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ABSTRACT

We consider differentially private frequent itemset mining.
We begin by exploring the theoretical difficulty of simulta-
neously providing good utility and good privacy in this task.
While our analysis proves that in general this is very diffi-
cult, it leaves a glimmer of hope in that our proof of difficulty
relies on the existence of long transactions (that is, transac-
tions containing many items). Accordingly, we investigate
an approach that begins by truncating long transactions,
trading off errors introduced by the truncation with those
introduced by the noise added to guarantee privacy. Ex-
perimental results over standard benchmark databases show
that truncating is indeed effective. Our algorithm solves the
“classical” frequent itemset mining problem, in which the
goal is to find all itemsets whose support exceeds a threshold.
Related work has proposed differentially private algorithms
for the top-k itemset mining problem (“find the k most fre-
quent itemsets”.) An experimental comparison with those
algorithms show that our algorithm achieves better F -score
unless k is small.

1. INTRODUCTION
Recently, concomitant with the increasing ability to col-

lect personal data, privacy has become a major concern.
In this paper, we focus on privacy issues that arise in the
context of finding frequent itemsets in “transactional” data.
Frequent itemset mining is widely used in many applica-
tions, perhaps the best known of which is market basket
analysis. The goal of frequent itemset mining in market
basket analysis is to find sets of items that are frequently
bought together, which is helpful in applications ranging
from product placement to marketing and beyond. Devel-
oping efficient algorithms for frequent itemset mining has
been widely studied by our community [15]. However, with
the exception of the recent work in [5, 16], a differentially
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private approach to frequent itemset mining has received
little attention.

A frequent itemset mining algorithm takes as input a
dataset consisting of the transactions by a group of indi-
viduals, and produces as output the frequent itemsets. This
immediately creates a privacy concern — how can we be con-
fident that publishing the frequent itemsets in the dataset
does not reveal private information about the individuals
whose data is being studied? This problem is compounded
by the fact that we may not even know what data the indi-
viduals would like to protect nor what background informa-
tion might be possessed by an adversary. These compound-
ing factors are exactly the ones addressed by differential pri-
vacy [9], which intuitively guarantees that the presence of
an individual’s data in a dataset does not reveal much about
that individual. Accordingly, in this paper we explore the
possibility of developing differentially private frequent item-
set mining algorithms. Our goal is to guarantee differential
privacy without obliterating the utility of the algorithm.

We quantify the utility of a differentially private frequent
itemset mining algorithm by its likelihood to produce a com-
plete and sound result. Intuitively speaking, “completeness”
requires an algorithm to include all the sufficiently “fre-
quent” itemsets, and “soundness” requires an algorithm to
exclude all the sufficiently “infrequent” ones. We start by a
theoretical investigation of the tradeoff between privacy and
utility in frequent itemset mining. Our result unfortunately
indicates that the problem is very hard — that is, in gen-
eral, one cannot simultaneously guarantee high utility and
a high degree of privacy.

However, a closer investigation of this negative result re-
veals that it relies on the possibility of very long transactions
(that is, transactions with many items). This raises the pos-
sibility of improving the utility-privacy tradeoff by limiting
transactions’ cardinality. Of course, one cannot in general
impose such a limit — so instead, we explore enforcing the
limit by truncating transactions. That is, if a transaction
has more than a specified number of items, we delete items
until the transaction is under the limit. Of course, this dele-
tion must be done in a differentially private way; perhaps
equally important, while it reduces the error due to the noise
required to enforce privacy, it introduces a new source of er-
ror by discarding items from transactions. Exploring the
impact of this tradeoff is one of the contributions of our
work. Our experimental results with four datasets indicate
that truncating has a large positive impact on quality.

For ease of exposition, we go from this observation to a
differentially private frequent itemset mining algorithm by
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a series of steps. First, we explore how to find frequent
1-itemsets (itemsets with only one item). Next, we general-
ize this to find frequent β-itemsets (itemsets with β items).
Finally, we generalize this to solve the full problem: in a
differentially private way, find all the itemsets whose sup-
port exceeds a given threshold. We found that each of these
steps was non-trivial and had to be done with care to ensure
privacy without destroying utility.

Finally, we compare our work with interesting recent work
on differentially private top-k frequent itemset mining [5,
16]. This problem is somewhat different from the one we
address (“find all itemsets whose support exceeds a thresh-
old”) but it is similar enough to allow a comparison. For
example, one can use our algorithm with a sufficiently low
threshold to guarantee that k itemsets will be found to solve
the top-k problem; or one can use a top-k algorithm with k
set large enough to find all the itemsets whose support ex-
ceeds a threshold. Our experimental study with four bench-
mark datasets shows that our algorithm produces a result
with a higher F -score than either of the top-k algorithms
unless k is very small (e.g., k ∼ 10).

The rest of the paper is organized as follows: Section 2
briefly describes the problem of frequent itemset mining,
and the notion of differential privacy. Section 3 explores
the trade-off between utility and privacy in frequent itemset
mining. Section 4 proposes our differentially private fre-
quent 1-itemset mining algorithm. Section 5 generalizes the
idea of truncating transactions to frequent β-itemset min-
ing. Section 6 extends our β-itemset mining algorithm to
frequent itemset mining. Section 7 evaluates our algorithm
on benchmark datasets. Section 8 discusses related work,
and Section 9 concludes our work. Most of the proofs and
the pseudocode of some algorithms can be found in the long
version of our paper available at [1].

2. PRELIMINARIES
In this section, we review the problem of frequent itemset

mining [2], and the notion of differential privacy [9].

2.1 Frequent Itemset Mining
We model a database τ as a vector in Dm, where each

entry represents the information contributed by an individ-
ual from the domain D. In our context, the database in
frequent itemset mining is called a transaction database.

Definition 1. (Transaction database): A transaction
database is a vector of transactions τ = 〈t1, . . ., tm〉 where
each transaction ti is a subset of the alphabet I = {1, . . . , n}.

The domain of a single transaction is thus the power set
of the alphabet I. In this paper, we use “database” as a
shorthand for “transaction database.” Each subset of the
alphabet I is called an itemset. If the number of transactions
containing an itemset exceeds a predefined threshold, then
that itemset is called a frequent itemset.

Definition 2. (Frequent itemset): For any itemset X,
the support of X in a database is the number of transactions
containing X. If that number exceeds a predefined threshold
λ, then X is called a frequent itemset with respect to the
threshold λ.

In the rest of this paper, we assume the threshold λ is
given, and use the term “frequent itemsets” as a shorthand

for “frequent itemsets with respect to the threshold” when
the threshold is clear from the context. For ease of presen-
tation, we denote “the itemsets of cardinality (number of
elements) β” by “β-itemsets”, and the query that computes
the support of a β-itemset by a “β-itemset query.” A β-
itemset query is a count query which computes the number
of transactions containing the given itemset.

2.2 Differential Privacy
Intuitively, differential privacy guarantees that the pres-

ence or absence of an individual’s information has little ef-
fect on the output of an algorithm, and thus, an adversary
can learn limited information about any individual. In our
context, the information contributed by an individual is her
transaction. More precisely, for any database τ ∈ Dm, let
nbrs(τ ) denote the set of neighboring databases of τ , each of
which differs from τ by at most one transaction. Differen-
tial privacy requires that the probabilities of an algorithm to
output the same result on any pair of neighboring databases
are bounded by a constant ratio.

Definition 3. (ǫ-differential privacy [9]): For any in-
put database τ , a randomized algorithm f is ǫ-differentially
private iff for any S ⊆ Range(f), and any database τ ′ ∈
nbrs(τ ),

Pr(f(τ ) ∈ S) ≤ eǫ × Pr(f(τ ′) ∈ S)

where Pr is the probability taken over the coin tosses of the
algorithm f .

One way to guarantee differential privacy for a count query
is to perturb the correct result. In particular, Ghosh et
al. [12] propose the geometric mechanism to guarantee ǫ-
differential privacy for a single count query. The geometric
mechanism adds noise ∆ drawn from the two-sided geomet-
ric distribution G(ǫ) with the following probability distribu-
tion: for any integer σ,

Pr(∆ = σ) ∼ e−ǫ|σ| (1)

The geometric mechanism is a discrete variant of the well-
studied Laplacian mechanism [10], which adds random noise
drawn from the Laplacian distribution. To ensure differen-
tial privacy for multiple count queries, we first compute the
sensitivity of those queries, which is the largest difference
between the output of those queries on any pair of neigh-
boring databases.

Definition 4. (Sensitivity): Given d count queries, q =
〈q1, . . . , qd〉, the sensitivity of q is:

Sq = max
∀τ,τ ′∈nbrs(τ)

|q(τ )− q(τ ′)|1

Notice that the output of q is a vector of dimension d,
and we use |x− y|p to denote the Lp distance between two
vectors x and y. The following theorem is a straightfor-
ward extension of the Laplacian mechanism to the geometric
mechanism.

Theorem 1. Given d count queries q = 〈q1, . . . , qd〉, for
any database τ , the database access mechanism: Aq(τ ) =
q(τ ) + 〈∆1, . . . ,∆d〉 where ∆i is drawn i.i.d from the ge-
ometric distribution G(ǫ/Sq) (1), guarantees ǫ-differential
privacy for q.
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As proved in [10], a sequence of differentially private com-
putations also ensures differential privacy. This is called the
composition property of differential privacy as shown in The-
orem 2.

Theorem 2. [10] Given a sequence of computations, de-
noted as f = f1,. . .,fd, if each computation fi guarantees
ǫi-differential privacy, then f is (

∑i=d

i=1 ǫi)-differentially pri-
vate.

3. A TRADEOFF BETWEEN PRIVACY

AND UTILITY
In this section, we present a theoretical study on the trade-

off between utility and privacy in differentially private fre-
quent itemset mining. First, we formally define the utility
of a frequent itemset mining algorithm.

3.1 Our Utility Model
Our definition of utility follows that proposed in [5]. Intu-

itively, if the support of an itemset is much larger than the
threshold, then the result should include that itemset; on
the other hand, if the support of an itemset is much smaller
than the threshold, then that itemset should be excluded
from the output. We specify two criteria to capture that
intuition in Definition 5.

Definition 5. (δ-approximation): Given a database τ
and a threshold λ, let S be the output of a frequent item-
set mining algorithm on the database τ . We say S is δ-
approximate iff the following two properties are satisfied:

1. (Completeness) Every itemset with support exceeding
(1 + δ)λ is in S.

2. (Soundness) No itemset with support less than (1−δ)λ
is in S.

We quantify the utility of a frequent itemset mining algo-
rithm by its likelihood to produce a good approximate result
as shown in Definition 6.

Definition 6. ((δ, η)− usefulness): A frequent itemset
mining algorithm f is (δ, η)-useful iff for any database τ ,
with probability at least 1 − η, the output of f on τ is δ-
approximate.

Both δ and η are within the range (0, 1) by definition.
Next, we quantify the trade-off between privacy and utility
for frequent itemset mining.

3.2 A Lower Bound on the Privacy Parameter
Let us first consider a constrained frequent itemset min-

ing problem in which we are only interested in frequent 1-
itemsets. We call that problem frequent 1-itemset mining.
Lemma 1 shows the lower bound on the privacy parame-
ter ǫ if a frequent 1-itemset mining algorithm must be both
(δ, η)-useful and ǫ-differentially private.

Lemma 1. For any frequent 1-itemset mining algorithm
that is both ǫ-differentially private and (δ, η)-useful,

ǫ ≥
ln[(2n − 1)η′]

2δλ+ 2

where η′ = (1− η)/η.

Note that a (δ, η)-useful frequent itemset mining algo-
rithm is also a (δ, η)-useful frequent 1-itemset mining al-
gorithm. Thus, Lemma 1 implies Theorem 3.

Theorem 3. For any frequent itemset mining algorithm
that is both ǫ-differentially private and (δ, η)-useful,

ǫ ≥
ln[(2n − 1)η′]

2δλ+ 2

where η′ = (1− η)/η.

In a typical transaction database like BMS-WebView-2
shown in [22], n = 3340. Therefore, if we set λ = 310,
which is 0.4% of the total number of transactions, δ = 0.2
and η = 0.5, then ǫ ≥ 18.4. That lower bound shows that
no matter how sophisticated a differentially private frequent
itemset mining algorithm is, in order to guarantee (0.2, 0.5)-
usefulness, the privacy parameter ǫ must exceed 18.4, which
suggests a huge risk of privacy breach. This is a discour-
aging result. However, the proof of Lemma 1 requires the
existence of very long transactions. This observation moti-
vated us to study the approach of eliminating the possibility
of these long transactions by truncating them. In the next
few sections we use this observation to develop a differen-
tially private algorithm that works on a truncated database,
then explore its performance.

4. FREQUENT 1ITEMSET MINING
In this section, as the first step in the development of our

frequent itemset mining algorithm, we consider the simpler
problem of frequent 1-itemset mining. We will show that by
truncating transactions, we can significantly promote the
utility of frequent 1-itemset mining while still guaranteeing
differential privacy.

4.1 Intuition for Truncating Transactions
By fixing the threshold λ, and setting the utility parame-

ters δ, η to constants, Lemma 1 suggests that we cannot set
the privacy parameter for frequent 1-itemset mining to any
value that is not Ω

(

n
)

. An intuition for this is that the addi-
tion of a “long” transaction can drastically change the result
of the mining algorithm. However, we will show, by limiting
the maximal cardinality of transactions, there exists a fre-
quent 1-itemset mining algorithm that is both (δ, η)-useful
and ǫ-differentially private provided ǫ ≥ Ω

(

log n
)

. We con-
struct that algorithm by utilizing the geometric mechanism.

We can formulate the problem of frequent 1-itemset min-
ing by first computing n 1-itemset queries q = 〈q1, . . . , qn〉,
where each qi computes the support of the 1-itemset {i},
and then selecting those 1-itemsets whose support exceeds
the threshold. We observe that as long as we compute q in
a differentially private way, the frequent 1-itemset mining
algorithm will be differentially private. Theorem 4 shows
that the sensitivity of computing q is equal to the maximal
cardinality of transactions.

Theorem 4. Let ℓ be the maximal cardinality of trans-
actions. The sensitivity of computing n different 1-itemset
queries is ℓ.

For ease of presentation, we refer to the frequent 1-itemset
mining algorithm, which first adds geometric noise to the
support, and then checks the threshold, as the “geometric
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Figure 1: Frequencies of Transactions by Cardinality

noise algorithm.” We will prove that by assuming the max-
imal cardinality ℓ = O

(

1
)

, the geometric noise algorithm
guarantees both ǫ-differential privacy and (δ, η)-usefulness
provided ǫ ≥ Ω

(

log n
)

. This is shown in Theorem 5.

Theorem 5. Given the maximal cardinality ℓ, where ℓ =
O
(

1
)

, then the geometric noise algorithm is both (δ, η)-useful

and ǫ-differentially private provided ǫ ≥ Ω
(

log n
)

.

We can also prove that the geometric noise algorithm is
optimal as shown in Theorem 6.

Theorem 6. For any frequent 1-itemset mining algorithm
that is both (δ, η)-useful and ǫ-differentially private, ǫ must
be Ω

(

log n
)

provided the maximal cardinality ℓ = O
(

1
)

.

Both Theorem 5 and Theorem 6 suggest that the con-
straint on the maximal cardinality of transactions has a
significant impact on the utility of a differentially private
frequent 1-itemset mining algorithm. This suggests that we
can improve the utility/privacy tradeoff by enforcing a max-
imal cardinality on transactions. We do so by truncating
transactions.

4.2 Rationale in Truncating Transactions
Our idea of limiting the maximal cardinality of transac-

tions is simple — we truncate a transaction whose cardinal-
ity violates that constraint by only keeping a subset of that
transaction. Of course, that truncating approach incurs cer-
tain information loss. However, if the cardinality of trans-
actions in a dataset follows a distribution in which most are
“short” and a few are “long”, then these few “long” trans-
actions, while having little impact on which itemsets are
frequent, have a major effect on the sensitivity. If this is the
case, perhaps we can reduce the sensitivity while still finding
a relatively accurate set of frequent 1-itemset by truncating
the long transactions. The three benchmark datasets [22] do
follow such a distribution. Figure 1 illustrates the correla-
tion between frequency and the cardinality of transactions in
one of those datasets, BMS-WebView-2. As we can see, the
short transactions, which contain fewer than 10 items, domi-
nate the datasets. The other two datasets, BMS-WebView-1
and BMS-POS, also have a similar distribution. Therefore,
we hope that the reduction in the magnitude of noise can
offset the information loss incurred by truncating, and thus,
we can get accurate results for frequent 1-itemsets.

However, the truncating approach raises a privacy con-
cern: does it violate differential privacy? We will show that
as long as that transformation is local, by which we mean
that the output only depends on the input transaction, then

applying any ǫ-differentially private algorithm to the trun-
cated database also guarantees ǫ-differential privacy for the
original database. The notion of local transformation is for-
mulated in Definition 7.

Definition 7. (Local Transformation): A local transfor-
mation is a probabilistic function r: 2I → 2I such that for
any t ⊆ I

∑

t′⊆I

Pr(r(t) = t′) = 1

In the rest of this paper we use “transformation” as a
shorthand for “local transformation”, and r(τ ) to denote
the computation that applies the transformation r to every
transaction in the database τ . Theorem 7 proves that ap-
plying any differentially private algorithm to a transformed
database also guarantees differential privacy.

Theorem 7. Let r be an arbitrary local transformation,
and f be an ǫ-differentially private algorithm. Then for
any pair of neighboring databases τ and τ ′, and any S ⊆
Range(f),

Pr(f(r(τ )) ∈ S) ≤ eǫ Pr(f(r(τ ′)) ∈ S)

Next, we will present our differentially private frequent
1-itemset mining algorithm.

4.3 Our Algorithm

Algorithm 1 TruncateDatabase

Input: input database τ ; privacy parameter ǫ
Output: truncated database

1: 〈z1, . . . , zn〉 = EstimateDistribution(τ, ǫ)

2: ℓ ← the smallest integer such that
∑ℓ

i=1 zi ≥ 0.85
3: τ ′ = ∅
4: for each transaction t ∈ τ do

5: add t′ = Truncate(ℓ, t) to τ ′

6: end for

7: return τ ′

8: function EstimateDistribution(τ, ǫ)
9: Let z = 〈z1, . . . , zn〉 where zi is the # of transactions

with cardinality i in τ
10: z′ = z+ 〈∆1, . . . ,∆d〉 where ∆i is drawn i.i.d. from

the geometric distribution G(ǫ) in (1).
11: return z′/m where m is the # of transactions in τ
12: end function

13: function Truncate(ℓ,t)
14: h = min{ℓ, |t|}
15: t′ = {Randomly pick h items from t.}
16: return t′

17: end function

We determine the maximal cardinality ℓ in a heuristic way
in which we set ℓ to the value such that the percentage of
the transactions with cardinality no greater than ℓ is at least
85%. That heuristic approach requires us to compute the
percentage of transactions for each cardinality, which also
has privacy implications, and thus, we add geometric noise
to that computation. More precisely, let z = 〈z1, . . . , zn〉,
where zi is the number of transactions with cardinality i. It
is not hard to show that the sensitivity of computing z is 1
since the addition or deletion of a single transaction can at
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most increase or decrease a single zi by 1. By Theorem 1,
adding geometric noise G(ǫ) in computing z gurantees ǫ-
differential privacy. Since that information is differentially
private, it is safe to utilize that information. This is shown
in the function “EstimateDistribution” in Algorithm 1.

We impose the cardinality constraint by randomly trun-
cating transactions: if the cardinality of a transaction vi-
olates that constraint, then only a subset of its items is
picked at random without replacement to generate a new
transaction whose cardinality is equal to the enforced maxi-
mal cardinality. This is shown in the function “Truncate”
in Algorithm 1.

Algorithm 2 F1M(τ , ǫ, λ)

Input: input database τ ; privacy parameter ǫ; threshold λ
Output: frequent 1-itemsets

1: ǫ′ = min{0.05, ǫ/10}
2: τ ′ = TruncateDatabase(τ, ǫ′)
3: ℓ = the maximal cardinality of transactions in τ ′

4: R = ∅
5: for all 1-itemset X in the alphabet I do

6: X.supp′ = i’s support in τ ′ + G((ǫ− ǫ′)/ℓ)
7: if X.supp′ ≥ λ then

8: Add X to R
9: end if

10: end for

11: return R

Our differentially private f requent 1 -itemset mining algo-
rithm F1M is shown in Algorithm 2. Line 1 in Algorithm 2,
which sets ǫ′ = min{0.05, ǫ/10}, is a configurable parameter
that we set by trial and error for our datasets. We prove
that F1M guarantees ǫ-differential privacy in Theorem 8.

Theorem 8. F1M is ǫ-differentially private.

5. FROM 1ITEMSETS TO βITEMSETS
In this section, as the next step toward our complete al-

gorithm, we generalize the 1-itemset mining algorithm to
consider frequent β-itemset mining, in which we are inter-
ested in frequent itemsets with cardinality not exceeding β.

5.1 Challenges
There are two main challenges in frequent β-itemset min-

ing that were not present in frequent 1-itemset mining:

1. Complexity: It is inefficient to compute the support of
all itemsets as there are many.

2. Privacy: It is hard to precisely quantify the relation-
ship between the maximal cardinality of transactions
and the sensitivity of multiple i-itemset (i = 2, . . . β)
queries.

5.1.1 Complexity

Recall our frequent 1-itemset mining algorithm in which
we first compute the support of all 1-itemsets, and then
perturb their support by adding geometric noise. That al-
gorithm is efficient since the maximal number of 1-itemsets
is n — the size of the alphabet. However, it is not practical
to extend that idea directly to frequent β-itemset mining
since the number of itemsets grows combinatorially. More
precisely, it is not hard to show that the number of all the

itemsets is
∑β

i=1

(

n

i

)

. In particular, n = 1657 in the dataset
BMS-POS, and thus, when β = 5, the total number of all
the itemsets is approximately 1015!

In this paper, we attack the complexity problem by uti-
lizing the well-known a priori property proposed in [2]. The
a priori property states that a β-itemset is frequent only if
all its subsets of cardinality β − 1 are frequent. For ease of
presentation, we denote the “subset of cardinality β− 1” by
“(β − 1)-subset.” Our frequent β-itemset mining algorithm
utilizes the a priori property by iteratively finding frequent
itemsets in order of increasing cardinality. For the mining
of frequent i-itemsets, we will only compute the support of
the i-itemsets whose every (i − 1)-subset is frequent. In
accordance with [2], we denote those i-itemsets by candi-
date i-itemsets. The order of computation is well-defined
since we have already presented our frequent 1-itemset min-
ing algorithm in Algorithm 2. The generation of candidate
i-itemsets is also safe since it relies on the noisy results of
(i− 1)-itemsets, which are already differentially private.

5.1.2 Privacy

By the a priori property, we only need to compute the
support of the candidate i-itemsets (i = 2, . . . , β). Similar to
frequent 1-itemset mining, we can model that computation
by d i-itemset queries q = 〈q1, . . . , qd〉 where qj computes
the support of the candidate i-itemset Cj . To utilize the
geometric mechanism, we need to compute the sensitivity of
q. However, we will show that given the maximal cardinality
ℓ (2 ≤ ℓ ≤ n), the precise computation of q’s sensitivity is
NP-hard. First, we formulate the problem of computing the
sensitivity of multiple i-itemset queries in Problem 1.

Problem 1. (i, ℓ)-sensitivity: Given a set of itemsets C,
each element of which is a subset of the alphabet I, and
is of the same cardinality i, find a set T ⊆ I such that
|T | ≤ ℓ, and the number of itemsets in C contained by T is
maximized.

The number of itemsets in C contained in T is the sensi-
tivity of q. As indicated by Theorem 4, when i = 1, (1, ℓ)-
sensitivity can be trivially solved in polynomial time. How-
ever, this is not true for i > 1, as is shown in Theorem 9.

Theorem 9. When i ≥ 2, (i, ℓ)-sensitivity is NP-hard.

In view of the hardness result for (i, ℓ)-sensitivity, in this
paper we employ a safe approximate method by computing
the upper bound of multiple i-itemset queries’ sensitivity,
and use that upper bound to perturb the support of the
i-itemsets. The upper bound is shown in Theorem 10.

Theorem 10. Given d i-itemset queries q = 〈q1, . . . , qd〉,
let ℓ be the maximal cardinality of transactions. Then the
sensitivity of q is no greater than min(

(

ℓ

i

)

, d).

We want to emphasize that Theorem 10 only computes
the upper bound of multiple i-itemset queries instead of the
exact sensitivity. To show that, suppose the itemsets are
{2,3}, {4,5}, and {6,7}, and ℓ = 3. The sensitivity of those
three 2-itemset queries is one instead of three since the ad-
dition or deletion of any transaction of cardinality three can
only increase or decrease the support of one itemset by one.
We use Theorem 10 to perturb the support of the candi-
date i-itemsets. Although our approach is not optimal with
respect to the utility — we add more noise than required
to guarantee differential privacy — our approach is safe be-
cause we use an upper bound on the sensitivity.
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5.2 A Naı̈ve Algorithm
By utilizing the a priori property and Theorem 10, we

can extend our idea of truncating transactions to frequent
β-itemset mining: we set the truncated database produced
for frequent 1-itemset mining as the input database, and
then by the a priori property, iteratively compute frequent
2, 3, . . . , β-itemsets. The pseudocode of the näıve algorithm
is shown in the long version of our paper [1]. However, we
find that the performance of this näıve algorithm is poor for
two reasons:

Random Truncating: Random truncating does not dis-
tinguish between frequent subsets and rare subsets of a trans-
action to be truncated. Yet frequent subsets are more likely
to contribute to frequent item sets than rare ones.

Propagated Errors: If a frequent itemset is mistakenly
labeled as infrequent, then any of its supersets is regarded
infrequent without even computing its support.

To ameliorate these two problems, we propose two heuris-
tic methods: smart truncating, and double standards. We
discuss those two methods next.

5.3 Smart Truncating
Ideally, when truncating a transaction, we only need to

keep the subsets that are frequent items since infrequent
subsets will not contribute to frequent itemsets. However,
our goal is to find those frequent itemsets in a differentially
private way. We do so by providing a heuristic method to
predict whether or not a candidate itemset is frequent. We
observe that in practice, if all the subsets of a candidate
itemset are “sufficiently” frequent, then that itemset is very
likely to be frequent. To quantify that observation, we assign
each candidate i-itemset (i ≥ 2) a frequency score which is
the summation over all its (i− 1)-subsets’ noisy support.

Definition 8. (Frequency Score): Given a set of (i −
1)-itemsets Y = {Y1, . . . , Yd}, the frequency score of an i-
itemset X is:

fs(X) =
∑

Yj⊂X∧Yj∈Y

Yj .supp
′ (2)

where Yj .supp
′ is the noisy support of the itemset Yj.

When truncating transactions, we will keep the itemsets
with high frequency scores. This is formulated in Problem 2.

Problem 2. Optimal (i, ℓ)-truncating: Given a set of i-
itemsets X = {X1, . . . , Xd}, the cover score of a set t′ is
defined as:

cs(t′) =
∑

Xj⊆t′∧Xj∈X

fs(Xj)

where fs is the frequency score defined in (2). Given a trans-
action t, find an ℓ-subset of t such that the cover score of
that subset is maximized

Unfortunately, we can prove that there is no efficient al-
gorithm to solve the optimal (i, ℓ)-truncating problem as
shown in Theorem 11.

Theorem 11. Optimal (i, ℓ)-truncating is NP-hard.

In view of the hardness result, we use a greedy algorithm
to solve Problem 2.

5.3.1 Our Greedy Algorithm

The idea of our greedy algorithm is simple: for each trans-
action, we construct the truncated transaction by iteratively
adding items in the candidate itemset that are both con-
tained by the input transaction and have the highest fre-
quency score until the truncated transaction’s cardinality
exceeds the maximal cardinality. However, an intuitive ob-
servation is that the frequency score of an itemset should
not be static: it is possible that some items in an itemset
have been added to the truncated transaction, and thus,
the number of extra items to include that itemset is less
than other itemsets. Therefore, the frequency score of an
itemset should be updated with the addition of items to the
truncated transaction. To avoid confusion with the static
frequency score in Definition 8, we refer the “dynamic fre-
quency score” by “weight.”

Our greedy algorithm “SmartTruncating” accepts three
input parameters: the original transaction t, the maximal
cardinality ℓ, and the set of candidate i-itemsets C = {C1,
. . . , Cd}. For each candidate itemset Cj , its weight Cj .weight
is initialized by Cj ’s frequency score fs(Cj) defined in (2).
The algorithm “SmartTruncating” works as follows: we
find the candidate i-itemsets contained by the input trans-
action t, and denote the set of those itemsets by C′. Then,
starting from an empty transaction t′, we first pick the
itemset Cj in C′ with the highest weight, add the items
in Cj to t′, and delete Cj from C′. Next, we update the
weight of the remaining itemsets in C′: for each remain-
ing itemset Ch, we compute the average weight of a sin-
gle item in Ch by αh = fs(Ch)/i. Suppose the number of
items in Ch that has already been added to the truncated
transaction t′ is βh. Then the weight of Ch is updated by
Ch.weight = Ch.weight+αh∗βh. After updating the weight
for every remaining itemset, we repeat those steps until the
cardinality of t′ exceeds ℓ. The pseudocode of SmartTrun-

cating is shown in the long version of our paper. We show
a running example of our greedy algorithm in Example 1.

Example 1. Given a transaction t = {1,2,3,4,5}, and
three 2-itemsets {1,2}, {2,3} and {4,5} with weight 10, 8,
and 9, respectively. Suppose the maximal cardinality of trans-
actions is 3. The truncated transaction t′ is initialized to be
empty. First, we pick the itemset {1,2} which has the largest
weight, and then t′ is updated to {1,2}. Next, we update the
weight of the remaining itemsets as follows: since the single
item “2” has been added to t’, the new weight of the itemset
{2,3} is 8 + 1*8/2 = 12, and that for {4,5} remains the
same. Hence, we add the itemset {2,3} to t′, which is then
updated to {1,2,3}. Since the cardinality of t′ meets the con-
straint, the algorithm “SmartTruncating” stops, and the
truncated transaction is t′ = {1,2,3}.

It is not hard to see that our smart truncating method is a
local transformation which only relies on the noisy support,
and so it is differentially private.

5.4 Double Standards
As discussed in Section 5.2, by the a priori property, if

a frequent itemset is mistakenly labeled as infrequent, then
any of its supersets is regarded infrequent without even com-
puting its support. To alleviate this problem, we observe
that a frequent itemset indeed serves two different roles —
as a result of frequent itemset mining and as a “seed” to
generate candidate itemsets. The errors are propagated due

30



to the second role. Therefore, instead of setting the same
threshold for both roles for every itemset, we customize the
thresholds for each itemset by setting a threshold to deter-
mine whether that itemset is frequent or not, and a possibly
different one to decide whether or not to use that itemset
to generate candidate itemsets. Speaking intuitively, the
previous threshold is computed by measuring the “average”
information loss in truncating while the latter one by the
“maximal” information loss. By that approach, it is possi-
ble that some itemsets are labeled infrequent but are used
to generate candidate itemsets, which helps to reduce the
propagated errors by the a priori property.

5.4.1 Quantifying Information Loss in Truncating

So far, we have only considered the benefit of truncat-
ing transactions. Truncating also causes information loss,
because the support of some itemsets decreases. For exam-
ple, given a transaction {1,2,3}, by truncating that transac-
tion to be {2,3}, the support of the itemset {1,2} changes
from 1 to 0. To quantify this information loss, we formulate
our problem as follows: given the noisy support θ′ of an i-
itemset X in the truncated database, estimate the support θ
of X in the original database in a differentially private way.
The major difficulty in solving this problem comes from the
privacy requirement that whenever we need to utilize some
information from the database, we need to do so in a differ-
entially private way. Therefore, we must guarantee that our
algorithm is either differentially private or only depends on
differentially private information. In this paper, we take the
latter approach, and our algorithm has two steps:

1. Given the noisy support of an itemset X, compute its
support in the truncated database in a differentially
private way.

2. Given the support of the itemset X in the truncated
database, estimate its support in the original database
in a differentially private way.

In the rest of this section, for ease of presentation, we use
“original support” as a shorthand for “the support in the
original database”, and “truncated support” for “the sup-
port in the truncated database.” Unless otherwise specified,
we assume the i-itemset X is given, and use θ, θ̂ and θ′ to
denote X’s original support, truncated support and noisy
truncated support, respectively.

The first step is relatively straightforward where we use
the Bayesian rule to compute the probability distribution of
the truncated support as shown in Theorem 12

Theorem 12.

Pr(θ̂|θ′) ∼ e−ǫ|θ′−θ̂| (3)

The second step quantifies the information loss in trun-
cating. To give an intuition for our result, we start from an
inverse problem: given the original support θ, what is the
truncated support θ̂? We address that problem by using
the analysis in random truncating to approximate the item-
set X’s truncated support. We want to emphasize that our
smart truncating method is by no means equivalent to ran-
dom truncating, and we only utilize the analysis in random
truncating as a heuristic method to approximately quantify
the information loss by our smart truncating method. We

will discuss the rationale of that approximation at the end
of this section.

We assume a uniform distribution among transactions
with different cardinality containing the itemset X. More
precisely, let zj be the relative frequency of the transac-
tions with cardinality j in the original database. Given an
i-itemsetX, we assume that the number of transactions with
cardinality j containing X is θ ∗ zj/

∑n

h=i zh.
1 Recall that

we have already computed zj (j = 1 . . . n) in Algorithm 2 for
frequent 1-itemset mining in a differentially private way, and
thus, it is safe to utilize that information. For each transac-
tion t, let t′ be the truncated transaction of t. We observe
that if a transaction does not contain X, then the truncated
transaction does not contain X either. Thus, it suffices to
only consider the transactions containing X to compute X’s
truncated support. We define a binary random variable Mt

to quantify the effect of truncating a transaction on the sup-
port of the itemset X:

Mt =

{

1 if X ⊆ t′

0 otherwise.
(4)

(5) quantifies the probability that X remains in the trun-
cated transaction.

Pr(Mt = 1) =

(

|t|−i

ℓ−i

)

(

|t|
ℓ

) (5)

We also observe that the random variable Mt is identical
for transactions of the same cardinality, and thus, we denote
Mt by Mh, where h = |t|. Let fh be the number of trans-
actions with cardinality j containing the itemset X, and by
our uniform assumption, fh = θ ∗ zh/

∑n

j=i
zj . Thus, the

truncated support of X is also a random variable M where:

M =

n
∑

h=i

fh
∑

j=1

Mh (6)

The expectation of M is:

E(M) =
n
∑

h=i

fi Pr(Mh = 1)

= θ(

n
∑

h=i

zh
∑n

j=i zj

(

h−i

ℓ−i

)

(

h

ℓ

) ) (7)

which quantifies the “average” truncated support of the item-
set X. Next, we will compute the minimal truncated sup-
port, which quantifies the maximal information loss. It is
not hard to see that a trivial lower bound for M is 0. How-
ever, by using 0 as the lower bound, it hardly provides us
a way to estimate the original support given the truncated
support. Therefore, we quantify that lower bound in a prob-
abilistic way such that the truncated support is very unlikely
to be smaller than that lower bound. Definition 9 formalizes
this idea.

Definition 9. (ρ-lower bound): An integer σ is called a
ρ-lower bound for the truncated support iff:

Pr(M ≤ σ) ≤ ρ

where M is the random variable defined in (6).

1Strictly speaking, it must be rounded to an integer.
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We compute the ρ-lower bound by using the Chernoff
bound [3]. Let µ = E(M), and for any γ ≥ 0, by the
multiplicative form of Chernoff bound,

Pr(M ≤ (1− γ)µ) ≤ exp(
−γ2µ

2
)

Therefore, it suffices to solve the inequality exp(−γ2µ/2) ≤
ρ, and the resulting ⌊(1− γ)µ⌋ serves as the ρ-lower bound.

Thus, given the truncated support θ̂, let

exp ratio(i) =

n
∑

h=i

zh
∑n

j=i
zj

(

h−i

ℓ−i

)

(

h

ℓ

)

By (7), the average original support is computed by:

avg os(θ̂) =
θ̂

exp ratio(i)
(8)

Let µ be the expectation of the truncated support given
the maximal original support. We compute µ by treating
the truncated support θ̂ as the ρ-lower bound, which leads
to solving the following two inequalities:

(1− γ)µ ≤ θ̂ ≤ µ, exp(−
γ2µ

2
) = ρ

It is not hard to show that

µ ≤ µ∗ = θ̂ − ln ρ+

√

ln2 ρ− 2θ̂ ln ρ (9)

provided ln ρ ≤ 2θ̂. Thus, the maximal original support is
computed by

max os(θ̂) =
µ∗

exp ratio(i)
(10)

where µ∗ is defined in (9), and if ln ρ > 2θ̂, then we will set

max os(θ̂) to be avg os(θ̂).
By combining our result of the first step, which estimates

the truncated support given the noisy support, and our sec-
ond step, which infers the original support given the trun-
cated support, given θ′, the noisy truncated support of the
itemset X, we can compute the average original support by:

avg supp(θ′) =
n
∑

j=0

Pr(j|θ′)avg os(j) (11)

and the maximal original support by:

max supp(θ′) =

n
∑

j=0

Pr(j|θ′)max os(j) (12)

where Pr(j|θ′), avg os(i) and max os(i) are defined in (3),
(8) and (10), respectively.

We use the average original support of an itemset to check
whether or not it is frequent, and the maximal original sup-
port to determine whether or not to use it to generate candi-
date itemsets. Equivalently, given the noisy truncated sup-
port θ′, we have changed the threshold to determine whether
or not X is frequent from λ to λ − avg supp(θ′) + θ′, and
that for whether or not to use X to generate itemsets to
λ − max supp(θ′) + θ′. In that way, we have actually re-
laxed both thresholds.

5.4.2 Discussion

We want to emphasize that our approach of estimating the
original support of an itemset is solely a heuristic method.
As discussed, the major difficulty of estimating an itemset’s
original support comes from the privacy requirement, and

Algorithm 3 Frequent β itemset Mining

Input: input database τ ; itemsets’ cardinality β; privacy
parameter ǫ; threshold λ
Output: frequent itemsets of cardinality not exceeding β

1: ǫ′ = ǫ/β
2: ǫ′′ = min{0.05, ǫ′/10}
3: τ ′ = TruncateDatabase(τ, ǫ′′)
4: ℓ = the maximal cardinality of transactions in τ ′

5: S1 = i itemset Mining(τ ′, ℓ, ǫ′ − ǫ′′, λ,∅)
6: for i = 2 to β do

7: ℓ = ψ(λ, i)
8: Si = i itemset Mining(τ , ℓ, ǫ′, λ, Si−1)
9: end for

10: R = ∅
11: for all itemset Xj in ∪β

i=1S do

12: if avg supp(Xj .supp
′) ≥ λ then

13: Add Xj to R
14: end if

15: end for

16: return R

thus, we must be quite careful of utilizing any information
from the database. The reason why we use random truncat-
ing to approximate the information loss of smart truncating
is because it relies on little information from the database.
The exploration of other approaches to quantify the infor-
mation loss by smart truncating is an interesting direction
for future work.

5.5 Our Algorithm
Our algorithm for frequent β-itemset mining improves

over the näıve algorithm by using smart truncating to trun-
cate transactions, and setting different thresholds for and
itemset being frequent and for it generating candidate item-
sets. This is shown in Algorithm 3. In particular, Algo-
rithm 3 differs from the näıve algorithm in two places. First,
instead of randomly truncating the transactions only once,
we apply the method “SmartTruncating” to the original
database for the mining of i-itemsets (i = 2, . . . , β) by uti-
lizing the results of the noisy (i − 1)-itemsets as shown in
line 10 in Algorithm 4. We initialize a candidate itemset’s
weight by its frequency score as shown in the code from
line 7 to line 9 in Algorithm 4. Second, an itemset is used to
generate candidate itemsets iff its estimated maximal origi-
nal support exceeds the threshold. This is shown in line 18
in Algorithm 4. However, whether an itemset is frequent or
not is determined by its estimated average original support.
This is shown in line 12 in Algorithm 3.

The output of ψ in line 7 of Algorithm 3 is tunable given
the maximal cardinality of transactions, the threshold and
the current candidate itemsets’ cardinality. The idea of tun-
ing certain parameters in a differentially private algorithm
by the data curator was first proposed by [8]. We consider
how to automatically determine the maximal cardinality of
transactions as an interesting direction for future work. We
prove Algorithm 3 is differentially private in Theorem 13.

Theorem 13. Algorithm 3 is ǫ-differentially private.

6. FREQUENT ITEMSET MINING
We are finally ready to present our complete algorithm.

We first observe that Algorithm 3 is also a differentially pri-
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Algorithm 4 i itemset Mining

Input: database τ ; maximal cardinality ℓ; privacy parame-
ter ǫ; threshold λ; noisy (i− 1)-itemsets S
Output: the i-itemsets whose estimated maximal original
support exceeds the threshold

1: if i is 1 then

2: C = I
3: else

4: C = Generate candidate i-itemsets from S
5: end if

6: if i is not 1 then

7: for all itemset Cj ∈ C do

8: Cj .weight = fs(Cj)
9: end for

10: τ ′ ← apply SmartTruncating to τ ’s transactions
11: else

12: τ ′ = τ
13: end if

14: κ = min{
(

ℓ

i

)

, |C|}
15: R = ∅
16: for all itemset Cj in C do

17: Cj .supp
′ = Cj ’s support in τ ′ + G(ǫ/κ)

18: if max supp(Cj.supp
′) ≥ λ then

19: Add Cj to R
20: end if

21: end for

22: return R

vate frequent itemset mining algorithm if β is at least maxi-
mal cardinality of any frequent itemset. However, this max-
imal cardinality is a property of the database so we cannot
use it directly without privacy implications. Accordingly,
we have the following problem:

Problem 3. Let y = 〈y1, . . . , yn〉 where yi is the maxi-
mal support of the i-itemsets. Given a threshold λ, find the
index i∗ such that yi∗ is the smallest integer that exceeds λ
in a differentially private way.

A näıve idea to solve Problem 3 is to first add geometric
noise to each yi, and then find the index i∗. It is not hard to
show that the sensitivity of computing y is exactly n, and
thus, in order to guarantee ǫ-differential privacy for Prob-
lem 3, we need to add the geometric noise G(ǫ/n) to each
yi.

In fact, we observe that y is non-increasing by the a pri-
ori property, and thus, we can reduce the required noise to
G(ǫ/⌈log n⌉) by using the same idea of binary search. Due
to space limitations, we defer the details of this algorithm
in the long version of our paper [1].

In practice, it is not practical to precisely compute y.
Therefore, we approximate y by setting the threshold to be
λ/20, and run the original Apriori algorithm [2] to compute
frequent itemsets. Suppose the maximal cardinality of the
resulting frequent itemsets is j. Then for i from 1 to j, we
can precisely compute the maximal support of i-itemsets yi.
For any i from j + 1 to n, we set yi = yj . Our approxi-
amtion is safe in that the sensitivity of computing each yi
is still 1. We run our frequent itemset mining algorithm by
first estimating the maximal cardinality of frequent item-
sets, and then using that maximal cardinality as the input
for Algorithm 3 to discover frequent itemsets. By the com-
position property of differential privacy, we conclude that
our algorithm is differentially private.

dataset m |I| max |t| avg |t|
BMS-POS (POS) 515,597 1,657 164 6.5

BMS-WebView-1 (WV1) 59,602 497 267 2.5
BMS-WebView-2 (WV2) 77,512 3,340 161 5.0
pumsb-star (PUMSB) 49,046 2,088 50.0 63

Table 1: Dataset characteristics
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Figure 2: Frequent Itemset Mining

7. EXPERIMENTS
In this section, we experimentally evaluate our techniques

on the benchmark datasets described in [22, 6]. A sum-
mary of those datasets is given in Table 1. For our exper-
iments, instead of using the (δ, η)-usefulness, we employ a
more intuitive metric F -score as shown in Definition 10. We
implemented our algorithms in C++, and ran the exper-
iments on an Intel Core 2 Duo 2.33GHZ machine with 1
GB RAM running Linux. Since our algorithms involve ran-
domization, we ran each algorithm ten times to obtain its
average performance. We use relative thresholds (percent-
age of transactions) in our experiments. Absolute thresholds
can be easily derived by multiplying the relative threshold
by the number of transactions in a database. In practice,
we find that the overhead of our algorithm is less than 10%
compared to the original Apriori algorithm [2]2, and thus,
we do not present the running time of our algorithm. We
compare our algorithm with the “PrivBasis” algorithm pro-
posed in [16], which discovers top-k frequent itemsets, and
the “TopK” frequent i-itemsets mining algorithm proposed
in [5], which mines top-k frequent itemsets of the same car-
dinality i. We set the privacy parameter to be 1.0 for every
algorithm in every set of experiments, and ρ to be 0.01 in

2We do not consider the overhead of computing frequent
itemsets’ maximal cardinality since we can pre-compute that
value for each data set for a fixed threshold.
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Figure 3: Top-K Frequent Itemset Mining
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Figure 4: F-score of frequent itemsets

the double standards method.

Definition 10. (F -score): Let Up be the set of frequent
itemsets generated by a differentially private frequent item-
set mining algorithm, and Uc be the set of correct frequent
itemsets, then

precision =
|Up ∩ Uc|

|Up|
, recall =

|Up ∩ Uc|

|Uc|

and the F -score is the harmonic mean of precision and recall:

F -score = 2 ∗
precision ∗ recall

precision + recall

We begin by noting that we do not present results for our
algorithm without truncating because its performance was
uniformly poor, at least an order of magnitude worse than
the algorithm with truncating. Hence in our first experi-
ment we move on to compare our algorithm with the top-
k frequent itemset mining algorithm “PrivBasis” proposed
in [16]. We adapt the “PrivBasis” algorithm to frequent
itemset mining by setting k to be the number of frequent
itemsets given a threshold. We want to emphasize that set-
ting might have privacy implications. However, even with
that relaxation in privacy, Figure 2 shows for the threshold
frequent itemset computation, our algorithm outperforms
the “PrivBasis” algorithm on two datasets WV1 and WV2.
We were unable to compare the results on the dataset POS
since the “PrivBasis” algorithm does not scale to handle
larger k. In particular, when the threshold is 0.004, the to-
tal number of frequent itemsets in POS is more than 6000,
and the “PrivBasis” algorithm can not efficiently discover
the top-6000 frequent itemsets.

We are also interested in extending our algorithm to dis-
cover the top-k frequent itemsets. We can modify our algo-
rithm to do so by setting the threshold to be the frequency
of the kth frequent itemsets. Of course, that computation of
that frequency creates privacy concern. However, it is not
hard to show that the sensitivity of that computation is one,
and thus, we can add geometric noise to that computation.
With that modification of our algorithm, we also compare
our algorithm with the “PrivBasis” algorithm for top-k fre-
quent itemset mining. Figure 3 shows that the quality of
top-k frequent itemsets produced by our algorithm is better
than that by the “PrivBasis” algorithm except the case when
k is small (in our experiments, this means k ∼ 10). We also
evaluate our techniques on the dataset “PUMSB” in which
“long” transactions dominate the datasets. Figure 3c shows
that our algorithm is still superior. We also observe an in-
teresting phenomena that the F -score of the “PrivBasis”
algorithm drops to 0.6 when k = 50. One reason for that
phenomena is because there is a 1-itemset whose frequency
is very close to the frequency of the 50th frequent itemset.
In that way, the “PrivBasis” algorithm is very likely to la-
bel that 1-itemset as frequent, which also has side-effect on
the result of 2-itemsets. As a result, it incurs a penalty on
F -score since k is small.

Next, we compare our algorithm with the differentially
private set-valued data publishing algorithm [8] on which
we run the original Apriori algorithm over the anonymized
data. Note that this is a generic approach — first anonymize
the data, then run the (non-private) algorithm. We find that
our algorithm outperforms the Apriori algorithm on the pub-
lishing anonymized data on all three datasets as shown in
Figure 4. In particular, our algorithm increases the F -score
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Figure 5: Improvements of our heuristics
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Figure 6: Frequent 2-itemsets in POS

of frequent itemsets by an order of magnitude in both POS
and WV2 as shown in Figure 4a and Figure 4c, respectively.
The reason why the data publishing algorithm fails to gen-
erate accurate frequent itemsets is because the total number
of transactions is greatly reduced after anonymization: for
the dataset WV2, the average number of transactions after
anonymizing is 6734.5, which is less than 10% of the origi-
nal transactions. Thus, the anonymization incurs significant
information loss.

We also want to know how our two heuristics — smart
truncating and double standards — affect the performance
of our algorithm. We show the results in Figure 5. The
most significant improvement is the double standards ap-
proach. Although the smart truncating method improves
the quality of frequent itemsets over random truncating in
both POS and WV1, we find it does not work for WV2.
This indicates that whether or not the frequency score is
a good indicator of an itemset’s frequency depends on the
dataset. Whether there exists a truncating approach that
outperforms the random truncating approach on any dataset
is an interesting direction for future research.

To better understand why our heuristics work well on the
dataset “POS”, we show the results of 2-itemsets in Figure 6.
We observe that the double standards approach significantly
improves the recall of frequent 2-itemsets while it decreases
the precision a little as shown in Figure 6c and Figure 6b,
respectively. Furthermore, we also observe that by utilizing
the a priori property and truncating transactions, our algo-
rithm increases the F -score of frequent 2-itemsets by orders
of magnitude comparing to the top-k frequent i-itemset min-
ing algorithm proposed in [5] as shown in Figure 6a.

As discussed in Section 4, the success of our algorithm
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Figure 7: Frequent 1-itemsets

relies on the fact the information loss in truncating trans-
actions is offset by the benefit of reducing noise. To show
that, we set the threshold to be 0.004. We compare the F -
score of frequent 1-itemsets by changing the constraint on
transactions’ maximal cardinality. Figure 7 shows the re-
sult. As we can see, when the maximal cardinality is very
small, the information loss exceeds the benefit of reducing
noise. On the other hand, when the maximal cardinality is
large, the increase of the noise offsets the benefit of retaining
the information.

8. RELATED WORK
In this section we discuss related work not explicitly men-

tioned elsewhere in our paper.
The notion of differential privacy was proposed by Dwork

et al. in [9]. The same authors also propose the addi-
tion of Laplacian noise to guarantee differential privacy [10],
and [12] propose adding geometric noise to achieve the same
goal. The problem of frequent itemset mining has been ex-
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tensively studied in literature [2, 13]. The data mining com-
munity has focused on hiding sensitive rules generated from
transactional databases [4, 20]. In [4], the authors address
this problem by altering the database to hide a given set
of sensitive rules. However, how to define sensitive rules
is unclear, and their approach does not satisfy differential
privacy.

Although Evfimievski et al. have developed a privacy pre-
serving frequent itemset mining algorithm in [11], their ap-
proach does not guarantee differential privacy. In [17], the
authors propose a noisy a priori algorithm which is quite
similar to our random truncating approach but they do not
explicitly consider the problem of frequent itemset mining
as we do.

Another way to develop a differentially private frequent
itemsets mining is to use a basic, non-anonymizing frequent
itemset mining algorithm, but to apply it to an anonymized
version of the transactional data. This is an intriguing ap-
proach and it warrants exploration. Early work appears on
anonymizing other types of data sets [21, 18] has shown a
great success in this direction. In other related work, [14,
19, 7] propose ad hoc privacy criteria to resist certain kinds
of attacks on publishing transaction databases. However,
those ad hoc privacy criteria do not guarantee differential
privacy. The latest effort to anonymize transactional data
in a differentially private way is proposed by [8]. However,
they only consider the workload of top-k frequent itemsets,
and our experimental results indicate that our algorithm im-
proves the F -score of frequent itemsets over [8] by an order
of magnitude on two benchmark datasets.

9. CONCLUSION
In this paper, we have proposed a differentially private

frequent itemset mining algorithm. We have precisely quan-
tified the trade-off between privacy and utility in frequent
itemset mining, and our results indicate that in order to
satisfy a non-trivial utility requirement, a frequent itemset
mining algorithm incurs a huge risk of privacy breach. How-
ever, we find that we can greatly promote the utility of a
differentially private frequent itemset mining algorithm by
limiting the maximal cardinality of transactions.

Motivated by that observation, we have proposed a new
differentially private frequent itemset mining algorithm. Our
results on benchmark datasets indicate that in comparison
to the latest algorithm on publishing transactional data in a
differentially private way [8], our algorithm improves the F -
score of frequent itemsets by more than 200% in one dataset,
and by an order of magnitude on the other two datasets. Our
results also show that our algorithm significantly improves
the quality of top-k frequent itemsets comparing to the dif-
ferentially private top-k frequent itemset mining algorithm
proposed in [16, 5] except when k is small.

There are many potential opportunities for future work.
One such direction would be to explore other more sophis-
ticated truncating algorithms. Another direction would be
to explore alternative methods to limit the information loss
due to truncating. Finally, the success of our algorithm
relies on the assumption that the “short” transactions dom-
inate the datasets. How to deal with datasets dominated
by long transactions is an open problem, although with no
constraints on the database our theoretical results on pri-
vacy/utility tradeoffs suggest that algorithms that simulta-
neously achieve good privacy and utility may prove elusive.
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