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ABSTRACT
Many real-life scenarios require the joint analysis of general
knowledge, which includes facts about the world, with in-
dividual knowledge, which relates to the opinions or habits
of individuals. Recently developed crowd mining platforms,
which were designed for such tasks, are a major step to-
wards the solution. However, these platforms require users
to specify their information needs in a formal, declarative
language, which may be too complicated for näıve users. To
make the joint analysis of general and individual knowledge
accessible to the public, it is desirable to provide an in-
terface that translates the user questions, posed in natural
language (NL), into the formal query languages that crowd
mining platforms support.

While the translation of NL questions to queries over con-
ventional databases has been studied in previous work, a
setting with mixed individual and general knowledge raises
unique challenges. In particular, to support the distinct
query constructs associated with these two types of knowl-
edge, the NL question must be partitioned and translated
using different means; yet eventually all the translated parts
should be seamlessly combined to a well-formed query. To
account for these challenges, we design and implement a
modular translation framework that employs new solutions
along with state-of-the art NL parsing tools. The results
of our experimental study, involving real user questions on
various topics, demonstrate that our framework provides a
high-quality translation for many questions that are not han-
dled by previous translation tools.

1. INTRODUCTION
Real-life data management tasks often require the joint

processing of two types of knowledge: general knowledge,
namely, knowledge about the world independent from a par-
ticular person, such as locations and opening hours of places;
and individual knowledge, which concerns the distinct knowl-
edge of each individual person about herself, such as opin-
ions or habits. Distinguishing the two types of knowledge is
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crucial for harvesting and processing purposes [1]. Consider
the following scenario, based on a real question in a travel-
related forum: a group of travelers, who reserved a room
in Forest Hotel, Buffalo, NY1, wishes to know “What are
the most interesting places near Forest Hotel, Buffalo, we
should visit in the fall?” Note that answering this question
requires processing mixed general and individual knowledge:
the sights in Buffalo and their proximity to Forest Hotel is
general knowledge that can be found, e.g., in a geographi-
cal ontology; in contrast, the “interestingness” of places and
which places one “should visit in the fall” reflect individual
opinions, which can be collected from people. (See addi-
tional, real-life examples in Section 6.)

In recent work, we introduced crowd mining as a novel
approach for answering user questions about a mix of in-
dividual and general knowledge, using crowdsourcing tech-
niques [1, 2]. In particular, we have implemented the OASSIS
platform [2], which supports a declarative query language,
OASSIS-QL, enabling users to specify their information needs.
Queries are then evaluated using both standard knowledge
bases (ontologies) and the crowd of web users. While this
approach is a major step towards a solution, the require-
ment to specify user questions as queries is a major short-
coming. One cannot expect näıve users (like the travelers
in our example above) to write such complex queries. To
make the joint analysis of general and individual knowledge
(and crowd mining in particular) accessible to the public, it
is desirable to allow users to specify their information needs
in natural language (NL).

We therefore develop a principled approach for the transla-
tion of NL questions that mix general and individual knowl-
edge, into formal queries. This approach is demonstrated
for translating NL questions into OASSIS-QL, however, we
explain throughout the paper how the principles that we
develop can apply to other scenarios.

Previous work. The NL-to-query translation problem has
been previously studied for queries over general, recorded
data, including SQL/ XQuery/SPARQL queries (e.g., [7, 14,
15]). The work of [14], for instance, studies the translation
of NL requests to SQL queries, while matching the question
parts to the database and interacting with users to refine the
translation. An important prerequisite for such translation
is the availability of NL tools for parsing and detecting the
semantics of NL sentences. Such parsers have also been
extensively studied [17, 18, 19]. We therefore build upon
these foundations in our novel solution. We do not aim to

1The hotel name is masked, for privacy.
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Figure 1: Overview of the NL to query translation process. Enlarged figures of each step appear separately in the sequel.

resolve classic problems such as handling ambiguities and
uncertainty in NL parsing, but rather embed existing tools
as black-boxes in a novel, generic framework, and focus on
developing the new components required in our setting.

New challenges. The mix of general and individual knowl-
edge needs lead to unique challenges, as follows.

∙ The general and individual parts of an NL question
may be mixed in an intricate manner, and must be
distinguished from each other to allow separate eval-
uation. This is non-trivial: näıve approaches, such as
checking which parts of the user question do not match
items in a general ontology, cannot facilitate this task
since most ontologies do not contain all and only gen-
eral knowledge.

∙ The parts of the NL question that deal with individ-
ual knowledge may need to be translated into formal
query constructs without aligning them first to a struc-
tured knowledge base (as they may relate to the not-
yet-collected knowledge of the crowd). Hence, tech-
niques of existing translators, which are mostly based
on such alignment [7, 14, 15], cannot be applied.

∙ The translated general and individual query parts need
to be seamlessly integrated into a well-formed query.
This must be done carefully, since the two types of
query parts are translated by separate means.

Note that existing NL tools such as opinion mining can de-
tect only a fragment of individual expressions, namely, ref-
erences to opinions and preferences, but cannot be used for
identifying, e.g., phrases related to individual habits.

Contributions. To address the new challenges, we make
two distinct contributions. Our first contribution is the
modular design of a translation framework, which em-
beds both state-of-the-art NL parsing tools, where possible,
and novel modules. The main steps of the translation pro-
cess are sketched in Figure 1. (For convenience, beneath
each step there are pointers to relevant examples and en-
larged figures.) The development of new modules is
our second contribution. (these modules are highlighted
in bold in Figure 1). From left to right: The input NL
question is converted, by standard NL parsing tools, into
a well-defined structure that captures the semantic roles of
text parts. A new Individual eXpression (IX) Detector then
serves to decompose the structure into its general and indi-
vidual parts (the latter are highlighted by a colored back-
ground). A major contribution here is in providing a se-
mantic and syntactic definition of an IX, as well a means

for detecting and extracting IXs. This is done via declar-
ative selection patterns combined with dedicated vocabu-
laries. Each general and individual part is separately pro-
cessed, and in particular, an existing General Query Gen-
erator is used to process the general query parts, whereas
the individual parts are processed by our new modules. The
processed individual and general query parts are integrated,
via another new module, to form the final output query.

Implementation and Experiments. We have implemented
these techniques in a novel prototype system, NL2CM (Natu-
ral Language interface to Crowd Mining). Beyond the au-
tomated translation, this system interacts with the user in
order to complete missing query parameters. We have then
conducted an extensive experimental study, for testing the
effectiveness of NL2CM. To examine the quality of the trans-
lation, we have allowed users to feed questions into NL2CM

in a real usage scenario, and analyzed the resulting queries.
Then, we have tested the applicability of our approach to
real questions on wide-ranging topics, by using NL2CM to
translate questions from Yahoo! Answers, the question-and-
answer platform [28]. In both cases, we show that by com-
posing simple techniques and standard NL tools our sys-
tem can achieve high success rates, for a variety of topics
and question difficulties. In particular, we have shown that
NL2CM accounts, for the first time, for a significant portion of
the real-life user questions, concerning individual knowledge,
that was not handled by previous translation systems.

Paper organization. We start in Section 2 by reviewing
technical background. Then, in Sections 3 and 4 we explain
the translation process and the new modules, elaborating on
the IX detection module. Our implementation of NL2CM and
the experimental study are described in Sections 5 and 6,
respectively. Related work is discussed in Section 7, and we
conclude in Section 8.

2. PRELIMINARIES
NL to query translation requires representing two types of

information: the representation of the original NL question
should facilitate an automated analysis of its meaning; and
the representation of the queried knowledge, as reflected by
the query language, should capture the way it is stored and
processed. The two types of representation may be very dif-
ferent, and thus, an important goal of the translation process
is mapping one to the other. We next overview the techni-
cal background for our translation framework, including the
knowledge representation and the NL parsing tools used to
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generate the NL representation, with the concrete example
of translating of NL to OASSIS-QL.

2.1 Knowledge Representation
In our setting, knowledge representation must be expres-

sive enough to account for both general knowledge, to be
queried from an ontology, and for individual knowledge, to
be collected from the crowd. One possible such represen-
tation is RDF, which is commonly used in large, publicly
available knowledge bases such as DBPedia [8] and Linked-
GeoData [16]. This is also the representation used in OASSIS.

We next provide some basic definitions for individual and
general knowledge in RDF representation, starting with RDF
facts, which form the basic building block for knowledge.

Definition 2.1 (Facts and fact-sets). Let ℰ be a set
of element names and ℛ a set of relation names. A fact
over (ℰ ,ℛ) is defined as 𝑓 ∈ ℰ × ℛ × (ℰ ∪ Σ*), where Σ*

denotes unrestricted literal terms over some alphabet. A
fact-set is a set of facts.

The names in facts correspond to meaningful terms in nat-
ural language. Elements in ℰ can be nouns such as Place or
Buffalo; and relations in ℛ can be, e.g., relative terms such
as inside or nearby, verbs such as visited or purchased,
etc. We denote facts using the RDF notation {𝑒1 𝑟 𝑒2} or
{𝑒1 𝑟 “𝑙”} where 𝑒1, 𝑒2 ∈ ℰ , 𝑟 ∈ ℛ and 𝑙 ∈ Σ*.2 As in
RDF, facts within a fact-set are concatenated using a dot.
General knowledge is captured in our model by an ontology

Ψ, which stores this type of knowledge in some representa-
tion form. In the case of RDF representation, it is a fact-set
of general knowledge facts. E.g., Ψ may contain the fact
{Buffalo, NY inside USA}.

Individual knowledge can be modeled by facts capturing
the actions and opinions of a crowd member [2]. For ex-
ample, the belief that Buffalo, NY is interesting can be ex-
pressed by the fact {Buffalo, NY hasLabel "interesting"},
and the habit of visiting Buffalo can be expressed by {I
visit Buffalo, NY}. These facts virtually reside in per-
crowd-member personal knowledge bases (reflecting the knowl-
edge of each crowd member), and are queried by posing
questions to the relevant crowd members.

2.2 Query Language
The query language to which NL questions are translated,

should naturally match the knowledge representation. We
consider here the OASSIS-QL query language, which extends
SPARQL, the RDF query language, with crowd mining ca-
pabilities (see full details in [2]). We stress however that
the generic approach developed in the paper is applicable to
other languages as well.

To briefly explain the syntax of OASSIS-QL, we use the ex-
ample question from the Introduction, “What are the most
interesting places near Forest Hotel, Buffalo, we should visit
in the fall?”. The corresponding OASSIS-QL query 𝒬 is given
in Figure 2. Intuitively, the output of 𝒬 would list ontol-
ogy elements that adhere to the conditions in the question,
i.e., names of places, that are geographically nearby Forest
Hotel, that crowd members frequently visit in the fall, and
among those, are considered by the crowd to be the most
interesting ones, e.g., Delaware Park or the Buffalo Zoo.

2The curly brackets around facts are added for readability.

1 SELECT VARIABLES $x
2 WHERE
3 {$x instanceOf Place.
4 $x near Forest_Hotel,_Buffalo,_NY}
5 SATISFYING
6 {$x hasLabel "interesting"}
7 ORDER BY DESC(SUPPORT)
8 LIMIT 5
9 AND

10 {[] visit $x.
11 [] in Fall}
12 WITH SUPPORT THRESHOLD = 0.1

Figure 2: Sample OASSIS-QL Query, 𝒬

The SELECT clause (line 1) specifies the projection, i.e.,
which variables bindings would be returned. E.g., 𝒬 returns
bindings of $x to places that fulfill the query conditions.

The WHERE clause (lines 2-4) defines a SPARQL-like selec-
tion query on the ontology Ψ, i.e., general knowledge. The
result of the selection consists of all the variable bindings
such that the resulting fact-set is contained in Ψ.

The SATISFYING clause (lines 5-12), defines the data pat-
terns (fact-sets) the crowd is asked about, i.e., individual
knowledge. Each such pattern appears in a separate sub-
clause (lines 6 and 10-11), where [] stands for an unre-
stricted variable, or “anything”. A binding to the pattern
variables is returned only if it is considered significant, intu-
itively meaning that a sufficient amount of crowd members
sufficiently agree to the statement that the binding repre-
sents. In OASSIS-QL, significance can be defined in two ways:
(i) the patterns with the 𝑘-highest(lowest) support scores,
using ORDER and LIMIT (lines 7-8); and (ii) the patterns
whose support pass a minimal THRESHOLD (line 12). The
former option allows capturing, e.g., the 5 places with high-
est “interestingness” score according to the crowd, and the
latter allows defining, e.g., which places have a high enough
score to be worthy of a visit in the fall.

Note that in principle, the SATISFYING clause could be
evaluated by means other than the crowd, e.g., over a knowl-
edge base of individual data harvested from blogs. In this
case, the translation of this clause can be performed sim-
ilarly to previous NL-to-query translation tools. However,
we are interested in the more challenging case, when indi-
vidual knowledge is not recorded, which is common in crowd
mining settings [2]. We address this in Section 3.2.

2.3 NL Processing Tools
Our goal in this work is not to invent yet another NL

parser from scratch, thus we instrument in our translation
framework state-of-the-art NL tools, where possible. We
next describe these tools and the representation they gener-
ate for NL text.

Dependency Parser. This tool parses a given text into
a standard structure called a dependency graph [17]. This
structure is a directed graph (typically, a tree) with labels
on the edges. It exposes different types of semantic depen-
dencies between the terms of a sentence. Denote by 𝑣(𝑡),
𝑣(𝑡′) the vertices corresponding to the textual terms 𝑡, 𝑡′. In
an edge (𝑣(𝑡), 𝑣(𝑡′)) we say that 𝑣(𝑡) is the governor and
𝑣(𝑡′) the dependent term. The function dep(𝑣(𝑡), 𝑣(𝑡′)) re-
turns the edge label which states the type of dependency.
We would not elaborate here on the relevant linguistic the-
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Figure 3: Example dependency graph

What are the most interesting places near Forest
WP VBP DT RBS JJ NNS IN NNP

Hotel, Buffalo, we should visit in the fall?
NNP NNP PRP MD VB IN DT NN

WP=WH-pronoun, VBP=verb, DT=determiner, RBS=superlative,

JJ=adjective, NNS=plural noun, IN=preposition, NNP=proper noun,

PRP=pronoun, MD=modal auxiliary

Figure 4: An example sentence with POS tagging.

ory; yet it is important to observe that within this structure,
semantically related terms are adjacent.

Example 2.2. Figure 3 depicts the dependency graph gen-
erated by Stanford Parser [17] for the example sentence from
Figure 1 (ignore, for now, the highlighted parts of the graph).
The edge amod stands for an adjectival modifier – in this
case, “interesting” is an adjective which modifies, or de-
scribes “places”. The edge connected to “we” is labeled nsubj,
which stands for the speakers being the grammatical subject
in the visiting event expressed by the verb “visit” [17].

POS tagger. A Part-of-Speech (POS) tagger assigns every
meaningful term in a given text with its linguistic category.
This category depends on the grammatical role of the term
in the particular context. E.g., in “They visit Buffalo during
their annual visit to the US”, the first “visit” functions as a
verb, while the second functions as a noun. We denote the
tag of a term 𝑡 by POS(𝑡).

Example 2.3. The Stanford Parser can also serve as a
POS tagger. Its tags for the running example sentence are
displayed in Figure 4. For example, POS(“interesting”) =
JJ standing for an adjective, and POS(“Buffalo”) = NNP

which denotes a proper noun (a name of a specific entity).

Parsing quality. NL parsing is the topic of extensive re-
search in the NL processing community, but is yet far from
being fully achieved, due to challenges such as ambiguity,
vagueness, errors and sensitivity to the context. Moreover,
the quality of parsing depends on factors such as the parsing
method, the training corpus, etc. For instance, in [5], a com-
parative study of dependency parsing studied the tradeoff
between parser accuracy and efficiency of different methods,
and reported precision results ranging from 48% to 91% for
the same training and test sentences.3

3These results only refer to the ratio of correct edges, and
the ratio of correctly parsed sentences is therefore lower.

1 SELECT DISTINCT $x
2 WHERE
3 {$x instanceOf Place.
4 $x near Forest_Hotel,_Buffalo,_NY}

Figure 5: Example SPARQL Query

We stress that our goal in this work is not to improve the
existing NL parsing methods. Instead, the modular frame-
work that presented in Section 3 allows both leveraging tech-
nological advances in NL parsing, and adjusting the NL tools
to specific applications, by replacing or re-configuring the
NL parsing module. The output of this module is used as-is
by our translation framework and thus correct NL parsing
is necessary for a successful translation by our system. In
our experimental study we analyze the effect of NL parsing,
and show that the obtained translation is of high quality
(see Section 6).

2.4 General Query Generator
It is left to perform the translation from the NL repre-

sentation to the knowledge representation. As mentioned in
the Introduction, various tools enable translating questions
about general knowledge to queries (e.g., [7, 15, 14, 29]). We
refer to such tools as General Query Generators (GQGs, for
short). If there exists a GQG suitable for the chosen knowl-
edge representation, it makes sense to reuse it for translating
the general parts of a question about mixed individual and
general knowledge. We detail, in the sequel, how GQGs are
embedded in our translation framework. For now, we show
an example SPARQL query, that may be generated, e.g., by
the GQG of [7, 29].

Example 2.4. Consider a variation of the running exam-
ple question without the individual parts: “What places are
near Forest Hotel, Buffalo?” After undergoing parsing, the
question can be translated by a GQG to the SPARQL query
in Figure 5.4 Observe that the WHERE clause of this query
and of the OASSIS-QL query in Figure 2 are identical.

To generate queries that are evaluated over general knowl-
edge bases, GQGs typically try to match every part of the
NL request to the knowledge base, or otherwise ignore it [7,
29]. On the one hand, this approach allows to overcome
some NL parsing ambiguities, since one can eliminate inter-
pretations that do not match the ontology, or choose the
interpretations that fit the ontology the best [7, 29]. On
the other hand, the dependency of GQGs in a recorded
knowledge base renders them useless for translating indi-
vidual knowledge, which we assume to be independent of a
knowledge base.

GQG quality. The performance and quality of a GQG de-
pend on many factors. These include the used NL parsing
tools, the choice of knowledge base and algorithm, and user
interaction capabilities. For instance, the QALD-1 chal-
lenge results show translation precision ranging from 50%
to 80% [22]. We do not aim here to improve on existing
GQGs, but rather to embed a GQG as a module in our
framework, allowing users to plug in and reconfigure any

4The query in Figure 5 contains a slightly simplified
SPARQL syntax, for presentation purposes.
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GQG according to their needs. In our experimental study,
we analyze the effect of our specific choice of GQG on the
translation quality (see Section 6).

3. TRANSLATION FRAMEWORK
Having established the technical background, we next de-

scribe the modules of our translation framework, according
to its logical process illustrated in Figure 1. The mod-
ularity of the framework allows to easily replace each of
these modules, while keeping the defined interfaces between
them. This may be done, e.g., for replacing the NL pars-
ing tools as improved ones become available. Additionally,
while we explain (and implement) here a translation from
NL to OASSIS-QL, if other crowd mining query languages
are developed (e.g., relational or XML-based) our modular
framework would cater for these languages by adapting the
modules that depend on the choice of language.

3.1 Individual Expressions (IXs)
Recall that our framework uses an IX Detector to dis-

tinguish individual query parts from general ones, a task
which is not accounted for by existing tools. For now, we
will precise the function of an IX Detector, by formalizing
the notion of an IX. Later, in Section 4, we will elaborate
on our new IX detection technique.

Definition 3.1 (Graph substructure). Given a di-
rected graph 𝐺 = (𝑉,𝐸), a connected graph substructure
𝑋 = (𝑉 ′, 𝐸′) is such that 𝑉 ′ ⊆ 𝑉 , 𝐸′ ⊆ 𝐸 and 𝑉 ′, 𝐸′ are
connected, i.e., the 3 following criteria hold
a. ∀(𝑢, 𝑣), (𝑣, 𝑤) ∈ 𝐸′ it holds that 𝑣 ∈ 𝑉 ′

b. ∀𝑣 ∈ 𝑉 ′, (𝑢, 𝑢′) ∈ 𝐸′ there exists an (undirected) path on
the edges of 𝐸′ from 𝑣 to 𝑢 or 𝑢′.

c. Between every (𝑢, 𝑢′), (𝑣, 𝑣′) ∈ 𝐸′ there exists an (undi-
rected) path on the edges of 𝐸′.

IXs are connected substructures of the dependency graph
with individual meaning. Since a dependency graph shows
semantic relations between sentence elements, it should (ide-
ally) connect all the elements of a semantically coherent IX,
regardless of the particular choice of parser. By the defini-
tion above, some edges in 𝐸′ may not have both of their
endpoints in 𝑉 ′. Intuitively, the elements corresponding to
such vertices should be matched to the ontology – and are
thus excluded from the IX substructure. We consider here
only IXs that are maximal (not contained within a larger
IX) and non-overlapping.

Example 3.2. Consider again the dependency graph in
Figure 3. The highlighted parts denote connected substruc-
tures which are also IXs. Consider the IX containing the
term “interesting”, which denotes an opinion about the “in-
terestingness” of places. If we remove, e.g., the advmod edge
or add the vertex labeled “Buffalo”, this IX will no longer be
connected. “places” is not included in the graph since names
of places are general knowledge that should be fetched from
the ontology. The other IX, of the term “visit”, corresponds
to a request for recommendation of where to visit in the fall.

3.2 Query Parts Creation
After executing the IX Detector, we have at hand the

dependency graph, and a set 𝒳 containing all the IXs within
it. The framework now processes these IXs and the rest of
the query separately to form the building blocks of the query
– in the case of OASSIS-QL, the SPARQL-like triples.

Pattern Mapping

Adjectives {$x amod $y} {tran($x) hasLabel “tran($y)”}

Events {$x nsubj $y.
$x dobj $z}

{tran($y) tran($x) tran($z)}

Adjuncts {$x prep in $y}
(Similarly for
prep on,
prep near,. . . )

{[] in tran($y)}

Table 1: Sample NL to OASSIS-QL triple mappings.

General query parts. We obtain the query triples corre-
sponding to general information needs, which are evaluated
against the ontology, from the output of the GQG. More pre-
cisely, the triples are extracted from the WHERE clause of the
generated SPARQL query, and used in the WHERE clause of
the constructed OASSIS-QL query. The one difficulty in this
step is in determining the input of the GQG. It is desirable
to feed into the GQG only the non-individual parts of the NL
request, e.g., the dependency graph minus the detected IXs,
and the matching POS tags. However, the relevant parts
of the graph may not form a coherent, parsable NL sen-
tence. For example, in the question “Which dishes should
we try at local restaurants in Buffalo?”, the two general
parts are highlighted in bold. If we remove the individual
part between them, the general parts would be semantically
detached, both in the text and in the dependency graph.
For now, we will assume that the GQG can handle such a
decomposed input. Later, in Section 5.1, we remove this
assumption and explain our solution.

Individual query parts. Can the GQG be used for creating
the individual query parts as well? The answer is negative,
since we assume individual knowledge cannot be aligned to
a knowledge base, a method that GQGs necessarily rely on.
However, the individual triples will eventually be used to
generate questions to the crowd. Thus, while their struc-
ture still has to adhere to the OASSIS-QL syntax, it is less
restricted than the structure of the general triples that must
be aligned with the ontology structure. E.g., in the context
of our running example the term “check out” can be used
instead of “visit”, and both options would be understood by
crowd members.

We therefore translate IXs to OASSIS-QL by identifying
grammatical patterns within the IX structure, and mapping
them into corresponding triples of the target query language.
The grammatical patterns are written as selection queries in
SPARQL-like syntax, i.e., we use meta-queries to compute
the output query. In order to use a SPARQL-like syntax,
the IXs should first be converted from the dependency graph
format into an RDF triple format. We next define this con-
version, and then provide examples for what the pattern
queries over the converted IXs can look like.

Let 𝑋 = (𝑉 ′, 𝐸′) be an IX. For an NL term 𝑡 and a corre-
sponding vertex 𝑣(𝑡) ∈ 𝑉 ′, we define tran(𝑣(𝑡))= 𝑡. For an
edge (𝑣(𝑡), 𝑣(𝑡′)) ∈ 𝐸′ such that 𝑣(𝑡) ̸∈ 𝑉 ′, tran(𝑣(𝑡))= 𝑘,
where 𝑡 is the 𝑘-th term in the original sentence (similarly
for 𝑣(𝑡′) ̸∈ 𝑉 ′). The placeholder 𝑘 will be later replaced by
the variable assigned to this term. An edge (𝑣(𝑡), 𝑣(𝑡′)) ∈ 𝐸′

maps to the triple {𝑣(𝑡) dep(𝑣(𝑡), 𝑣(𝑡′)) 𝑣(𝑡′)}.
The main pattern queries that we have defined and their

mappings into OASSIS-QL format are outlined in Table 1,
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1 6 hasLabel "interesting" 1 we visit 6
2 [] in Fall

Figure 6: Triples translated from the IXs of Figure 3

for adjectives, events (typically verbs, with subjects and di-
rect objects) and adjuncts (which describe the vertex that
governs them, e.g., the time, the location). We explain the
ideas behind the mapping via our running example.

Example 3.3. Consider the IX substructures described in
Example 3.2. For the first IX corresponding to “most in-
teresting places”, we only have one pattern matching the
substructure, namely that of an adjective. 𝑣(“places”) ̸∈ 𝑉 ′,
and this vertex corresponds to the sixth term in the original
sentence, hence tran(𝑣(“places”)) = 6 and we get the triple
in the left-hand box in Figure 6. Similarly, the second IX,
“we should visit (these places) in the fall” is translated
to the triples of the right-hand box.

Expressivity. In any query language, and specifically in
OASSIS-QL, not every NL request can be captured. See the
discussion about the expressivity of OASSIS-QL in [2]. In our
experimental study, we tested, among others, the percentage
of real user questions that were not supported by OASSIS-QL.
This number turned out to be small in practice, and we fur-
ther suggest which extensions to the language would be the
most useful to improve its coverage (see Sections 6 and 8).

3.3 Query Composition
At the last step of the translation process, the individ-

ual and general query parts are composed to a well-formed
query. As explained in Section 2.2,triples in the SATISFYING

clause are composed into subclauses, in OASSIS-QL. We next
describe how the Query Composition module forms the sub-
clauses and obtains the final query structure.

Forming the Subclauses. Intuitively, every SATISFYING

subclause should correspond to a single event or property
that we wish to ask the crowd about. For instance, in the
running example sentence from Figure 1, there is one indi-
vidual property (“most interesting”) and one event (visit-
ing places in the fall). For simplicity, assume that each IX
captures exactly one event or property, and thus its triples
form a subclause. Recall that in every subclause, there is an
ORDER, LIMIT or THRESHOLD expression, which defines which
of the assignments to the subclause are eventually returned.

In simpler cases, the ORDER, LIMIT and THRESHOLD expres-
sions can be directly derived from the input question. For
instance, for the input “What are the 5 most interesting
places in Buffalo?” it is clear that the places should be
ordered by decreasing “interestingness”, and limited to the
top-5 places. However, in our running example question,
like in the vast majority of sentences in our experimental
study (Section 6), such explicit numbers are not given, ex-
cept for when using the singular form (“What is the most
interesting place...?”). In such sentences, when an IX con-
tains a superlative, e.g., “most”, “best”, it is translated to
a top-𝑘 selection in the corresponding subclause, where 𝑘 is
a missing parameter. Otherwise, a support threshold is the
missing parameter. We complete the missing parameters
via interacting with the user (see Section 5.2) or by using
predefined default values.

Completing the Query. Given the WHERE clause and the
SATISFYING subclauses that were computed in previous steps
(e.g., the WHERE clause from Figure 5 and the subclauses from
Figure 6 along with ORDER, LIMIT or THRESHOLD), we need
to connect them together to form a meaningful query.

At this point, “individual” nouns such as “we”, “you” or
“crowd members” are removed from the query. The reason
is that in the crowd interface, questions to crowd members
are phrased in the second person: questions like “Where
should we visit in Buffalo?” and “Where do crowd members
visit in Buffalo?” will be presented as “Where do you visit
in Buffalo?”, addressing the crowd member directly. Hence,
we replace nouns from the list of individual participants by
[] (standing for “anything”).

Second, we ensure the consistency of query variables, by
replacing every temporary placeholder (e.g., in Example 3.3
we used 6 as a placeholder for “places”) by the variable
assigned to the corresponding term by the GQG. If a place-
holder was not mapped to any query variable, we replace all
of its occurrences by a fresh variable.

It remains to generate the SELECT clause. By inspecting
user questions, we have observed that it is often beneficial for
users to obtain more data than what they explicitly asked
for. For example, for the sentence “Which places should
we visit in the neighborhoods of Buffalo?”, one only asks
explicitly for places (the focus of the question), but may
also want to know the neighborhood each place resides in.
Thus, one possibility is to set the SELECT clause to return
the bindings of all the query variables, by default. In our
implementation, we allow users to choose the (un)interesting
output variables, see Section 5.2.

4. IX DETECTOR
To complete the picture, we need to explain the imple-

mentation of the IX Detector, so far considered a black-box.

4.1 First Attempts
We first consider two options for IX detection by straight-

forward reuse of existing tools. However, as we show next,
they do not account for all the challenges of IX detection.
We then present our generic approach (Section 4.2), based
on a semantic and syntactic definition of IXs.

Opinion mining. The existing NL tools most related to
our problem are tools for automated opinion mining (also
called sentiment analysis), namely, the identification of opin-
ions and subjective statements in NL text [23, 24]. By our
definition of the individuality notion, every opinion expres-
sion in NL is also an individual expression. For example,
opinion mining tools could identify “most interesting” and
possibly also “should visit” in our running example question
as a subjective opinions. Thus, one may attempt to reuse
such opinion-detection tools as-is for IX detection. How-
ever, these tools do not account for identifying information
needs involving the habits of people. For example, the ques-
tion “Which places do you visit in Buffalo?” refers to an
individual habit, but contains no opinion.

Ontology matching. Another straightforward approach for
IX detection is by ontology matching, i.e., declaring every
expression that cannot be matched to the ontology as indi-
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vidual. However, this approach fails in the following cases,
which are commonly encountered in practice.

∙ False negatives: general-purpose ontologies may con-
tain (parts of) IXs in their concept taxonomy (e.g.,
emotion-related concepts), leading to their mistaken
identification as general.

∙ False positives: due to an incomplete ontology, an ex-
pression that cannot be matched is wrongly identified
as an IX.

Note that general knowledge that cannot be matched to
the ontology should be treated differently than individual
knowledge. E.g., it may be completed via web search or
information extraction. One may also choose to complete it
with the help of the crowd, but the phrasing of questions and
the analysis of answers would still be different from those of
individual knowledge, as exemplified next.

Example 4.1. Consider the two questions “For which team
does Tim Duncan play?” and the question “For which team
should Tim Duncan play?”. They only differ by a single
term, yet the former is a general question (and has one true
answer at a given time) while the latter asks for an individ-
ual opinion. If the ontology contains the answer to the first
question, a näıve IX Detector will incorrectly identify the
same facts as the answer to the second question, and miss
the IX in the question (false negative).

Alternatively, suppose that the answer to both questions is
not in the ontology – in this case the former question would
be wrongly identified as an IX (false positive). The problem
in this case is not that the crowd would be asked where Tim
Duncan plays; but that the analysis of crowd answers
should be quite different. E.g., for the former question
one should ask crowd members with high expertise and gain
confidence in the true answer; for the latter question one
should account for diversified opinions.

To overcome the flaws of the two basic approaches de-
scribed above, our IX detection technique, described next,
(i) accounts for all types of IXs including, but not restricted
to opinions; and (ii) employs means of directly detecting IX
within a sentence, without relying on a knowledge base. We
show, in our experimental study in Section 6, that this ap-
proach indeed outperforms the two baseline approaches by
a large margin.

4.2 Pattern-based IX Detection
In the NL processing literature, there are two main ap-

proaches for detecting certain types of knowledge (e.g., opin-
ions, negation, etc.): first, using training sentences and em-
ploying machine learning techniques; and second, using pre-
defined structural patterns and vocabularies. The approach
we take here is pattern-based, where the patterns partly use
vocabularies of opinion mining, which can be constructed
by machine learning techniques. While our approach is sim-
ple and transparent (to, e.g., a human administrator), it
allows flexibility with respect to pattern creation (manually
or via learning techniques) and also performs well in our
experiments, identifying 100% of the IXs (with a few false
positives, see Section 6).

Based on a preliminary examination of real-life NL ques-
tions (taken from Yahoo! Answers [28]), we identify the fol-
lowing typical sources of individuality in NL IXs:

∙ Lexical individuality. A term (or phrase) in the IX
has a lexical meaning which conveys individuality. For

example, the term “awesome” conveys individuality,
as in “Buffalo is an awesome city”. In contrast, the
term “northern” in “Buffalo is a northern city” is not
individual (even though there may be different ways
of defining “northern”).

∙ Participant individuality. The IX refers to an event
that includes a participant which indicates individual-
ity. For example, consider the participant “we” in “we
visited Buffalo”. In contrast, “Tim Duncan” is not
an individual participant (the meaning is the same re-
gardless of the speaker).

∙ Syntactic individuality. A syntactic structure may
indicate individuality. For example, consider the sen-
tence “Tim Duncan should play for the NY Knicks”,
where the verb auxiliary “should” indicates individu-
ality (the sentence conveys an opinion of the speaker).

For each type of individuality source, we have manually
constructed a set of detection patterns, in terms of the depen-
dency graph, POS tags and relevant vocabulary. We express
these patterns as SPARQL-like queries over the vertex-edge-
vertex representation of dependency graph, similarly to Sec-
tion 3.2 for converting IX pieces to the query triples. We ex-
emplify the syntax of IX detection queries next, and provide
the full set of patterns in the full version of the paper [3].

Example 4.2. The detection pattern below identifies a
particular case of participant individuality, where a verb sub-
ject is individual.

1 $x nsubj $y
2 filter($y in V_participant &&
3 (POS($x) = "VBP" ||
4 POS($x) = "VB"))

Explanation: line 1 selects a vertex-edge-vertex triple of a
verb (assigned to $x) and its grammatical subject (assigned
to $y). $y must be an individual participant, i.e., belong
to the vocabulary V participant. $x should be a verb, i.e.,
marked by one of the POS tags that denote a verb (we show
only two of the possible tags in the pattern above). Given
the example dependency graph and POS tags, and assuming
“we” is in the vocabulary, this pattern would capture the
vertices corresponding to “we”, “visit” and the nsubj edge
between them.

To obtain the full IX, the part of the dependency graph
matching the pattern must be extended to a meaningful ex-
pression. For that, we use additional selection patterns that,
e.g., add to verbs all their subjects and objects; add adjuncts
to captured terms; etc.

5. IMPLEMENTATION
Next, we describe the implementation of our translation

framework in a novel prototype system, NL2CM.

5.1 The NL2CM System
NL2CM is implemented in Java 7. Figure 7 depicts its archi-

tecture, where our new developments are painted black. The
web UI of NL2CM implemented in PHP 5.3 and jQuery 1.x.
Through this UI users can write NL questions, interactively
translate them into a formal query language, and finally
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Figure 7: System Design

submit the resulting queries for execution by OASSIS. The
entered NL text is first parsed using a black-box module,
where we require that the output dependency graph and
POS tags would be aligned (which is the case when using
a combined parsing tool such as Stanford Parser). These
outputs are passed on to subsequent modules.

One of the subsequent modules is our newly developed IX
Detector, which is split in Figure 7 into two components:
the IXFinder uses vocabularies and a set of predefined pat-
terns in order to find IXs within the dependency graph, as
described in Section 4.2. We use a dedicated vocabulary
for each type of IX pattern: for lexical individuality, there
are many publicly available vocabularies that contain ex-
pressions of opinions or subjectivity. We use the Opinion
Lexicon 5. For the other types, the required vocabularies
are very small and can be easily composed.6 The second
module of the IX Detector, the IXCreator, is responsible
for completing the subgraphs representing the IXs. For ex-
ample, if some verb is found to have an individual subject,
this component further retrieves other parts belonging to
the same semantic unit, e.g., the verb’s objects.

The GQG is the black-box responsible for translating the
general query parts into SPARQL triples. Since many GQGs
only accept full parsed sentences as input, NL2CM feeds the
module with the dependency graph and POS tags of the
original user request, including the IXs. Some of the IXs
may be wrongly matched by the GQG to the ontology and
translated into general query triples. To overcome this prob-
lem, the Query Composition module later deletes generated
SPARQL triples that correspond to terms within IXs.

The Individual Triple Creation module receives the IXs,
and converts them, in this case, into OASSIS-QL triples.
These triples are then composed with the generated SPARQL
triples into a well-formed query by the Query Composition
module, as described in Section 3.3.

5.2 Resolving Missing Query Parameters
As described in Section 3.3, some parameters necessary

for the translation may not be explicitly specified by the
NL question. One possibility, in such cases, is using default

5http://www.cs.uic.edu/ liub/FBS/sentiment-analysis.html
6A list of modal auxiliaries for grammatical individuality
can be found, e.g., in Wikipedia (http://en.wikipedia.
org/wiki/Modal_verb#English), and for the list of individ-
ual participants we used pronouns (see, e.g., http://en.
wikipedia.org/wiki/English_personal_pronouns), and a
few words that refer specifically to the crowd (“the crowd”,
“people”, “everybody”,...). See the full list in [3].

values. However, when possible, a better solution is asking
the users targeted questions about the missing parameters
in their queries. Of course, these questions must be phrased
in manner suitable for a näıve user, i.e., in terms of the NL
question and desired answers rather than the constructed
query. In our implementation of NL2CM, we thus enhance
the Query Composition module with the following optional
parameter completion capabilities.

1. Completing missing LIMIT. To ask for a missing value,
the UI presents the NL question, highlighting the terms
corresponding to the relevant subclause. The user can
then adjust the limit by moving a cursor. For instance,
in the running example, the number of most interest-
ing places to return is not specified. The system would
highlight the term “places” and ask the user to specify
how many of these she wants to obtain in the output.

2. Completing missing THRESHOLD values. The treatment
of such missing values is similar to the previous case,
but with a different template question posed to the
user and different possible answers. For example, for
“should visit in the fall” in the running example, the
threshold of what is considered recommended is not ex-
plicitly specified. The user would be asked to choose
the “level of popularity” for the desired answers, be-
tween “Above zero” (which would return any place
recommended by anyone) and “Very high” (requiring a
consensus among crowd members). This answer would
be translated to a numeric threshold.

3. Deciding which variables to project out. Instead of re-
turning all the variables by default, as described in
Section 3.3, NL2CM can ask the users to select what they
would like to see in the output, among the terms of the
sentence. It further makes use of the capability of the
FREyA GQG [7] (which we also use in our Experi-
ments in Section 6) to identify the focus of a question.
The focus is intuitively the grammatical placeholder
in an NL question for the expected answer. The ques-
tion is presented with check boxes next to terms that
correspond to query variables, where initially only the
focus term is selected. For instance, in “Which places
should we visit in the neighborhoods of Buffalo?”, only
the term “places”, which is the focus of the question,
will be initially selected. The user can decide to further
select “neighborhoods”, to receive names of neighbor-
hoods along with the names of places in the output.

We also test the option of asking users to verify detected
IXs, by highlighting the corresponding NL question parts,
and asking the user whether the crowd should be asked
about each part (Section 6.2). In practice, this option is
proved to be ineffective, as our IX detector makes very few
errors, and user interaction mostly introduces new errors.

6. EXPERIMENTAL STUDY
We have conducted an extensive experimental study, in

order to evaluate the translation of NL2CM. In order to test
the variability of the system when no prior knowledge is
available about the input question, we have plugged into
NL2CM general-purpose black-boxes. For NL parsing, we have
compared the performance of three state-of-the-art parsers:
Stanford Parser [17], MaltParser [19] and TurboParser [18].
The latter two have parsed correctly 3% and 34% less sen-
tences than Stanford Parser, respectively. Hence, in the
sequel we show only the experimental results for Stanford
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Parser 3.3.0, trained over the Penn Treebank Corpus us-
ing the EnglishPCFG model [17]. For a GQG NL2CM em-
ploys FREyA [7]. Among state-of-the-art GQGs that trans-
late NL to SPARQL, we chose FREyA since it allows easily
configuring the ontology, has published code, and provides
user interaction options to improve the matching of sentence
terms to ontology entities [7]. We have configured FREyA
with the general ontology DBPedia, along with geographical
ontology LinkedGeoData.

Our experimental study consists of two parts. In the real
user experiment, users were asked to input their questions
to the system through NL2CM’s UI, and we examined the gen-
erated queries. This experiment investigates a real usage
scenario of NL2CM, and allows evaluating the system’s out-
put quality. We then examine the translation of questions
taken from a repository of the popular question-and-answer
platform Yahoo! Answers [28] in the Yahoo! Answers ex-
periment. This repository contains questions on a large
variety of topics, posted by a large body of users, and is
therefore useful for testing the versatility of NL2CM.

As a baseline, we compare the results of NL2CM with the
two basic alternatives described in Section 4.1:

1. Opinion mining. By analyzing the distribution of de-
tected individuality types, we can compute the portion
of questions that can be detected by this baseline al-
ternative (see Section 6.4).

2. Ontology matching. We have tested a few variations
and show here only the results for the best one, namely
exact matching of terms to the ontology – terms that
are not matched are considered parts of an IX. Match-
ing sentence parts has resulted in a higher rate of
false positives (general sentence parts that cannot be
matched), and loose matching, taking into account
synonyms and similar strings, resulted in a higher rate
of false negatives (individual sentence parts that are
wrongly matched to the ontology). As the results were
similar for the two experiments, we present the base-
line results only for Yahoo! Answers (see Section 6.3).

6.1 Methodology
Two approaches are possible for evaluating the transla-

tion quality: executing the query and asking users whether
they are satisfied with the query results, and manually ex-
amining the translated query. We have taken the latter,
stricter approach, because the former depends on the quality
of the query evaluation system (OASSIS in this case) which
is orthogonal to the translation quality, and moreover, users
may not be able to identify irrelevant/missing query results
caused by erroneous translation.

We have manually analyzed and classified the questions
according to their properties and to the translation results.
The classifications are as follows.

∙ Non-individual. Questions that do not contain an
individual part. In the real user experiment we have
further divided these questions into “good” and “bad”
to test which ones were correctly identified as non-
individual.

∙ Descriptive questions. Questions with individual
parts, that require a complex, non-structured answer
and thus does not fit well with structured query lan-
guages such as OASSIS-QL. These questions usually
start with “How to...”, “Why...”, “What is the pur-
pose of...”, and so on (see Example 6.1 below).

∙ Good. The question was translated correctly as-is.
∙ Good (minor edit). As previously mentioned, black-

box parsers are not perfect and parse incorrectly some
sentences. In order to test the ability of our new com-
ponents to handle various real-life questions regardless
of incorrect parsing, we have checked in which ques-
tions the incorrect parsing was the cause of incorrect
translation. When possible, we manually made mi-
nor, syntactic edits to such questions, which were suf-
ficient to make the questions translate correctly, and
preserved the original sentence meaning. These ed-
its mostly include changes of word order, connective
words or punctuation that affect the identification of
dependent sentence parts (See Example 6.1 below).
Parsing problems of this sort should ideally be auto-
matically handled, e.g., by interacting with the user.
Adding such capabilities to the parser, however, are
out of the scope of this paper.

∙ Bad OASSIS-QL. The sentence meaning could not be
captured in OASSIS-QL.

∙ Bad black-box. The sentence translation failed due
to errors of Stanford Parser or FREyA, which could
not have been overcome by minor edits.

∙ Bad NL2CM. The sentence translation failed in one of
NL2CM’s newly-developed modules.

The goal we have set for our system is to translate every
question that has individual parts except for descriptive ques-
tions. We estimate the quality of our newly developed mod-
ules independently (as much as possible) from the black-
boxes used in NL2CM.

To provide an intuition about the practical meaning of
the annotations, we show below example questions for each
annotation.

Example 6.1. Consider the user questions/requests be-
low, collected from both of our experiments.
Q.1: (non-individual) “Find a radio station that plays clas-

sical and jazz music.” This question is correctly trans-
lated as non-individual, meaning that the SATISFYING

clause of the resulting OASSIS-QL query is empty.
Q.2: (descriptive question) “What’s the best way to create a

bootable windows/dos CD?” The answer to this ques-
tion requires a potentially complex explanation, thus,
we consider it a descriptive question which is not sup-
ported by the query language.

Q.3: (good) “Where should I eat in Hong Kong if I prefer
European food?” This example is correctly translated
by NL2CM as-is. Its translation is given in the full ver-
sion of this paper [3].

Q.4: (good after minor edit) “What is the best and most
powerful portable GPS unit?” In the original form
of the question there was a comma instead of “and”,
and this caused Stanford Parser to wrongly decide that
“best” describes “powerful” rather than “unit”. Our
minor edit fixed this.

Q.5: (good after minor edit) Where next to Central Park
should I drink coffee?” (original: “Where should I
drink coffee next to Central Park?” ) In the original
form of the sentence Stanford Parser does not iden-
tify the phrase “next to”, and its relation to “Where”.
Changing the word order fixes these parsing errors.

Q.6: (bad OASSIS-QL) “What words should I learn before I
go to China?” The temporal precedence “before” can-
not be expressed by OASSIS-QL.
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Q.7: (bad black-box) “Any suggestions on fun, non-wine or
golf related things to do in Carmel?” Stanford Parser
does not manage to identify all the semantic relations
in this sentence, which cannot be fixed by minor edits.

Q.8: (bad NL2CM) “What voltage adapter should I use for
my 5.4v pda?” The current implementation of NL2CM
does not support certain adjuncts of elements that are
not queried from the ontology. In this case, the “5.4v”
property of the PDA is lost in the translated query.

Note that the second dataset (Yahoo! Answers) is ana-
lyzed a posteriori, unlike the real user experiment. We have
thus carefully chosen classification criteria that are not af-
fected by user interaction (as described in Section 5.2). For
the real-users experiment, we separately analyze below the
effect of such user interaction.

6.2 User Experiment
In this experiment, 10 volunteer users from different back-

grounds were asked to feed questions to the UI of NL2CM.
They were told that their questions would be evaluated with
the crowd, and were asked to write questions that explicitly
ask for individual information, i.e., the habits and opinions
of people. The system usage instructions provided the users
with brief, general guidelines on how to phrase questions,
and the types of questions the system supports.

In total, we have collected 100 questions, out of which 73
were individual and not descriptive. The analysis results for
this subset of questions are displayed in Figure 8a. First,
note that about 92% of these questions were correctly trans-
lated (out of which, 34% required minor manual edits), which
shows that NL2CM is highly capable of dealing with real user
questions. Second, 100% of the sentences that did not fail
due to other reasons (black-boxes, OASSIS-QL) were correctly
processed by the new modules of NL2CM, and in particular,
100% of the IXs were identified. Last, by our inspection
of the questions that could not be captured by the query
language semantics (annotated “bad OASSIS-QL”), it turns
out that they all happened to involve temporal semantics,
such as in Q.6 from Example 6.1. The relative abundance
of questions of this sort suggests that it might be useful to
add temporal constructs to the language.

As for the non-individual questions, these mostly seem
to stem from an occasional confusion of the users between
questions they wanted to ask the crowd with ones that have
explicit individual parts (as they were guided to ask). For
example, consider Q.1 from Example 6.1 which is not indi-
vidual, but in practice can be answered with the help of the
crowd. Including Q.1, 15 out of 21 non-individual questions
were nonetheless correctly translated (to queries with an
empty SATISFYING clause). Other questions were wrongly
identified as individual due to parsing errors (4 questions)
and NL2CM false positives (2 questions).

We have also analyzed the impact of user interaction. This
includes the fetching of missing values and verifying the de-
tected IXs (as described in Section 5.2). Instructing the
system to ignore identified IXs was done only in 5.2% of the
sentences, and in about half of these cases, the user wrongly
dismissed correct IXs. This suggests that IX verification by
the user is ineffective. In contrast, users frequently changed
the default LIMIT and THRESHOLD (70% and 71.2%, resp.).
This is expected, since these values do not appear in the
original questions. Finally, due to the automated identifica-
tion of the question focus (see Section 5.2), users changed

the SELECT clause variables in only 28.9% of the questions.
In these questions the user had to correct the question focus
identified by FREyA, or decided to add desired variables to
the output. In summary, asking the user for missing values
was proven beneficial.

6.3 Yahoo! Answers Experiment
In this experiment, we have arbitrarily chosen the first 500

questions from the Yahoo! Answers repositories [28]. Of
the 500 questions, 26% asked for individual information.
Note that this significant portion of real-life questions could
not be handled by previous translation systems. 5% were in-
dividual descriptive questions, and the rest were fed into NL2CM

to be translated (some after a small syntactic refinement, to
ensure Stanford Parser analyzes them correctly).

The distribution of annotations assigned to the individual,
non-descriptive questions is depicted in Figure 8b. Most no-
tably, the translation quality was significantly lower than
that of the real user experiment. This indicates that simple
user instructions help avoiding many translation problems,
mostly relating to NL parsing problems, that are hard to
avoid by other means. Altogether, 72% of the Yahoo! An-
swers questions were translated correctly (out of which, 37%
required minor edits), which demonstrates the ability of
NL2CM to handle various questions, ranging from travel and
product recommendations to technological and health-related
issues. If we consider only the new modules, 93.8% of the
questions (that did not fail due to other reasons) were han-
dled correctly. For comparison, consider the results of the
baseline algorithm that detects IXs based on matching the
question terms to the ontology (Figure 8c). Only 13.2% of
the questions in total were correctly parsed by this algo-
rithm. Out of the questions that were not parsed correctly
by the baseline, 95% were due to false negatives, and 15%
were false positives (with overlaps). This is expected, since
we use a general ontology that supports a wide variety of
questions, but thus also matches many individual terms.

6.4 Queries Analysis
In addition to the qualitative evaluation, we have analyzed

the properties of the translated queries in order to gain a
better understanding of the system’s challenges. Figure 8d
displays the distribution of individuality sources within the
individual questions of the user experiment (the Yahoo! ex-
periment exhibited similar trends). In these questions, syn-
tactic individuality always appeared along with participant
individuality (“should I”, “should we”), hence the chart dis-
plays the frequency of their combination. The “Multiple”
slice represents sentences which contain multiple types of
individuality. These results also allow us to compare our
IX detector with the baseline approach based on opinion
mining tools: if we use, e.g., SentiWordNet [23] to identify
individual terms, 34% of the IXs are not identified, because
they involve habits and recommendations rather than opin-
ions. The results also show that each of the individuality
types that we have defined is indeed frequently found in
individual questions. Finally, the results reaffirm that IX
Detection is a non-trivial task, since a significant portion of
the questions combines multiple individuality types.

Figure 9 displays the distributions of the total number of
triples, subclauses and variables in the SATISFYING clause,
with respect to queries that were correctly translated. These
numbers serve as indicators for the complexity of the re-
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Figure 9: Statistics about correctly translated queries.

sulting query (and consequently the original NL question).
As the diagram illustrates, the individual part of the ques-
tions/requests is mostly very simple, yet there are some
queries which have a fairly complex structure, relatively to
NL sentences. Interestingly, the queries obtained via our
user experiment were slightly more complex by the differ-
ent metrics we checked. While we cannot know the actual
cause for this difference, we conjecture that posing a ques-
tion to an automated system encourages people to ask more
complex questions than they would ask in a forum.

7. RELATED WORK
The study of NL interfaces to databases (NLIDBs) dates

back to the late 1960’s. Out of the vast body of research
on this topic, we mention here the most recent and relevant
studies and provide a more in-depth discussion in the full
version of this paper [3]. Recent NLIDBs employ generic
approaches for translating NL-to-SQL queries, using ma-
chine learning techniques (e.g., [26]) and state-of-the-art NL
parsers (e.g., [14, 21]). In particular, the more recent NaLIR
and NaLIX systems [14, 15] interact with the user to refine
its interpretation of the NL question and its matching to
the schema of relational databases and XML, respectively.
While NL2CM also employs interactive refinement, such in-
teraction is not available in its current NL parsing module
(Stanford Parser, which is used as a black-box). In this
sense, the techniques of [14, 15] complement those of NL2CM
by serving to improve the NL parsing of the input question.

Due to an increasing interest in the Semantic Web, several
systems have been recently developed for the translation of
NL requests to SPARQL queries, e.g., [7, 29]. As mentioned,
all of these systems deal only with general knowledge and

do not account for individual knowledge. NL2CM employs
one such system (FREyA) as a black-box for translating
the general query parts. In this context we also mention
the recent work of [31] which studies direct evaluation of
NL questions (on general information) over RDF graphs,
without the intermediate translation-to-query phase. This
approach is, however, not suitable to our setting, since it
cannot account for the evaluation of individual query parts,
for which an ontology is not available.

The use of crowdsourcing techniques for data procurement
tasks is of great current interest. In addition to crowd min-
ing studies, mentioned throughout this paper [1, 2], recent
work studies the crowd-powered evaluation of query opera-
tors [20, 27]; data management tasks like data cleaning [6,
25] and schema matching [10, 30]; more high-level process-
ing such as information extraction [12, 13]; and many more.
NL interface is mentioned in some of these papers, but only
in the context of generating questions to crowd members,
in which case the approach is template-based [2, 11]. The
CrowdQ system [9] involves crowd-powered techniques for
identifying patterns in keyword search queries. It would
be interesting to study whether these means can also be
adapted to our setting, to obtain crowdsourced parsing of
user questions that mix general and individual parts.

Some additional NL tools to note here are opinion mining
tools such as Stanford Sentiment Analysis [24], and Senti-
WordNet [23], which are useful for identifying a fragment
of individual expressions. Another tool is a plug-in for the
GATE architecture [4] that allows defining templates of micro-
tasks to the crowd, and may be used for crowd-powered
query refinement. It would be interesting to integrate such
a tool in our system, in cases when interaction with the user
who submitted the question is not possible.

8. CONCLUSION AND FUTURE WORK
In this paper, we have studied the problem of translating

NL questions that involve general and individual knowledge
into formal queries, thereby making crowd mining platforms
accessible to the public. We have described the novel mod-
ules of a translation framework, which detect, decompose,
translate and recompose the individual query parts with the
general ones. Our approach proves effective in our experi-
mental study, for wide-ranging user questions.

Our study highlights some intriguing future research di-
rections. First, it would be interesting to replace or wrap
Stanford Parser to allow interactive parsing refinement, and
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assess the effect on the output query quality versus the user
effort incurred. For the IX Detector, future research may
study machine learning techniques for automatically sug-
gesting detection patterns. It would also be interesting to
examine whether our approach could be adapted for analyz-
ing NL answers collected from the crowd, forums or social
platforms. Finally, our experiments reveal frequent struc-
tures in real NL questions. For structures that are not yet
supported, e.g., temporal relations in OASSIS-QL, adequate
new constructs should be developed.
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