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ABSTRACT
Preference data arises in a wide variety of domains. Over
the past decade, we have seen a sharp increase in the volume
of preference data, in the diversity of applications that use
it, and in the richness of preference data analysis methods.
Examples of applications include rank aggregation in ge-
nomic data analysis, management of votes in elections, and
recommendation systems in e-commerce. However, little at-
tention has been paid to the challenges of building a system
for preference-data management, which would help incorpo-
rate sophisticated analytics into larger applications, support
computational abstractions for usability by data scientists,
and enable scaling up to modern volumes. This vision pa-
per proposes a management system for preference data that
aims to address these challenges. We adopt the relational
database model, and propose extensions that are specialized
to handling preference data. Specifically, we introduce a spe-
cial type of a relation that is designed for preference data,
and describe composable operators on preference relations
that can be embedded in SQL statements, for convenient
reuse across applications.

1. INTRODUCTION
Preference data, consisting of orders among sets of items,

is a commonplace model to express opinions in a variety
of domains. Since the emergence of such datasets, there
arose many applications with the need to perform a range
of special analytical tasks over them. Consider, for example,
preferential voting systems for elections. Statistical studies
often look at correlating sociodemographic information of
voters with their ranking behavior [10, 18], analysis that is
useful to political campaigns. In bioinformatics, prioritized
gene lists are a common way to express the output of high-
throughput experiments; with many experiments producing
different gene rankings, there is often a need to find a con-
sensus ranking that is considered stable or reliable [4, 14].
Lastly, e-commerce applications and social networks that
wish to recommend items or products to users have recently
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tended towards looking at comparison-based feedback rather
than at traditional ratings [3, 6]. While much recent work
has focused on incorporating preferences over tuples to im-
prove database querying (i.e., preferences for data manage-
ment) [2,12,13,16], we are not aware of any work on general
solutions for managing preference data (i.e., data manage-
ment for preferences). Yet, modern volumes, variety and
availability of preference data, as well as the interest in
sophisticated analytics over such data, naturally motivate
challenges involved in general data management. These in-
clude appropriate data models, abstractions and system im-
plementations for a large range of applications.

This paper describes our vision of a system for manage-
ment and analysis of preference data. We propose to adapt
the relational database model, and to extend it with a novel
kind of a relation, namely preference relation. A preference
relation can be provided directly as a base relation (along-
side ordinary relations), or be derived as a view. Impor-
tantly, rather than specifying a single preference order over
tuples (as in p-relations in [2]), an instance of our prefer-
ence relation contains a set of sessions, each stating a set of
pairwise preferences attributable to a particular judge, be
it a user or an automatic process. In this way we are able
to model divergent opinions, and can accommodate a wide
range of preference types (linear rankings, partial orders,
inconsistent preferences with cycles, etc.).

In the following sections, we recall common analytics over
preference data, propose a formal framework, outline the
challenges involved in building primitives for management
and analytics (over preference data), and finally explain how
our vision complements the state of the art.

2. COMMON OPERATIONS
Various communities in computer science, including ma-

chine learning, theoretical CS and database systems, have
looked at operations concerning preference data. Here we
recall some important operations among those studied.

Rank Aggregation [1, 7–9]. This operation, which has
been well studied in theoretical computer science, aggregates
a given collection of input rankings to find a ranking that
intuitively represents a consensus or summary of all rank-
ings. Aggregation methods range from very simple, such as
sorting items on the sum of their ranks (the Borda count),
to more sophisticated, where one searches for rankings that
minimize the overall distance from each ranking in the input
set (Kemeny optimal aggregation).

Clustering over Preferences [5,15,17]. Clustering over
preference data partitions the users into a small number
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of groups so that each group consists of users who are in
high agreement on the ordering of items. This topic has
received more recent attention in machine learning, which
focuses on learning statistical distance-based models under-
lying the data. A challenge in such learning is in utilizing
different kinds of training data, such as complete rankings,
top-k rankings, partitioned preferences or in the most gen-
eral case, pairwise preferences.

Sequence Mining [19, 20]. A related area is large-scale
sequence mining, where the goal is to find either contiguous
or non-contiguous sequences that have high support. Appli-
cations include finding n-grams over large text corpora or
finding interesting events in time-series data. Although this
data weakly corresponds to preferences, the linear ranking
properties are similar and thus share motivation in the tasks
of querying over large scale ordered data.

Note that some of the above applications use common op-
erations. Learning statistical models of preferences requires
computing distances between two preference inputs, as may
be required in rank aggregation methods. Likewise, frequen-
cies of partial rankings tends to be useful in both sequence
mining and in computing relative frequency distributions for
machine learning. Based on this observation, our goal is to
create a general system for the management and analysis of
preference data, which will provide (1) a unified data model
for various types of preferences, including top-k rankings,
linear orderings, partitioned preferences, and general pair-
wise preferences; and (2) a set of primitive functions that is
expressive enough for many analytical queries over prefer-
ences, and can be computed efficiently at scale.

In the next section, we propose a data model for prefer-
ences, and a series of functions that operate over a prefer-
ence relation. We then briefly describe extensions to existing
SQL to support this model, and outline examples of analyt-
ical queries that can employ such functions.

3. DATA MODEL
Our data model extends the ordinary relational model

with a special type of relation, along with special opera-
tions over that relation. Specifically, a relation schema S
consists of two types of relation symbols: ordinary relation
symbols and preference relation symbols. An ordinary re-
lation symbol R of a schema S is associated with a set of
attributes that we denote by A(R). A tuple t over R is a
mapping from A(R) to atomic values (e.g., numbers, strings,
etc.), and a relation over R is a finite set of tuples over R.

A preference relation symbol represents a collection of ses-
sions, where each session consists of pairwise preferences
among items. A tuple of a preference relation symbol can
be conceptually viewed as a triple (s, l, r) stating that “in
session s, item l is preferred to item r.” Formally, a pref-
erence relation symbol P of a schema S is associated with
three constructs, S(P ), λ(P ) and ρ(P ), where S(P ) is a
set of attributes (designated for the session identifier), λ(P )
and ρ(P ) are sequences of attributes (designated for the left-
hand-side and the right-hand-side item identifiers, respec-
tively), λ(P ) and ρ(P ) are of the same length, and S(P ),
λ(P ) and ρ(P ) are pairwise disjoint. For a preference rela-
tion symbol P , we let A(P ) denote the set of all attributes
that occur in S(P ), λ(P ) and ρ(P ). A tuple and a relation
over P is defined similarly to an ordinary relation symbol R
(replacing A(R) with A(P )). A relation over a preference
relation symbol is called simply a preference relation.

A database instance D over a schema S maps every (or-
dinary and preference) relation symbol Q of S to a relation,
denoted QD. When there is no risk of ambiguity, we may
abuse the notation and write just Q instead of QD.

Note that the above model of preferences naturally corre-
sponds to a directed graph model (each edge corresponds to
a tuple in the preference relation). Without any constraints,
a preference graph may contain cycles, indicating inconsis-
tencies in preferences. Such inconsistencies are a natural oc-
currence as the session may correspond to a group of users
who conflict with each other in their preferences, or at the
individual level, where a user has stated conflicting prefer-
ences over time. Reasoning about properties of acyclicity
and consistency will be necessary and important operations
for analytical queries.

Example 3.1. As a shorthand notation, an ordinary re-
lation symbol R is denoted by R(A1, . . . , Ak) to specify that
A(R) = {A1, . . . , Ak}, and a preference relation symbol
P is denoted by P (A1, . . . , Ak;B1, . . . , Bm;C1, . . . , Cm) to
denote that S(P ) = {A1, . . . , Ak}, λ(P ) = (B1, . . . , Bm)
and ρ(P ) = (C1, . . . , Cm). In our running example, the
schema S has 4 relation symbols: Foodies(ssn, age, income),
Restaurants(rid, cuisine, price), Surveys(sid, ssn), and the rela-
tion Opinions(sid; rid1; rid2) Note that Persons, Restaurants
and Surveys are ordinary relations, while Opinions is a pref-
erence relation, stating user preferences of restaurants.

A preference-to-preference operator is a function that maps
a preference relation P to another preference relation Q,
such that λ(Q) = λ(P ) and ρ(Q) = ρ(P ). Below we list
various useful tasks that can be viewed as such operations.
(Those are just examples, and the list will naturally extend
as we materialize our vision.)

Transitive closure. When applied to a preference relation
P , this relation contains a triple (s, l, r) whenever there is
a (nonempty) sequence of triples (s, li, ri) that form a path
from l to r.

Selection. An operator of this sort returns a subset of
the input relation P , based on a condition on the sessions
and/or the individual preferences. Such a condition can be
“the session is a linear/acyclic order,” or “the preference
does not participate in any cycle within the session.”

Rank aggregation. The result of applying this operator
to the relation P is a preference relation Q with S(Q) = ∅.
The relation Q consists of a single session that is meant to be
a representative of the preferences of all the sessions. This
operator also has a grouped version that is parametrized
by a subset S′ of S(P ); in that case, S(Q) = S′ and the
aggregation is applied to each distinct value of S′ separately.

Clustering. This operator is parametrized by the number
N of desired clusters. The result for the relation P is a
preference relation Q with S(Q) = S(P ) ∪ {cluster}, where
cluster is a distinguished attribute. The relation Q is the
same as P , except that the attribute cluster denotes the
identifier of the cluster to which the session belongs.

Sequence/graph mining. This operator is parametrized
by a frequency τ ; the result is a preference relation Q with
S(Q) = {id}, consisting of (maximal) preferences with a
support of (i.e., occur orderly in path of) at least τ sessions
of P . Like in the case of rank aggregation, there is also a
grouped version parametrized on a subset S′ of S(P ), and
in that case S(Q) = S′ ∪ {id}.
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4. SQL EXTENSION
We now present a proposed extension of SQL that sup-

ports the management and analysis of preference data.
The first extension is in the generation of new preference

relations. When we create a preference relation P , we need
to specify S(P ), λ(P ) and ρ(P ). We do so by using the key-
word SELPREF (i.e., select preference), and by using semi-
colons to distinguish between the three chunks of attributes.

SELPREF A1, . . . , Ak ; B1, . . . , Bm ; C1, . . . , Cm

As usual, each Ai, Bi and Ci is an attribute name from the
relations mentioned in the FROM clause of the query. Also
as usual, one can use R.A if the attribute A occurs in more
than one FROM relation, and an attribute A can be renamed
using the AS keyword.

Example 4.1. We continue our running example. The
following query constructs a preference relation, where opin-
ions of a foodie are collected from all her surveys.

SELPREF S.ssn ; O.rid1 ; O.rid2
FROM Opinions O, Surveys S

WHERE S.sid = O.sid

Here, the preference relation P is constructed with S(P ) =
{ssn}, λ(P ) = {rid1}, and ρ(P ) = {rid2}.

The next extension is by preference-to-preference opera-
tors, which can be used in the FROM clause instead of base
relations. The general syntax for such an operator is: X[P ],
whereX is the name of the function (e.g., a rank-aggregation
algorithm) and P is a preference relation symbol. An exam-
ple would be TransClosure[Opinions], where TransClosure is
the name assigned to the transitive-closure function. Ex-
pected parameters for the function (e.g., N and τ) are put
in angles after X, and grouping can be specified through the
addition of BY (A1, . . . , Ak), where A1, . . . , Ak are in S(P ).
For example, Cluster〈10〉[OpinionsByAge] BY (age) clusters
the opinions of the foodies in each age group into 10 clus-
ters. As is conventional in SQL, one can use a nested query
instead of the preference relation symbol P .

Example 4.2. We continue our running example. The
following query selects all demographic groups of foodies
who prefer “Momofuku” to “Bozu” and “Bozu” to “Qi”
(Asian Fusion restaurants in NYC).

CREATE VIEW ExtOpinions AS
SELECT age, income, rid1, rid2

FROM TransClosure[ RankAgg[
SELPREF F.ssn, age, income ; rid1 ; rid2

FROM Opinions O, Surveys S, Foodies F
WHERE S.sid = O.sid AND S.ssn = F.ssn

] BY (age,income) ]

SELECT O1.age, O1.income
FROM ExtOpinions O1, ExtOpinions O2

WHERE O1.age = O2.age AND O1.income = O2.income
AND O1.rid1 = ‘Momofuku’ AND O1.rid2 = ‘Bozu’
AND O2.rid1 = O1.rid2 AND O2.rid2 = ‘Qi’

Note that the view definition computes an aggregated
preference for each group of people as defined according
to their age and income: combining the preference rela-
tion Opinions with Surveys and Foodies results in a new
preference relation with session identifiers corresponding to

ssn, age, income. Computing the transitive closure of this
resulting relation materializes direct links (preferences) be-
tween restaurants. Using this view, we can compute the
desired result by performing a self-join to reconstruct two-
hop paths.

Example 4.3. Consider a query to find restaurants that
are most preferred by users. We can define this to be the
restaurants that occur in at least 1000 sessions, and are pre-
ferred to at least 5 other restaurants.

SELECT rid1
FROM TransClosure[MaxFrequent<1000>[Opinions]]

GROUP BY rid1
HAVING COUNT(*) > 5

This query finds all maximal frequent preferences over the
Opinions table, which results in a new preference relation
P . This relation consists of preferences that occur in at least
1000 surveys (i.e. substructures that are common among at
least 1000 preference graphs). To find restaurants that are
preferred to at least 5 others, we take the transitive closure
of P , which gives us direct pairwise preferences. A group-
ing and selection over the first restaurant (rid1) eliminates
restaurants that are preferred to fewer than 5 others.

5. OUTLOOK
There are a number of significant challenges in materializ-

ing our proposed vision for efficient management and anal-
ysis of preference data. We are in the process of implement-
ing the necessary facilities as part of PostgreSQL, which
has strong support for extensibility features. Nonethe-
less, significant advances are required to make working with
preference relations practical. Specifically, we must study
semantic aspects such as integrity constraints and algebraic
properties of preference-to-preference functions, develop ef-
ficient physical representations and access methods for pref-
erence relations, and implement scalable analytics. In what
follows, we discuss these challenges and our research plans
towards solutions.

Semantic Aspects. Applications that manage preference
data may involve integrity constraints; for example, some
preference relations need to be partial/linear orders. We
would like to enable users to easily specify such constraints.
Importantly, such constraints may be used for static anal-
ysis of queries, and in particular, for inferring properties
of preference relations generated from base preferences. In
addition, we would like to determine whether a query is
sensitive to key invariants of the input preferences (e.g., the
query has the same results on base preference relations with
the same transitive closure). Such inferred knowledge is use-
ful not only to guarantee the consistency of data, but also
for optimization by query rewriting or selection of indexes.

Physical Representation. To illustrate an aspect of rep-
resentation, consider a preference relation P , and suppose
that preferences in an instance of P correspond to a total
linear ordering of the items. In this case, it is beneficial
to create an alternative physical representation that stores
P using numerical ranks rather than pairwise comparisons.
Using this representation, we can compute the transitive clo-
sure of preferences with a simple self-join, rather than having
to execute a recursive query on the pairwise representation.

While it is clear that an alternative physical representa-
tion of this kind is useful for linear orders, we must view this
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in the context of query optimization and rewriting, evalu-
ating opportunities to incorporate operator reordering, lazy
evaluation and other optimization techniques, towards more
efficient query execution plans. This will require an under-
standing of, and the ability to reason about, the algebraic
properties of queries extended with preference-to-preference
functions. For example, we will need to determine whether
a linear ordering that holds in an instance of P is preserved
as P is manipulated by relational operations and by prefer-
ence analytics. Other special cases that are likely to war-
rant customized physical representations include partial or-
ders, where operations like the transitive closure are well-
motivated, and preferences with disconnected graphs.

Scalable Analytics. Another important challenge is in
translating preference-to-preference functions, and more gen-
erally queries that embed such functions, into efficient exe-
cutions. We need to scale up these operations to large vol-
umes of preference data, where the volume is due to either
the number of sessions, or the number of items, or both.
Facing this challenge may involve compromises on the guar-
antees of the algorithms, to allow for practical execution
costs. For instance, consider rank aggregation. Several rank
aggregation methods have been discussed in the literature
and would be useful to implement, such as Kemeny optimal
aggregation [11]. This rank aggregation method is partic-
ularly desirable because it adheres to the Extended Con-
dorcet Criterion (ECC) [23], stating that if a majority of the
rankers prefer i to j then the aggregate ranking should pre-
fer i to j. Kemeny aggregation is known to be NP-hard [7],
and several attempts have been made to provide tractable
relaxations [1, 7, 22]. Subbian and Melville [22] essentially
propose a quick sort on elements based on majority prece-
dence, while Dwork et al. [7] propose local Kemenization,
which corresponds to bubble sort. It would be interest-
ing to understand the applicability of these algorithms to
various settings where rank aggregation is required, and to
evaluate the scalability and quality of the resulting solution.
A promising avenue of research is to evaluate performance
optimization opportunities that result from exploiting par-
allelism available on modern hardware.

6. SYNERGY WITH PRIOR ART
The work proposed here is motivated by and aligns with

our long-term project that focuses on understanding local
structure in ranked datasets [21].

Recent trends in making database management systems
more preference-aware, have been focusing on specific types
of preference queries over relational data. The work of Ar-
vanitis and Koutrika [2], for instance, looks at optimizing
queries for the most preferred answers, given a set of user-
declared preferences. RankSQL [16] proposes new rank re-
lations and algebraic operators as extensions to an existing
DBMS to optimize top-k queries. The common thread that
ties many of these systems together is the idea of finding a
single preference over a relation or a set of query results,
given high-level preference functions or formulae. In con-
trast, no system has yet looked at general queries over col-
lections of individual preferences.

In a seminal line of work, Kießling et al. [12, 13] propose
mechanisms to generalize ranking in query results beyond
the traditional “ORDER BY” and “LIMIT” of SQL. These
mechanisms include functions that construct partial orders
from columns, and a collection of algebraic operators to com-

pose partial orders into new ones. These partial orders are
constructed and used as part of relational queries, and are
not treated as ordinary data. For that reason, their basic
conceptual construct is a partial order over an ordinary rela-
tion, while our preference relations store a collection of (or
sessions of) preferences. Importantly, we believe that the
two research directions can be naturally combined towards a
richer formalism. Analytics can be used to synthesize pref-
erences representative of whole populations, which can in
turn be used to enrich the set of atomic partial orders of
Kießling et al. [12,13].
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