and non-portable) seri-
alization methods. Messages on the server are serialized as
well (GIRAPH-435). Second, we created an OutEdges inter-
face that would allow developers to leverage Java primitives
based on FastUtil for specialized edge stores (GIRAPH-528).

Given these optimizations and knowing there are typi-
cally many more edges than vertices in our graphs (2 orders
of magnitude or more in most cases), we can now roughly
estimate the required memory usage for loading the graph
based entirely on the edges. We simply count the number
of bytes per edge, multiply by the total number of edges in
the graph, and then multiply by 1.5x to take into account
memory fragmentation and inexact byte array sizes. Prior
to these changes, the object memory overhead could have
been as high as 10x. Reducing memory use was a big fac-
tor in enabling the system to load and send messages to 1
trillion edges. Finally, we also improved the message com-
biner (GIRAPH-414) to further reduce memory usage and
improve performance by around 30% in PageRank testing.
Our improvements in memory allocation show that with the
correct interfaces, we can support the full flexibility of Java
classes for vertex ids, values, edges, and messages without
inefficient per object allocations.

3.2.4 Sharded aggregators
Aggregators, as described in [33], provide efficient shared

state across workers. While computing, vertices can aggre-
gate (the operation must be commutative and associative)
values into named aggregators to do global computation (i.e.
min/max vertex value, error rate, etc.). The Giraph infras-
tructure aggregates these values across workers and makes
the aggregated values available to vertices in the next su-
perstep.

One way to implement k-means clustering is to use ag-
gregators to calculate and distribute the coordinates of cen-
troids. Some of our customers wanted hundreds of thou-
sands or millions of centroids (and correspondingly aggre-
gators), which would fail in early versions of Giraph. Orig-
inally, aggregators were implemented using Zookeeper [27].
Workers would write partial aggregated values to znodes
(Zookeeper data storage). The master would aggregate all of
them, and write the final result back to its znode for workers
to access it. This technique was sufficient for applications
that only used a few simple aggregators, but wasn’t scal-
able due to znode size constraints (maximum 1 megabyte)
and Zookeeper write limitations. We needed a solution that
could efficiently handle tens of gigabytes of aggregator data
coming from every worker.
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Figure 3: After sharding aggregators, aggregated communication is distributed across workers.

void Iterable<M> messages) {

if (phase == K_MEANS)

// Do k-means

else if (phase == START_EDGE_CUT)

// Do first phase of edge cut

else if (phase == END_EDGE_CUT)

// Do second phase of edge cut

}

Figure 5: Example vertex computation code to
change phases.

To solve this issue, first, we bypassed Zookeeper and used
Netty [6] to directly communicate aggregator values between
the master and its workers. While this change allowed much
larger aggregator data transfers, we still had a bottleneck.
The amount of data the master was receiving, processing,
and sending was growing linearly with the number of work-
ers. In order to remove this bottleneck, we implemented
sharded aggregators.

In the sharded aggregator architecture (Figure 3), each
aggregator is now randomly assigned to one of the workers.
The assigned worker is in charge of gathering the values
of its aggregators from all workers, performing the aggre-
gation, and distributing the final values to the master and
other workers. Now, aggregation responsibilities are bal-
anced across all workers rather than bottlenecked by the
master and aggregators are limited only by the total mem-
ory available on each worker.

4. COMPUTE MODEL EXTENSIONS
Usability and scalability improvements have allowed us to

execute simple graph and iterative algorithms at Facebook-
scale, but we soon realized that the Pregel model needed
to be generalized to support more complex applications and
make the framework more reusable. An easy way to depict
the need for this generalization is through a very simple ex-
ample: k-means clustering. K-means clustering, as shown
in Figure 4, is a simple clustering heuristic for assigning in-
put vectors to one of k centroids in an n-dimensional space.
While k-means is not a graph application, it is iterative in
nature and easily maps into the Giraph model where in-
put vectors are vertices and every centroid is an aggregator.
The vertex (input vector) compute method calculates the

distance to all the centroids and adds itself to the nearest
one. As the centroids gain input vectors, they incrementally
determine their new location. At the next superstep, the
new location of every centroid is available to every vertex.

4.1 Worker phases
The methods preSuperstep(), postSuperstep(), preApplica-

tion(), and postApplication() were added to the Computa-
tion class and have access to the worker state. One use case
for the pre-superstep computation is to calculate the new po-
sition for each of the centroids. Without pre-superstep com-
putation, a developer has to either incrementally calculate
the position with every added input vector or calculate it for
every distance calculation. In the preSuperstep() method
that is executed on every worker prior to every superstep,
every worker can compute the final centroid locations just
before the input vectors are processed.

Determining the initial positions of the centroids can be
done in the preApplication() method since it is executed
on every worker prior to any computation being executed.
While these simple methods add a lot of functionality, they
bypass the Pregel model and require special consideration
for application specific techniques such superstep checkpoint-
ing.

4.2 Master computation
Fundamentally, while the Pregel model defines a func-

tional computation by “thinking like a vertex”, some com-
putations need to be executed in a centralized fashion for
many of the reasons above. While executing the same code
on each worker provides a lot of the same functionality, it
is not well understood by developers and is error prone.
GIRAPH-127 added master computation to do centralized
computation prior to every superstep that can communicate
with the workers via aggregators. We describe two example
use cases below.

When using k-means to cluster the Facebook dataset of
over 1 billion users, it is useful to aggregate the error to see
whether the application is converging. It is straightforward
to aggregate the distance of every input vector to its cho-
sen centroid as another aggregator, but at Facebook we also
have the social graph information. Periodically, we can also
compute another metric of distance: the edge cut. We can
use the friendships, subscriptions, and other social connec-
tions of our users to measure the edge cut, or the weighted

1808



Figure 4: In k-means clustering, k centroids have some initial location (often random). Then input vectors
are assigned to their nearest centroid. Centroid locations are updated and the process repeats.

Figure 6: Master computation allows k-means clustering to periodically calculate edge cut computations.

edge cut if the edges have weights. Deciding when to calcu-
late the edge cut can be the job of the master computation,
for instance, when at least 15 minutes of k-means compu-
tation have been executed. With master computation, this
functionality can be implemented by checking to see how
long it has been since the last edge cut calculation. If the
time limit has been exceeded, set a special aggregator (i.e.
execute edge cut) to true. The execution workflow is shown
in Figure 6. The vertex compute code only needs to check
the aggregator value to decide whether to begin calculating
an edge cut or continue iterating on k-means.

Executing a coordinated operation such as this one on the
workers without master computation is more complicated
due to clock skew, although possible, for instance with mul-
tiple supersteps to decide on whether to do the edge cut
calculation.

Another example of the usefulness of master computation
can be found in the example PageRank code in the Pregel
paper [33]. In the example, every vertex must check whether
the desired number of iterations has been completed to de-
cide to vote to halt.

This is a simple computation that needs to be executed
exactly once rather than on every vertex. In the master
computation there is a haltComputation() method, where it
is simple to check once prior to starting a superstep whether
the application should continue rather than executing the
check on a per vertex basis.

4.3 Composable computation
In our production environment, we observed that graph

processing applications can be complex, often consisting of

“stages”, each implementing distinct logic. Master compu-
tation allows developers to compose their applications with
different stages, but is still limiting since the original Pregel
model only allows one message type and one message com-
biner. Also, the vertex compute code gets messy as shown
in Figure 5. In order to support applications that do distinc-
tive computations (such as k-means) in a cleaner and more
reusable way, we added composable computation. Compos-
able computing simply decouples the vertex from the com-
putation as shown in Figure 7. The Computation class
abstracts the computation from the vertex so that differ-
ent types of computations can be executed. Additionally,
there are now two message types specified. M1 is the in-
coming message type and M2 is the outgoing message type.
The master compute method can choose the computation
class to execute for the current superstep with the method
setComputation(Class<? extends Computation> computa-
tionClass). The master also has a corresponding method to
change the message combiner as well. The infrastructure
checks to insure that all types match for computations that
are chained together. Now that vertex computations are
decoupled to different Computation implementations, they
can be used as building blocks for multiple applications. For
example, the edge cut computations can be used in a variety
of clustering algorithms, not only k-means.

In our example k-means application with a periodic edge
cut, we might want to use a more sophisticated centroid ini-
tialization method such as initializing the centroid with a
random user and then a random set of their friends. The
computations to initialize the centroids will have different
message types than the edge cut computations. In Table 2,
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Table 2: Example usage of composable computations in a k-means application with different computations
(initialization, edge cut, and k-means)

Computation Add random centroid / random friends Add to centroids K-means Start edge cut End edge cut
In message Null Centroid message Null Null Cluster

Out message Centroid message Null Null Cluster Null
Combiner N/A N/A N/A Cluster combiner N/A

public abstract class Vertex<

I, V, E, M> {

public abstract void compute(

Iterable<M> messages);

}

public interface Computation<

I, V, E, M1, M2> {

void compute(Vertex<I, V, E> vertex,

Iterable<M1> messages);

}

public abstract class MasterCompute {

public abstract void compute();

public void setComputation(

Class<? extends Computation> computation);

public void setMessageCombiner(

Class<? extends MessageCombiner> combiner);

public void setIncomingMessage(

Class<? extends Writable> incomingMessage);

public void setOutgoingMessage(

Class<? extends Writable> outgoingMessage);

}

Figure 7: Vertex was generalized into Computation
to support different computations, messages, and
message combiners as set by MasterCompute.

we show how composable computation allows us to use dif-
ferent message types, combiners, and computations to build
a powerful k-means application. We use the first computa-
tion for adding random input vectors to centroids and no-
tifying random friends to add themselves to the centroids.
The second computation adds the random friends to cen-
troids by figuring out its desired centroid from the origi-
nally added input vector. It doesn’t send any messages to
the next computation (k-means), so the out message type is
null. Note that starting the edge cut is the only computa-
tion that actually uses a message combiner, but one could
use any message combiner in different computations.

Composable computation makes the master computation
logic simple. Other example applications that can benefit
from composable computation besides k-means include bal-
anced label propagation [41] and affinity propagation [19].
Balanced label propagation uses two computations: com-
pute candidate partitions for each vertex and moving ver-
tices to partitions. Affinity propagation has three compu-
tations: calculate responsibility, calculate availability, and
update exemplars.

4.4 Superstep splitting
Some applications have messaging patterns that can ex-

ceed the available memory on the destination vertex owner.
For messages that are aggregatable, that is, commutative and
associative, message combining solves this problem. How-
ever, many applications send messages that cannot be ag-
gregated. Calculating mutual friends, for instance, requires
each vertex to send all its neighbors the vertex ids of its
neighborhood. This message cannot be aggregated by the
receiver across all its messages. Another example is the mul-
tiple phases of affinity propagation - each message must be
responded to individually and is unable to be aggregated.
Graph processing frameworks that are asynchronous are es-
pecially prone to such issues since they may receive messages
at a faster rate than synchronous frameworks.

In social networks, one example of this issue can occur
when sending messages to connections of connections (i.e.
friends of friends in the Facebook network). While Facebook
users are limited to 5000 friends, theoretically one user’s ver-
tex could receive up to 25 million messages. One of our pro-
duction applications, friends-of-friends score, calculates the
strength of a relationship between two users based on their
mutual friends with some weights. The messages sent from
a user to his/her friends contain a set of their friends and
some weights. Our production application actually sends
850 GB from each worker during the calculation when we
use 200 workers. We do not have machines with 850 GB and
while Giraph supports out-of-core computation by spilling
the graph and/or messages to disk, it is much slower.

Therefore, we have created a technique for doing the same
computation all in-memory for such applications: superstep
splitting. The general idea is that in such a message heavy
superstep, a developer can send a fragment of the messages
to their destinations and do a partial computation that up-
dates the state of the vertex value. The limitations for the
superstep splitting technique are as follows:

• The message-based update must be commutative and
associative.

• No single message can overflow the memory buffer of
a single vertex.

The master computation will run the same superstep for
a fixed number of iterations. During each iteration, every
vertex uses a hash function with the destination vertex id
of each of its potentials messages to determine whether to
send a message or not. A vertex only does computation if its
vertex id passes the hash function for the current superstep.
As an example for 50 iterations (splits of our superstep) our
friends-of-friends application only uses 17 GB of memory per
iteration. This technique can eliminate the need to go out-
of-core and is memory scalable (simply add more iterations
to proportionally reduce the memory usage).
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Figure 8: Scaling PageRank with respect to the
number of workers (a) and the number of edges (b)

5. EXPERIMENTAL RESULTS
In this section, we describe our results of running several

example applications in Giraph when compared to their re-
spective Hive implementations. Our comparison will include
iterative graph applications as well as simple Hive queries
converted to Giraph jobs. We use two metrics for the perfor-
mance comparison: CPU time and elapsed time. CPU time
is the time measured by the CPU to complete an application
while elapsed time is the time observed by the user when
their application completes. All of the described applica-
tions are in production. Experiments were gathered on pro-
duction machines with 16 physical cores and 10 Gbps Eth-
ernet. The Giraph experiments were all conducted in physi-
cal memory without checkpointing, while Hive/Hadoop has
many phases of disk access (map side spilling, reducer fetch-
ing, HDFS access per iterations, etc.) causing it to exhibit
poorer performance. We used the default hash-based graph
partitioning for all experiments.

5.1 Giraph scalability
With a simple unweighted PageRank benchmark, we eval-

uated the scalability of Giraph on our production clusters.
Unweighted PageRank is a lightweight computational appli-
cation that is typically network bound. In Figure 8a, we
first fixed the edge count to 200B and scale the number of
worker from 50 to 300. There is a slight bit of variance, but
overall Giraph performance closely tracks the ideal scaling
curve based on 50 workers as the starting data point. In
Figure 8b, we fix the number of workers at 50 and scale the
problem size from 1B to 200B edges. As expected, Giraph
performance scales up linearly with the number of edges
since PageRank is network bound.

5.2 Applications
We describe three production iterative graph applications

as well as the algorithmic pseudocode that have been run in
both Hive and Giraph. The Giraph implementation used
200 machines in our tests and the Hive implementations
used at least 200 machines (albeit possibly with failures as
MapReduce is built to handle them).

5.2.1 Label propagation

Computation 1: Send neighbors edge weights and

label data

1. Send my neighbors my edge weights and labels.

Table 3: Label propagation comparison between
Hive and Giraph implementations with 2 iterations.

Graph size Hive Giraph Speedup

701M+
vertices
48B+ edges

Total CPU
9.631M secs

Total CPU
1.014M secs

9x

Elapsed Time
1,666 mins

Elapsed Time
19 mins

87x

Computation 2: Update labels

1. If the normalization base is not set,

create it from the edge weights.

2. Update my labels based on the messages

3. Trim labels to top n.

4. Send my neighbors my edge weights and labels.

Label propagation was described briefly in Section 3.1.
This algorithm (similar to [46]) was previously implemented
in Hive as a series of Hive queries that had a bad impedance
mismatch since the algorithm is much simpler to express as
a graph algorithm.

There are two computation phases as shown above. We
need to normalize edges and Giraph keeps only the out edges
(not the in edges) to save memory. So computation 1 will
start the first phase of figuring out how to normalize the in-
coming edge weights by the destination vertex. The master
computation will run computation 2 until the desired itera-
tions have been met. Note that trimming to the top n labels
is a common technique to avoid unlikely labels being prop-
agated to all vertices. Trimming both saves a large amount
of memory and reduces the amount of network data sent.

In Table 3, we describe the comparison between Hive and
Giraph implementations of the same label propagation algo-
rithm. From a CPU standpoint, we save 9x CPU seconds.
From an elapsed time standpoint, the Giraph implementa-
tion is 87x faster with 200 machines versus roughly the same
number of machines for the Hive implementation. Our com-
parison was executed with only 2 iterations primarily be-
cause it took so long in Hive/Hadoop. In production, we
run minor variants of label propagation with many different
types of labels that can be used as ranking features in a
variety of applications.

5.2.2 PageRank

Computation: PageRank

1. Normalize the outgoing edge weights if this is

the first superstep. Otherwise, update the page

rank value by summing up the incoming messages

and calculating a new PageRank value.

2. Send every edge my PageRank value weighted by

its normalized edge weight.

PageRank [12] is a useful application for finding influential
entities in the graph. While originally developed for ranking
websites, we can also apply PageRank in the social context.

This algorithm above describes our implementation of weighted
PageRank, where the weights represent the strength of the
connection between users (i.e. based on the friends of friends
score calculation). Weighted PageRank is slightly more ex-
pensive than unweighted PageRank due to sending each out
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Table 4: Weighted PageRank comparison between
Hive and Giraph implementations for a single iter-
ation.)

Graph size Hive Giraph Speedup

2B+
vertices
400B+ edges

Total CPU
16.5M secs

Total CPU
0.6M secs

26x

Elapsed Time
600 mins

Elapsed Time
19 mins

120x

Table 5: Performance comparison for friends of
friends score between Hive and Giraph implemen-
tations.)

Graph size Hive Giraph Speedup

1B+
vertices
76B+ edges

Total CPU
255M secs

Total CPU
18M secs

14x

Elapsed Time
7200 mins

Elapsed Time
110 mins

65x

edge a specialized message, but also uses a combiner in pro-
duction. The combiner simply adds the PageRank messages
together and sums them into a single message.

We ran an iteration of PageRank against a snapshot of
some portion of the user graph at Facebook with over 2B ver-
tices and more than 400B social connections (includes more
connections than just friendships). In Table 4, we can see
the results. At 600 minutes per iteration for Hive/Hadoop,
computing 10 iterations would take over 4 days with more
than 200 machines. In Giraph, 10 iterations could be done
in only 50 minutes on 200 machines.

5.2.3 Friends of friends score

Computation: Friends of friends score

1. Send friend list with weights to a hashed

portion of my friend list.

2. If my vertex id matches the hash function on

the superstep number, aggregate messages to

generate my friends of friends score with the

source vertices of the incoming messages.

As mentioned in Section 4.4, the friends of friends score is
a valuable feature for various Facebook products. It is one of
the few features we have that can calculate a score between
users that are not directly connected. It uses the aforemen-
tioned superstep splitting technique to avoid going out of
core when messaging sizes far exceed available memory.

From Table 5 we can see that the Hive implementation
is much less efficient than the Giraph implementation. The
superstep splitting technique allows us to maintain a signif-
icant 65x elapsed time improvement on 200 machines since
the computation and message passing are happening in mem-
ory. While not shown, out-of-core messaging had a 2-3x
overhead in performance in our experiments while the addi-
tional synchronization superstep overhead of the superstep
splitting technique was small.

5.3 Hive queries on Giraph
While Giraph has enabled us to run iterative graph algo-

rithms much more efficiently than Hive, we have also found
it a valuable tool for running certain expensive Hive queries
in a faster way. Hive is much simpler to write, of course, but

Table 6: Double join performance in Hive and
Giraph implementations for one expensive Hive
query.)

Graph size Hive Giraph Speedup

450B
connections
2.5B+ unique ids

Total CPU
211 days

Total CPU
43 days

5x

Elapsed Time
425 mins

Elapsed Time
50 mins

8.5x

Table 7: Custom Hive query comparison with Gi-
raph for a variety of data sizes for calculating the
number of users interacting with a specific action.)

Data size Hive Giraph Speedup

360B
actions
40M objects

Total CPU
22 days

Total CPU
4 days

5.5x

Elapsed Time
64 mins

Elapsed Time
7 mins

9.1x

162B
actions
74M objects

Total CPU
92 days

Total CPU
18 days

5.1x

Elapsed Time
129 mins

Elapsed Time
19 mins

6.8 x

620B
actions
110M objects

Total CPU
485 days

Total CPU
78 days

6.2x

Elapsed Time
510 mins

Elapsed Time
45 mins

11.3x

we have found many queries fall in the same pattern of join
and also double join. These applications involve either only
input and output, or just two supersteps (one iteration of
message sending and processing). Partitioning of the graph
during input loading can simulate a join query and we do
any vertex processing prior to dumping the data to Hive.

In one example, consider a join of two big tables, where
one of them can be treated as edge input (representing con-
nections between users, pages, etc.) and the other one as
vertex input (some data about these users or pages). Im-
plementing these kind of queries in Giraph has proven to be
3-4x more CPU efficient than performing the same query in
Hive.

Doing a join on both sides of the edge table (double join)
as shown in the above example query is up to 5x better as
shown in Table 6.

As another example, we have a large table with some ac-
tion logs, with the id of the user performing the action, the
id of the object it interacted with, and potentially some
additional data about the action itself. One of our users
was interested in calculating for each object and each action
description how many different users have interacted with
it. In Hive this would be expressed in the form: ”select
count(distinct userId) ... group by objectId, actionDescrip-
tion”. This type of query is very expensive, and expressing
it in Giraph achieving up to a 6x CPU time improvement
and 11.3x elapsed time improvement, both are big wins for
the user as shown in Table 7.

Customers are happy to have a way to get significantly
better performance for their expensive Hive queries. Al-
though Giraph is not built for generalized relational queries,
it outperforms Hive due to avoiding disk and using cus-
tomized primitive data structures that are particular to the
underlying data. In the future, we may consider building a
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more generalized query framework to make this transition
easier for a certain classes of queries.

5.4 Trillion edge PageRank
Our social graph of over 1.39B users is continuing to grow

rapidly. The number of connections between users (friend-
ships, subscriptions, public interaction, etc.) is also seeing
explosive growth. To ensure that Giraph could continue to
operate at a larger scale, we ran an iteration of unweighted
PageRank on our 1.39B user dataset with over 1 trillion
social connections. With some recent improvements in mes-
saging (GIRAPH-701) and request processing improvements
(GIRAPH-704), we were able to execute PageRank on over
a trillion social connections in less than 3 minutes per iter-
ation with only 200 machines.

6. OPERATIONAL EXPERIENCE
In this section, we describe the operational experience we

have gained after running Giraph in production at Facebook
for over two years. Giraph executes applications for ads,
search, entities, user modeling, insights, and many other
teams at Facebook.

6.1 Scheduling
Giraph leverages our existing MapReduce scheduling frame-

work (Corona) but also works on top of Hadoop. Hadoop
scheduling assumes an incremental scheduling model, where
map/reduce slots can be incrementally assigned to jobs while
Giraph required that all slots are available prior to the ap-
plication running. Preemption, available in some versions of
Hadoop, causes failure of Giraph jobs. While we could turn
on checkpointing to handle some of these failures, in practice
we choose to disable checkpointing for three reasons:

1. Our HDFS implementation will occasionally fail on
write operations (e.g. temporary name node unavail-
ability, write nodes unavailable, etc.), causing our check-
pointing code to fail and ironically increasing the chance
of failure.

2. Most of our production applications run in less than
an hour and use less than 200 machines. The chance
of failure is relatively low and handled well by restarts.

3. Checkpointing has an overhead.

Giraph jobs are run in non-preemptible FIFO pools in
Hadoop where the number of map slots of a job never ex-
ceeds the maximum number of map slots in the pool. This
policy allows Giraph jobs to queue up in a pool, wait until
they get all their resources and then execute. In order to
make this process less error prone, we added a few changes
to Corona to prevent user error. First, we added an optional
feature for a pool in Corona to automatically fail jobs that
ask for more map slots than the maximum map slots of the
pool. Second, we configure Giraph clusters differently than
typical MapReduce clusters. Giraph clusters are homoge-
nous and only have one map slot. This configuration allows
Giraph jobs to take over an entire machine and all of its
resources (CPU, memory, network, etc.). Since Giraph still
runs on the same infrastructure as Hadoop, production en-
gineering can use the same configuration management tools
and prior MapReduce experience to maintain the Giraph
infrastructure.

Jobs that fail are restarted automatically by the same
scheduling system that also restarts failed Hive queries. In
production, both Hive and Giraph retries are set to 4 and
once an Giraph application is deployed to production we
rarely see it fail consistently. The one case we saw during
the past year occurred when a user changed production pa-
rameters without first testing their jobs at scale.

6.2 Graph preparation
Production grade graph preparation is a subject that is

not well addressed in research literature. Projects such as
GraphBuilder [29] have built frameworks that help with ar-
eas such as graph formation, compression, transformation,
partitioning, output formatting, and serialization. At Face-
book, we take a simpler approach. Graph preparation can be
handled in two different ways depending on the needs of the
user. All Facebook warehouse data is stored in Hive tables
but can be easily interpreted as vertices and/or edges with
HiveIO. In any of the Giraph input formats, a user can add
custom filtering or transformation of the Hive table to create
vertices and/or edges. As mentioned in Section 3.2.1, users
can essentially scan tables and pick and choose the graph
data they are interested in for the application. Users can
also turn to Hive queries and/or MapReduce applications
to prepare any input data for graph computation. Other
companies that use Apache Pig [35], a high-level language
for expressing data analysis programs, can execute similar
graph preparation steps as a series of simple queries.

6.3 Production application workflow
Customers often ask us the workflow for deploying a Gi-

raph application into production. We typically go through
the following cycle:

1. Write your application and unit test it. Giraph can
run in a local mode with the tools to create simple
graphs for testing.

2. Run your application on a test dataset. We have small
datasets that mimic the full Facebook graph as a single
country. Typically these tests only need to run on a
few machines.

3. Run your application at scale (typically a maximum
of 200 workers). We have limited resources for non-
production jobs to run at scale, so we ask users to
tune their configuration on step 2.

4. Deploy to production. The user application and its
configuration are entered into our higher-level sched-
uler to ensure that jobs are scheduled periodically and
retries happen on failure. The Giraph oncall is respon-
sible for ensuring that the production jobs complete.
Overall, customers are satisfied with this workflow. It
is very similar to the Hive/Hadoop production work-
flow and is an easy transition for them.

7. CONCLUSIONS & FUTURE WORK
In this paper, we have detailed how a BSP-based, compos-

able graph processing framework supports Facebook-scale
production workloads. In particular, we have described the
improvements to the Apache Giraph project that enabled us
to scale to trillion edge graphs (much larger than those refer-
enced in previous work). We described new graph processing
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techniques such as composable computation and superstep
splitting that have allowed us to broaden the pool of po-
tential applications. We have shared our experiences with
several production applications and their performance im-
provements over our existing Hive/Hadoop infrastructure.
We have contributed all systems code back into the Apache
Giraph project so anyone can try out production quality
graph processing code that can support trillion edge graphs.
Finally, we have shared our operational experiences with Gi-
raph jobs and how we schedule and prepare our graph data
for computation pipelines.

While Giraph suits our current needs and provides much
needed efficiency wins over our existing Hive/Hadoop infras-
tructure, we have identified several areas of future work that
we have started to investigate. First, our internal experi-
ments show that graph partitioning can have a significant
effect on network bound applications such as PageRank. For
long running applications, determining a good quality graph
partitioning prior to our computation will likely be net win
in performance. Second, we have started to look at making
our computations more asynchronous as a possible way to
improve convergence speed. While our users enjoy a pre-
dictable application and the simplicity of the BSP model,
they may consider asynchronous computing if the gain is
significant.

Finally, we are leveraging Giraph as a parallel machine-
learning platform. We already have several ML algorithms
implemented internally. Our matrix factorization based col-
laborative filtering implementation scales to over a hundred
billion examples. The BSP computing model also appears
to be a good fit for AdaBoost logistic regression from Collins
et al. [16]. We are able to train logistic regression models
on 1.1 billion samples with 800 million sparse features and
an average of 1000 active features per sample in minutes per
iteration.
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