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ABSTRACT
We consider the edge uncertainty in an undirected graph and study
the k-median (resp. k-center) problems, where the goal is to par-
tition the graph nodes into k clusters such that the average (resp.
minimum) connection probability between each node and its clus-
ter’s center is maximized. We analyze the hardness of these prob-
lems, and propose algorithms that provide considerably improved
approximation guarantees than the existing studies do. Specifically,
our algorithms offer (1 − 1/e)-approximations for the k-median
problem and (OPTck)-approximations for the k-center problem,
where OPTck is the optimal objective function value for k-center.
In addition, our algorithms incorporate several non-trivial opti-
mizations that significantly enhance their practical efficiency. Ex-
tensive experimental results demonstrate that our algorithms con-
siderably outperform the existing methods on both computation ef-
ficiency and the quality of clustering results.
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1. INTRODUCTION
Graph data are prevalent in numerous application domains, such

as social, biological, and mobile networks. In these applications,
entities are typically modeled as graph nodes, and the relationships
among entities are modeled as graph edges. Uncertainties in graph
edges are common in this context, due to a variety of reasons such
as noisy measurements and inconsistent information sources [33].
Dealing with such uncertainies require efficient and effective meth-
ods for querying and mining uncertain graphs. Note that there are
different types of uncertainties associated with edges, nodes or at-
tributes. In this paper, we only consider edge uncertainty.

Clustering is a fundamental problem in graph mining. It aims
to partition the graph nodes into a number of clusters, such that
similar nodes are grouped together according to some similarity
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(or node-distance) measures. There exist a plethefora of formula-
tions of graph clustering, among which the k-median and k-center
problems are perhaps the most well studied [59]. Given a graph
without uncertainy, the k-median problem aims to identify a set
C of k center nodes in the graph, such that the average distance
from each node to its closest center node is minimized. Mean-
while, the k-center problem aims to find k center nodes, such that
the largest distance from any node to its closest center node is min-
imized [59, 60]. These two problems are generally studied in the
metric space, i.e., the distances among different nodes satisfy the
triangle inequality [12, 18, 59, 60].

Although k-median and k-center without uncertainty have been
extensively studied in the literature, their counterparts for uncer-
tain graphs have not been investigated until a recent study by Cec-
carello et al. [11]. Following a large body of work on uncertain
graphs [20, 30, 32, 33, 36, 40, 49], Ceccarello et al. [11] model an
uncertain graph as a graph where each edge is associated with an
existence probability, and they measure the distance between any
two nodes as the probability that they are connected by a path.
With this distance measure, they reformulate the k-median (resp.
k-center) problem, such that the objective is to maximize the av-
erage (resp. largest) connection probability from any node to its
closest center node.
Applications. Many application data can be modeled as uncer-
tain graphs where the edges naturally have weights indicating con-
nection probabilities and several applications require clustering the
nodes of such graphs, which reduce to solving the k-median/k-
center problems in uncertain graphs. Some applications include:
1) Sink/gateway placement in wireless sensor networks: Wire-
less sensor networks can be modeled as uncertain graphs where the
edge between two sensor nodes is assigned a probability denoting
the reliability of the wireless communication between them [21].
The multiple sink/gateway-placement problem in wireless sensor
networks [16,35,52] can be formulated as an uncertain k-median/k-
center problem, where the goal is to identify k sink nodes to max-
imize the average/minimum probability that the sensing data from
all sensor nodes can be successfully transmitted to the sink nodes.
2) Detecting protein complexes in PPI networks: In Protein-
Protein Interaction (PPI) networks, proteins and their interactions
are represented by nodes and uncertain links, respectively. Pro-
tein complexes are assemblages of proteins that interact with each
other, which play essential roles in many biological processes [54].
As indicated by [11], the uncertain k-median/k-center algorithms
can be used to detect protein complexes in PPI networks.
3) Clustering social networks: A lot of related studies model the
peer influence and interactions between the users in social networks
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Table 1: Comparing the approximation ratio and time complexity with the algorithms in [11]

Approximation ratio (with 1− δ probability) Time complexity with unknown OPTmk and OPTck

k-median
[11] (1−ε)(OPTmk )2

[(1+γ)H(n)]3
O
(

(1+ 1
γ

)3(lnn)3kn2

ε2(OPTm
k

)3

(
ln n

δ
+ ln log1+γ

n lnn
k

))
this work 1− 1/e− ε O

(
n2

ε2OPTm
k

ln n
δ

+ kn2 lnn

)

k-center
[11] 1−ε

1+γ
OPTck unknown

this work (1− ε)OPTck O
(

kn+m
ε2(OPTc

k
)2

(
ln n

δ
+ ln ln 1

OPTc
k

))

as uncertain links, so social networks are generally considered as
uncertain graphs [6, 26, 29, 30, 46, 49, 62–66]. Our k-median/k-
center algorithms could have many applications in clustering social
networks. For example, a political party may want to group a so-
cial network into k clusters and find a representative people in each
cluster, such that a popular political policy could be made by study-
ing the characteristics of the k representative people.
4) Grouping the users in opportunistic networks: Opportunis-
tic network (or delay tolerant network) [15, 28, 48] can be mod-
eled as uncertain graphs where the link probabilities denote the
encounter rates or data-delivery success rates between two mobile
nodes [42, 43]. Our uncertain k-median/k-center algorithms can
be used to group the users in an opportunistic network, which has
many applications including information dissemination [44], wide
animal tracking [31] and disease control [23]. For example, the
medical staff could want to group the students in a campus oppor-
tunistic network and monitor k socially-active students to control
the spread of flu.
Limitations of Prior Art. Compared with the conventional k-
median and k-center problems, clustering uncertain graphs presents
two unique challenges. First, the connection probabilities among
the nodes in uncertain graphs do not satisfy the triangle inequality,
whereas the conventional k-center and k median algorithms rely on
the triangle inequality in deriving their approximation guarantees.
Second, it is #P-hard in general to compute the connection proba-
bility between two different nodes [5]. In contrast, in conventional
k-median and k-center, computing the distance between two given
nodes usually incurs only a small cost.

To address the aforementioned challenges, Ceccarello et al. [11]
propose new algorithms for k-center and k-median on uncertain
graphs. The main idea of their algorithms is to (i) use Monte-
Carlo simulations to estimate the connection probabilities among
different nodes, and (ii) build upon the “clustering with out-
liers” algorithms proposed for metric k-center and k-median [12].
Their k-median algorithm achieves an approximation ratio of
(1−ε)(OPTmk )2

(1+γ)3 ln3 n
with high probability, where OPTmk is the opti-

mal value of the k-median objective function, ε is a parameter that
controls the number of Monte-Carlo samples, and γ is a parame-
ter that is inversely proportional to the running time of the algo-
rithm. Meanwhile, their k-center algorithm offers

(
(1−ε)OPTck

1+γ

)
-

approximation with high probability, with OPTck being the optimal
value of the k-center objective function.

The algorithms in [11], however, leave much room for improve-
ments. First, to achieve the claimed aymptotic guarantees, the k-
center algorithm in [11] requires knowing a lower bound of OPTck,
but there is no solution in [11] for deriving such a lower bound.
Second, both the k-center and k-median algorithms in [11] incur
significant computation overheads when rigorous approximation
assurance is required, as we demonstrate in Section 6. Third, both

algorithms’ approximation guarantees are rather weak no matter
the connection probability between any two nodes is known or not.
Contributions. Motivated by the deficiencies of the existing stud-
ies, we propose new approximation algorithms for k-median and k-
center on uncertain graphs that provide significantly improved ap-
proximation and efficiency guarantees than existing solutions. (See
Table 1 for a detailed comparison.) In addition, our algorithms in-
corporate several advanced optimizations that lead to superior prac-
tical efficiency. Furthermore, we provide a thorough analysis on
the hardness and inapproximability of k-center and k-median on
uncertain graphs.

More specifically, our major contributions include the following.
First, we prove that uncertain k-median is NP-hard even when there
exists an oracle that returns the connection probability for any two
given nodes. We also show that the objective function of k-median
is monotone and submodular, based on which we propose a greedy
algorithm for k-median that leverages graph sampling to achieve
(1− 1/e− ε)-approximations with high probability. Compared to
the conventional greedy algorithms for submodular function max-
imization, our algorithm leverages several heuristic optimizations
that drastically improve the empirical efficiency of the algorithm
without affecting its approximation assurance.

Second, we present a new greedy algorithm for uncertain k-
center that offers ((1− ε)OPTck)-approximations with high proba-
bility. Compared with the k-center algorithm proposed in [11], our
approximation guarantee is better by a factor of 1/(1 + γ). (Note
that the k-center algorithm [11] has a running time that increases
with 1

log(1+γ)
, due to which γ has to be a positive number.) In ad-

dition, our algorithm does not require prior knowledge of OPTkc ,
whereas the algorithm in [11] requires that a tight lower bound of
OPTkc is given. Furthermore, we prove that it is NP-hard to get
any data-independent approximation guarantee for the uncertain k-
center problem, and that any bi-criteria algorithm must use at least
Ω(k logn) centering nodes, unless P=NP.

Third, we evaluate the efficiency and effectiveness of our al-
gorithms with extensive experiments. The experimental results
demonstrate that our algorithms significantly outperform the algo-
rithms in [11] on both the processing time and the quality of clus-
tering results.

Due to the space constraint, the proofs of some theorems/lemmas
presented in our paper can be found in the technical report [1].

2. PRELIMINARIES

2.1 Problem Definition
We model an uncertain graph G as a three-tuple (V,E, p(·)),

where V is the set of nodes and E is the set of edges, with |V | = n
and |E| = m, and p : E 7→ (0, 1] is a function such that p(e)
denotes the probability that e exists for any e ∈ E. Following [11],
we assume that G is an undirected graph, and the presence of any
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Table 2: Frequently used notations
Notation Description
G = (V,E) A uncertain graph with node set V and edge set E.
n,m the numbers of nodes and edges in G, respectively
k the number of clusters
u ∼ v the event that node u is connected to node v in G
KM (A),
KC (A)

the average and minimum connection probability of
the cluster links in the k-clustering A, respectively

Ao, Bo the optimal solutions to the k-median and k-center
problems, respectively

Cokm, C
o
kc the set of center nodes in Ao and Bo, respectively

OPTmk the value of KM (Ao)
OPTck the value of KC (Bo)
fv(C) the maximum connection probability between v and

any node in C
F (C) the value of

∑
v∈V fv(C)/n

XR(u ∼ v) If u is connected to v in the random sample R, then
XR(u ∼ v) = 1, otherwise XR(u ∼ v) = 0“Pr[R, u ∼ v] the value of

∑
R∈RXR(u ∼ v)/|R|

f̂v(R, C) the value of max{“Pr[R, u ∼ v] | u ∈ C}
F̂ (R, C) the value of

∑
v∈V f̂v(R, C)

I(R) collection of all connected components in all R ∈ R
∆R(v|C) the value of F̂ (R, C ∪ {v})− F̂ (R, C)

e ∈ E is independent of all other edges. For any two nodes u, v ∈
V , we use u ∼ v to denote the event that u is connected to v via a
path. Note that we only consider edge uncertainty in our model.

A k-clustering of G is represented by a tuple C =
〈C,Q1, Q2, . . . , Qk〉, where C = {c1, . . . , ck} is the set of center
nodes and {Q1, Q2, . . . , Qk} is a partition of the nodes in V satis-
fying ci ∈ Qi for all i ∈ {1, . . . , k}. For any i ∈ {1, . . . , k} and
any v ∈ Qi, we refer to the node pair (ci, v) as a cluster link of C.
We refer to the set of all cluster links in C as the signature of C, and
use SGk to denote the set of signatures of all possible k-clusterings
of G. Note that any two different k-clusterings must have different
signatures, and hence, we can construct a unique k-clustering from
anyA ∈ SGk . For convenience, we abuse notation and refer to each
A ∈ SGk as a k-clustering.

Given any A ∈ SGk , we define

KM (A) =
1

n

∑
(u,v)∈A

Pr[u ∼ v];KC (A) = min
(u,v)∈A

Pr[u ∼ v].

With the above definitions, we formalize the k-median and k-center
problems as follows:

DEFINITION 1. The k-median problem aims to identify an op-
timal solution Ao to the following optimization problem:

Maximize KM (A); s.t. A ∈ SGk

DEFINITION 2. The k-center problem aims to identify an opti-
mal solution Bo to the following optimization problem:

Maximize KC (B); s.t. B ∈ SGk

Let OPTmk = KM (Ao) and OPTck = KC (Bo), i.e., OPTmk
and OPTck are the optimal value of the objective function of k-
median and k-center, respectively. In addition, we use Cokm (resp.
Cokc) to denote the sets of center nodes in Ao (resp. Bo). Table 2
lists the notations frequently used in the remainder of the paper.

2.2 Existing Solutions
To the best of our knowledge, only Ceccarello et al. [11] have

studied the uncertain k-median/k-center problems. As computing
the connection probability between any two nodes is #P-hard, they

Algorithm 1: MIN-PARTIAL(G, k, q, α, z) /*from [11]*/
1 S ← ∅; V ′ ← V ;
2 for i← 1 to k do
3 select an arbitrary T ⊆ V ′ with |T | = min{α, |V ′|};
4 for v ∈ T do Mv ← {u ∈ V ′ : Pr[u ∼ v] ≥ z};
5 ci ← arg maxv∈T |Mv |;S ← S ∪ {ci};
6 V ′ ← V ′ − {u ∈ V ′ : Pr[u ∼ ci] ≥ q};
7 if |S| < k then
8 add k − |S| arbitrary nodes of V − S to S;

9 S ← {c1, · · · , ck};
10 for i← 1 to k do Ci ← {u ∈ V ′ : c(u, S) = ci};
11 return C = ({c1, · · · , ck}, C1, · · · , Ck};

Algorithm 2: ACP(G, k, γ) /*from [11]*/
1 C ← MIN-PARTIAL(G, k, 1, n, 1);
2 φbest ← (1/n)

∑
u:u is contained in certain Ci∈C Pr[ci ∼ u];

3 Cbest ← any full k-clustering completing C;
4 q ← q/(1 + γ);
5 while q3 ≥ φbest do
6 C ← MIN-PARTIAL(G, k, q3, n, q);
7 φ← (1/n)

∑
u:u is contained in certain Ci∈C Pr[ci ∼ u];

8 if φ ≥ φbest then
9 φbest ← φ;

10 Cbest ← any full k-clustering completing C;

11 else q ← q/(1 + γ); ;

12 return Cbest;

Algorithm 3: MCP(G, k, γ) /*from [11]*/
1 q ← 1;
2 while true do
3 C ← MIN-PARTIAL(G, k, q, 1, q);
4 if C covers all nodes then return C ;
5 else q ← q/(1 + γ); ;

first propose algorithms with the assumption that there exists a con-
nectivity oracle to compute Pr[u ∼ v] for any u, v ∈ V , and then
drop this assumption to propose more practical algorithms. For
completeness, we quote the pseudo codes of their algorithms under
the connectivity oracle in Algorithms 1-3, where ACP and MCP
denote their k-median and k-center algorithms, respectively.

A key procedure in ACP/MCP is MIN-PARTIAL, shown in Al-
gorithm 1. By inputting q, MIN-PARTIAL greedily finds a par-
tial k-clustering C covering the maximum number of nodes in V
(Lines 2-6), such that any uncovered node has a probability of less
than q for being connected to the cluster centers in C. Both ACP
and MCP iteratively call MIN-PARTIAL using decreasing q (i.e.,
dividing q by 1 + γ at each time), as shown by Lines 5-11 in Al-
gorithm 2 and Lines 2-5 in Algorithm 3. The iterations in MCP
stop when all the nodes in V are covered, and Ceccarello et al. [11]
prove that such a stopping rule must be satisfied (under the connec-
tivity oracle) when q ≤ (OPTck)2. The stopping rule for ACP is
more involved and the details can be found in [11].

Note that MIN-PARTIAL has an important input parameter α,
which controls the size of its searching space (see Line 3 of Al-
gorithm 1). A smaller α would result in smaller time complexity.
Ceccarello et al. [11] have required α = n in ACP and α = 1
in MCP (see Line 1 in Algorithm 2 and Line 3 in Algorithm 3),
otherwise their claimed approximation ratios no longer hold.

Ceccarello et al. [11] have also extended Algorithms 2-3 to the
case without a connectivity oracle, based on Monte-Carlo sam-
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pling. The main idea of the extension is to generate a set of r
random samples of G to estimate the connection probabilities be-
fore calling MIN-PARTIAL. More specifically, they set

r =

⌈
12

q3ε2
ln

(
2n3

(
1 +

⌊
log1+γ

H(n)

pmL

⌋))⌉
(1)

for the ACP algorithm, where H(n) is the nth homonic number
and pmL is a lower bound of (OPTmk /H(n))3, and they set

r =

⌈
12

qε2
ln

(
2n3

(
1 +

⌊
log1+γ

1

pcL

⌋))⌉
(2)

for the MCP algorithm, where pcL is assumed to be a known lower
bound of (OPTck)2. Their approximation ratios only hold under
these parameter settings.

Based on the techniques described above, Ceccarello et al. [11]
proved several theoretical bounds, as summarized below.
Results on Uncertain k-median. Ceccarello et al. [11] conjecture
that uncertain k-median is NP-hard even when a connection oracle
is available. They also prove that ACP returns a solution A to k-
median satisfying

KM (A) ≥ (OPTmk /[(1 + γ)H(n)])3 (3)

when there is a connection oracle. This algorithm requires invoking
the MIN-PARTIAL procedure at most blog1+γ

H(n)
OPTm

k
c+ 1 times.

Without a connection oracle, Ceccarello et al. [11] show that
ACP could utilize the Monte-Carlo sampling method described
above to identify a solution A to k-median, such that

KM (A) ≥ (1− ε)
(

OPTmk
(1 + γ)H(n)

)3

(4)

holds with probability of at least 1 − δ. The algorithm invokes
the MIN-PARTIAL procedure for blog1+γ

H(n)
OPTm

k
c+ 1 times with

high probability. Ceccarello et al. [11] have not presented the time
complexity of ACP, so we provide the following theorem:

THEOREM 1. ACP can be implemented in expected time com-

plexity of O
(

(1+ 1
γ

)3(lnn)3kn2

ε2(OPTm
k

)3

(
ln n

δ
+ ln log1+γ

n lnn
k

))
when

OPTmk is unknown.

We roughly explain the time complexity of ACP as follows.
The O(kn2) factor comes from the MIN-PARTIAL procedure (as
α = n in ACP). The other factors come from the fact that ACP
terminates in blog1+γ

H(n)
OPTm

k
c+ 1 iterations with high probability,

and it generates r random samples according to Equation (1) to call
the MIN-PARTIAL procedure in each iteration.

Note that the approximation guarantees in Equations (3) and (4)
are rather weak, especially when n is large or OPTmk is small. In
addition, the time complexity of ACP is prohibitive when n is large
or OPTmk is small, and Ceccarello et al. [11] have not presented
any efficient implementation to address the problem. Finally, when
γ is small, ACP requires invoking the MIN-PARTIAL procedure
a large number of times, which results in significant computation
overheads.
Results on Uncertain k-center. When a connection oracle is avail-
able, Ceccarello et al. [11] prove that the k-center problem is NP-
hard, and that MCP can find a solution B to k-center satisfying

KC (B) ≥ (OPTck)2/(1 + γ). (5)

This algorithm requires calling the MIN-PARTIAL procedure at
most b2 log1+γ

1
OPTc

k
c+ 1 times.

When using Monte-Carlo sampling to replace a connection ora-
cle, Ceccarello et al. [11] show that MCP returns a solution B to
k-center, such that the following ratio holds with high probability:

KC (B) ≥ (1− ε)(OPTck)2/(1 + γ) (6)

It requires iteratively calling the MIN-PARTIAL procedure at most
b2 log1+γ

1
OPTc

k
c + 1 times with high probability. Moreover, it

requires a known lower bound of (OPTck)2 (denoted by pcL) to
achieve the approximation ratio shown in Equation (6).

The above results for uncertain k-center have two major defi-
ciencies. First, when γ is small, the k-center algorithm in [11]
incurs significant computation cost, due to the large number of in-
vokations of the MIN-PARTIAL procedure. Second, the algorithm
achieves the approximation guarantee in Equation (5) only when
there is known lower bound pcL of (OPTck)2. Although such a
lower bound can be easily got under a connection oracle, there is no
existing solution for computing a non-trivial lower bound of OPTck
without a connection oracle (note that a trivial lower bound k/n of
OPTmk cannot be used as a lower bound of OPTck). This severely
undermines the practicability of the algorithm.

3. SOLVING THE K-MEDIAN PROBLEM
In this section, we first present algorithms for uncertain k-

median with a connectivity oracle, and then propose an improved
algorithm without assuming the oracle.

3.1 k-Median Algorithms with an Oracle
Prior work [11] conjectures that uncertain k-median is NP-hard

even with a connectivity oracle. We prove that this conjecture
holds, by a reduction from Dominating Set [59]:

THEOREM 2. The k-median problem is NP-hard, even if
Pr[u ∼ v] can be computed in polynomial time for any u, v ∈ V .

Although uncertain k-median with a connectivity oracle is NP-
hard, we find that there exists a constant approximation using a
greedy algorithm. Consider the following functions where C is
any subset of V and v is any node in V :

fv(C) = max{Pr[u ∼ v] | u ∈ C}; (7)

F (C) =
∑

v∈V
fv(C)/n; (8)

It can be verified that F (C) ≥ KM (A) for any A ∈ SGk , as long
as the set of center nodes in A is C. Moreover, given any C ⊆ V
with |C| = k, we can construct a k-clustering A such that Pr[u ∼
v] = fv(C) for any (u, v) ∈ A and u ∈ C. (We refer to such
a k-clustering A as “the k-clustering induced by C”.) Therefore,
the k-median problem is equivalent to the following optimization
problem:

Maximize F (C)

s.t. |C| = k; C ⊆ V

The above problem is a submodular maximization problem, as
shown in Theorem 3. Intuitively, as fv(·) is essentially a max(·)
function, its submodularity can be proved by directly using the def-
inition of submodular functions. Moreover, the function F (·) is a
linear combination of submodular functions fv(·) : v ∈ V , so F (·)
is also submodular.

THEOREM 3. The function F (·) is a non-negative, monotone,
and submodular function on 2V .
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PROOF. F (·) is non-negative by definition. For any X ⊆ Y ⊆
V and any x ∈ V \Y , we have

fv(X) = max{Pr[u ∼ v] | u ∈ X}
≤ max{Pr[u ∼ v] | u ∈ Y } = fv(Y ) (9)

Hence, fv(·) is monotone. Note that fv(X∪{x}) = max{Pr[x ∼
v], fv(X)}. Therefore, we have the following:

If Pr[x ∼ v] ≥ fv(Y ), then we can get Pr[x ∼ v] ≥ fv(X)
due to fv(Y ) ≥ fv(X). Hence, we have

fv(X ∪ {x})− fv(X) = Pr[x ∼ v]− fv(X)

≥ Pr[x ∼ v]− fv(Y ) = fv(Y ∪ {x})− fv(Y ) (10)

If Pr[x ∼ v] < fv(Y ), then we have fv(Y ∪ {x}) = fv(Y ).
Hence, we also have

fv(X ∪ {x})− fv(X) ≥ 0 = fv(Y ∪ {x})− fv(Y ) (11)

According to the above reasoning and the definition of submodular
functions [37], we know that fv(·) is a monotone and submodular
function for any v ∈ V . Finally, as F (·) is a linear combination of
fv(·) : v ∈ V , it is also monotone and submodular.

It is well known that monotone submodular maximization prob-
lems can be addressed by a greedy algorithm with a 1 − 1/e ap-
proximation ratio [37]. For completeness, we present such a greedy
algorithm in Algorithm 5, and provide the following theorem:

THEOREM 4. Let C = Greedy(G, k, F (·)), and A be the k-
clustering induced by C. Then, A is a solution with a 1 − 1/e
approximation ratio to the uncertain k-median problem.

Note that the conventional metric k-median problem [60] is a
minimization problem while our uncertain k-median problem is
a maximization problem. The work in [27] has proved the NP-
hardness of approximating metric k-median within a factor of
1 + 2/e [27], and the best-known approximation ratio for metric
k-median is 2.675+ ε [10]. Thus, our uncertain k-median is intrin-
sically different from the conventional metric k-median problem.

3.2 k-Median Algorithms without Oracle
In this section, we consider a more practical setting where the

connectivity oracle is absent. We first present a graph sampling
algorithm to address uncertain k-median, and then provide opti-
mizations that lead to improved practical efficiency.

3.2.1 Sampling for k-Median
Although it is #P-hard to compute the connection probability be-

tween any two nodes in G, we may use random graph samples to
estimate the probability with specified precision. Towards this end,
we first introduce some concepts and definitions on graph sampling
in what follows.

A random sampleR ofG is a graph generated by removing each
edge e in G with probability of 1 − p(e). For any u, v ∈ V and
any random sample R of G, we define a function XR(u ∼ v) such
that XR(u ∼ v) = 1 if u and v is connected via a path in R, and
XR(u ∼ v) = 0 otherwise. For any set R of random samples of
G and any k-clustering A ∈ SGk , we define“Pr[R, u ∼ v] =

∑
R∈R

XR(u ∼ v)/|R|; (12)‘KM (R, A) =
∑

(u,v)∈A
“Pr[R, u ∼ v]/n. (13)

It can be verified that “Pr[R, u ∼ v] and‘KM (R, A) are unbiased
estimations of Pr[u ∼ v] and KM (A), respectively. Similarly, for

Algorithm 4: SearchKM(G, k,R)

1 C∗ ← Greedy(G, k, F̂ (R, ·)); A∗ ← D(R, C∗)
2 return A∗

Algorithm 5: Greedy(G, k, F (·))
1 C ← ∅
2 while |C| < k do
3 Find u ∈ V \C such that F (C ∪ {u})− F (C) is maximized;

C ← C ∪ {u}
4 return C

any A ∈ SGk , any C ⊆ V and any v ∈ V , we define

f̂v(R, C) = max{“Pr[R, u ∼ v] | u ∈ C}; (14)

F̂ (R, C) =
∑

v∈V
f̂v(R, C). (15)

Using similar reasoning with that in Theorem 3, we can prove that
F̂ (R, ·) is a monotone and submodular function. For any C ⊆ V
with |C| = k and any set R of random samples of G, we use
D(R, C) to denote the k-clustering in SGk such that (i) C is the
set of center nodes in D(R, C), and (ii) any cluster link (c, v) ∈
D(R, C) (with c ∈ C) satisfies “Pr[R, c ∼ v] = f̂v(R, C).

With the above definitions, we present the SearchKM method
in Algorithm 4 for identifying an approximate solution for uncer-
tain k-median. Given a set R of random samples, SearchKM first
invokes the Greedy algorithm (with the function F (·) replaced by
F̂ (R, ·)) to find a set C∗ of center nodes. After that, it returns
A∗ = D(R, C∗) as an approximate solution. To ensure that A∗

has a good approximation ratio, we present the following theorem
to determine an upper-bound for the number of random samples
needed by SearchKM:

THEOREM 5. If |R| = Tmax where

Tmax =

⌈
2(7− 7/e− 4ε)(2− 1/e)

3ε2OPTmk
ln

2n2

δ

⌉
, (16)

then SearchKM(G, k,R) returns a (1− 1/e− ε)-approximate so-
lutionA∗ to the k-median problem with probability of at least 1−δ
under the time complexity of O

(
n2

ε2OPTm
k

ln n
δ

+ kn2
)

.

The proof of Theorem 5 is non-trivial. Its main idea is to care-
fully bound the errors of estimating Pr[u ∼ v] using “Pr[R, u ∼ v]
for all u, v ∈ V , such thatA∗ admits the 1−1/e−ε approximation
ratio. The details can be found in [1].

3.2.2 Acceleration through Lazy Evaluations
It can be seen that the main operation in SearchKM is to greedily

select v∗ = arg maxv∈V \C∗ ∆(v|C∗) at each step, where C∗ is
the set of currently selected center nodes in A∗, and ∆(v|C∗) =

F̂ (R, C∗ ∪ {v}) − F̂ (R, C∗) is the marginal gain of v with re-
spect to C∗. SearchKM finds v∗ by computing the exact values
of marginal gains for all v ∈ V \C∗, which results in quadratic
time complexity with respect to n. In this section, we propose sev-
eral optimized algorithms with better empirical time efficiency than
SearchKM, while still keeping the 1−1/e−ε approximation guar-
antee. The main idea of these algorithms is to correctly find v∗ by
computing fewer number of marginal gains.
Lazy Evaluation of the Marginal Gains. Our first optimization is
shown in the LazyGreedy method in Algorithm 6, which (i) is func-
tionally equivalent to the SearchKM algorithm and (ii) adopts the
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Algorithm 6: LazyGreedy(G, k,R)

1 C∗ ← ∅;
2 for (i = 1; i ≤ k; i = i+ 1) do
3 if i = 1 then
4 foreach v ∈ V do UB(v)← F̂ (R, {v}) ;
5 else
6 Sort the nodes in V \C∗ into 〈w1, · · · , wn−i+1〉 such that

UB(w1) ≥ UB(w2) ≥ · · · ≥ UB(wn−i+1)
7 for (j = 1; j ≤ n− i+ 1; j = j + 1) do
8 UB(wj)← F̂ (R, C∗ ∪ {wj})− F̂ (R, C∗)
9 if UB(wj) ≥ UB(wj+1) then break;

10 Find v∗ ∈ V \C∗ such that UB(v) is maximized;
11 C∗ ← C∗ ∪ {v∗}; A∗ ← D(R, C∗)
12 return A∗

CELF framework proposed in [38]. Compared with SearchKM,
LazyGreedy adopts a more efficient strategy to find v∗, as ex-
plained below.

LazyGreedy maintains a value UB(v) for each v ∈ V , which
serves as an upper bound of ∆(v|C∗). To find v∗, LazyGreedy
evaluates ∆(v|C∗) for each v ∈ V \C∗ based on the non-
increasing order of UB(v), and terminates this evaluation process
immediately when ∆(v|C∗) is no less than the upper bound of
the marginal gains of the unevaluated nodes (Lines 6-9). As such,
LazyGreedy usually does not need to compute the marginal gains
of all nodes in V \C∗, and hence, achieves better time efficiency
than SearchKM does.

LazyGreedy maintains the upper bounds of the marginal gains
as follows. Initially, it sets UB(v) = F̂ (R, {v}) for all v ∈ V ,
which implies UB(v) = ∆(v|C∗) due to C∗ = ∅ (Line 4). Af-
ter that, it only updates UB(v) when ∆(v|C∗) is re-computed
(Line 8). This “lazy update” strategy ensures that UB(v) is al-
ways an upper bound of ∆(v|C∗) when C∗ changes, as ∆(v|C∗)
is non-increasing due to the submodularity of function F̂ (R, ·).
Enhancing LazyGreedy. LazyGreedy’s benefit on time efficiency
is mainly determined by its strategy on maintaining the values of
UB(v) : v ∈ V \C∗. Ideally, such a strategy should satisfy the
following two requirements:

• Updating UB(v) should be more efficient than directly com-
puting the marginal gain of v;

• UB(v) should be as tight as possible (i.e., it should be close
to the marginal gain of v); Otherwise, LazyGreedy would
still evaluate a large number of marginal gains.

Unfortunately, LazyGreedy often fails to satisfy the above re-
quirements, due to which it still incurs considerable overheads on
large graphs. Specifically, LazyGreedy does not provide an ef-
ficient method to compute UB(v). For example, if we adopt a
straightforward approach to compute UB(u) = F̂ (R, {u}) for
any u ∈ V in the initialization phase, we would need to evalu-
ate “Pr[u ∼ u′] for all u′ ∈ V \{u}, which incurs O(n2|R|) cost
for computing UB(v) for all v ∈ V . In addition, the value of
UB(v) is a very loose upper bound of ∆(v|C∗) in LazyGreedy,
as it adopts the lazy update strategy described before. Due to this
reason, we find in our experiments that, when selecting a new node,
LazyGreedy still computes a sizable number of marginal gains of
the nodes in V , and hence, offers inferior efficiency.

Based on the above observation, we propose a a new algo-
rithm named LazierGreedy, which addresses the deficiencies of
LazyGreedy in two aspects:

Algorithm 7: LazierGreedy(G, k,R)

1 C∗ ← ∅;
2 for (i = 1; i ≤ k; i = i+ 1) do
3 if i = 1 then
4 foreach v ∈ V do
5 l← the summation of the sizes of the connected

components in I(R) that contain v;
6 UB(v)← l/|R|
7 else
8 Call the procedure GetUB(C∗,R) to update the value of

UB(v) for all v ∈ V \C∗
9 Run Lines 6-9 of LazyGreedy(G, k,R)

10 Find v∗ ∈ V \C∗ such that UB(v∗) is maximized;
11 C∗ ← C∗ ∪ {v∗}; A∗ ← D(R, C∗)
12 return A∗

Algorithm 8: GetUB(C∗,R)

1 foreach v ∈ V \C∗ do
2 Z ← the set of all connected components in I(R) that overlap

C∗ ∪ {v};
3 h← the summation of the sizes of the connected components in

Z
4 UB(v)← min{h/|R| − F̂ (R, C∗),UB(v)}

First, LazierGreedy provides an efficient method to compute
UB(v) : ∀v ∈ V in the initialization phase (Lines 4-6). More
specifically, LazierGreedy initializes UB(v) for all v ∈ V by com-
puting the summation of the sizes of the connected components
that v lies in (Lines 5-6), which costs at most O(|R|n) time. This
process is correct because two nodes u and v are connected in a
random sample if and only if they are in the same connected com-
ponent.

Second, LazierGreedy adopts a more aggressive method for up-
dating UB(v) : ∀v ∈ V to improve time efficiency. Before select-
ing the ith node for any i > 1, LazierGreedy invokes the GetUB
procedure to compute new upper bounds of the marginal gains for
all v ∈ V (Line 8). More specifically, GetUB first computes a value
h by summing the sizes of the connected components overlapping
C∗ ∪ {v}, which guarantees that F̂ (R, C∗ ∪ {v}) ≤ h/|R|, and
then set UB(v) = min{h/|R| − F̂ (R, C∗),UB(v)} (see Line 4
of Algorithm 8).

Compared with the “lazy updating” method of LazyGreedy de-
scribed before, LazierGreedy updates UB(v) : ∀v ∈ V immedi-
ately when a new node is added into C∗, so the upper bounds got
by GetUB can be tighter than those used in LazyGreedy. More-
over, the time complexity of GetUB is only O(|R|n), which is
much less than the quadratic time complexity required to compute
the exact marginal gains of the nodes in V \C∗. After getting the
upper bounds, LazierGreedy selects v∗ by computing the exact
marginal gains in the same way as that in LazyGreedy (Line 9),
so the number of exact marginal gains computed in LazierGreedy
could be less than that in LazyGreedy due to the tighter values of
UB(v) : v ∈ V .

The following theorem establishes the correctness and time com-
plexity of LazierGreedy:

THEOREM 6. The LazierGreedy algorithm is correct, and has
worst-case time complexity of O(n2|R|+ kn2).

Lazy Sampling. According to Theorem 5, a straightforward ap-
proach is to invoke LazierGreedy or LazyGreedy using a set R
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Algorithm 9: SearchKM+(G, k, ε, δ, λ)

Input: G,k, ε, δ, λ
Output: A solution A∗ to the k-median problem

1 Tmax ←
⌈

2(7−7/e−4ε)(2−1/e)n

3ε2k
ln 2n2

δ

⌉
; T ← λ

2 Generate two setsR1 andR2 of random samples of G, such
that |R1| = |R2| = T ;

3 imax ← dlog2(Tmax/T )e;
4 for i← 1 to imax do
5 Call LazyGreedy(G, k,R1) or LazierGreedy(G, k,R1)

to find a k-clustering A∗

6 a← ln(3imax/δ); θ ← |R1|

7 lb(A∗)←
(√‘KM (R2, A∗) + 2a

9θ
−
√

a
2θ

)2

− a
18θ

8 ub(Ao)←

(√”KM (R1,A∗)
1−1/e

+ 8a
9θ

+
√

a
2θ

)2

− a
18θ

9 if lb(A∗)/ub(Ao) ≥ 1− 1/e− ε or i = imax then
10 return A∗

11 double the sizes ofR1 andR2 with new random samples;

of Tmax random samples (with OPTmk replaced by k/n), which
has a worst-case time complexity of O( n

3

kε2
ln n

δ
+ kn2). The

time efficiency of this approach, however, can be further improved
by adopting the OPIM framework [55] for submodular maximiza-
tion to our problem, and the resulting algorithm is referred to as
SearchKM+, which is shown by Algorithm 9.

The SearchKM+ algorithm uses a “lazy sampling” technique
described as follows. It first sets an upper bound Tmax for the
number of generated random samples according to Theorem 5, and
then generates two sets of random samples R1 and R2 such that
|R1| = |R2| = λ, where λ can be any positive integer smaller than
Tmax. After that, SearchKM+ calls LazyGreedy or LazierGreedy
usingR1 to find a k-clusteringA∗, and then usesR1 andR2 to find
ub(Ao) and lb(A∗), respectively, where ub(Ao) denotes an upper
bound of KM (Ao) and lb(A∗) denotes a lower bound of KM (A∗)
(Lines 5-8). If lb(A∗)/ub(Ao) ≥ 1 − 1/e − ε or |R1| ≥ Tmax,
then SearchKM+ terminates and returns A∗ (Line 10), otherwise
it doubles the sizes of R1 and R2 and repeats the above process.
The correctness of SearchKM+ relies on the property thatA∗ has a
provable performance bound in the “sampling space”, i.e., we have
F̂ (R, A∗) ≥ (1−1/e)F̂ (R, Âo), where Âo denotes a k-clustering
such that F̂ (R, Âo) is maximized.

It can proved that SearchKM+ achieves the 1−1/e−ε approxi-
mation ratio with probability of at least 1−1/n, under an expected
time complexity of O

(
n2

ε2OPTm
k

ln n
δ

+ kn2 lnn
)
. This time com-

plexity is derived based on the O(n2|R| + kn2) time complexity
of LazierGreedy and the fact that the expected number of gener-
ated random samples in SearchKM+ is O

(
1

ε2OPTm
k

ln n
δ

)
. The

full proofs for these theoretical bounds can be found in our techni-
cal report [1].

In summary, the time efficiency of SearchKM+ is optimized
in two major aspects: 1) The “lazy evaluation” method adopted
by LazierGreedy can greatly reduce the number of exact marginal
gains to be evaluated; 2) The “lazy sampling” method described
above makes it possible for SearchKM+ to find a satisfying solu-
tion using less than Tmax random samples. Due to these reasons,
the practical running time of SearchKM+ in experiments is much
smaller than a cubic running time with respect to n.

3.3 Comparison with Existing Work
The results described above advance the state of the art [11] in

three aspects. First, Ceccarello et al. [11] conjecture that the k-
median problem is NP-hard when there is a connectivity oracle.
We prove that this conjecture is true in Theorem 2.

Second, when a connection oracle is unavailable, our algorithm
offers an approxiation ratio of 1 − 1/e − ε, which is significantly

better than theO(
(OPTmk )2

(1+γ)3 ln3 n
) approximation ratio achieved by the

solutions in [11]. For example, if n = 100 and OPTmk = 0.9, then
the approximation ratio in [11] is no more than 0.01, which is much
smaller than 1− 1/e− ε for reasonable ε.

Third, in practice, the k-median algorithm proposed in [11] (i.e.,
ACP) incurs prohibitive running time to achieve non-trivial approx-
imations, even for moderate graphs with about 20K nodes (see
Section 6). In contrast, our algorithm runs much faster than ACP
while achieving (1−1/e−ε)-approximations, due to the optimiza-
tion techniques discussed previously.

4. SOLVING THE K-CENTER PROBLEM
This section addresses the uncertain k-center problem. Sec-

tion 4.1 presents an approximation algorithm assuming a connec-
tivity oracle, while Section 4.2 proposes a solution without the or-
acle. Section 4.3 compares our solutions with those in [11].

4.1 k-Center Algorithms with an Oracle
Ceccarello et al. [11] present a rather complex algorithm for un-

certain k-center that repeatedly identifies candidate k-clusterings
until a satisfying solution is found (see Sec. 2.2). In this section, we
propose a much simpler algorithm with better approximation guar-
antees. The main idea of our algorithm is to transform the uncertain
k-center problem into a conventional metric k-center problem.

To explain, we first revisit a relevant result in [11], which shows
that although the connection probabilities in uncertain graphs do
not obey the triangle inequality, they have the following property:

∀u, v, w ∈ V : Pr[u ∼ w] ≥ Pr[u ∼ v] · Pr[v ∼ w] (17)

Based on Eqn. (17), we define d(u, v) = − ln Pr[u ∼ v] and
dv(C) = minu∈C d(u, v) for any u, v ∈ V and any C ⊆ V . It
can be seen from Eqn. (17) that d(·) is a metric, i.e.,

∀u, v, w ∈ V : d(u,w) ≤ d(u, v) + d(v, w) (18)

Now consider the following problem:

Minimize maxv∈V dv(C); s.t. |C| = k; C ⊆ V (19)

As d(·) is a metric, the above problem is exactly a traditional metric
k-center problem, which admits 2-approximations [18, 60]. More-
over, it can be verified that Cokc is also an optimal solution to the
above problem. Therefore, we can use any existing 2-approximate
metric k-center algorithm to address uncertain k-center, as shown
in the following theorem.

THEOREM 7. Let C∗ be a 2-approximate solution to the prob-
lem in Equation (19), and B∗ be the k-clustering induced by C∗.
Then, we have KC (B∗) ≥ (OPTck)2.

PROOF. Note that dv(C∗) = − ln fv(C∗) for any v ∈ V . Let
C† denote an optimal solution to the problem in Equation (19).
Then, we have

max
v∈V

dv(C∗) ≤ 2 max
v∈V

dv(C†) ≤ 2 max
v∈V

dv(Cokc), (20)

which implies:

maxv∈V [1/fv(C∗)] ≤ maxv∈V [1/fv(Cokc)]
2,

minv∈V fv(C∗) ≥ minv∈V [fv(Cokc)]
2,
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As minv∈V fv(C∗) = KC (B∗) and minv∈V [fv(Cokc)]
2 =

(OPTck)2, the theorem follows.

Note that the 2-approximation ratio for traditional metric k-
center problem is tight unless P=NP [60]. As we have transformed
the k-center problem in uncertain graphs into a metric k-center
problem, we conjecture that the approximation ratio shown in The-
orem 7 is also optimal.

4.1.1 Hardness on Better Approximation Ratio
The approximation ratio proposed in Theorem 7 is OPTck, which

depends on G and could be small for certain input graphs. There-
fore, we ask whether there could exist an algorithm with a data-
independent approximation ratio for the k-center problem. Unfor-
tunately, we have the following negative result.

THEOREM 8. Unless P=NP, no polynomial-time algorithm
with the connectivity oracle can find a α-approximate solution to
uncertain k-center, for any positive α.

As Theorem 8 proves that the uncertain k-center problem is
NP-hard to approximate within any given α > 0, we further ask
whether there exists a bi-criteria approximation algorithm for the
problem. That is, if we allow the algorithm to use more than k
center nodes to find a clustering B, is possible that KC (B) could
be close to OPTck. Unfortunately, the following theorem shows
that if we are to ensure that KC(B) is close to OPTck, we have to
increase the number of center nodes to at least Ω(k logn).

THEOREM 9. Assume that there is a connectivity oracle and
P 6=NP. Let B be a clustering found by any polynomial-time
bi-criteria approximation algorithm for uncertain k-center. If
KC (B) ≥ OPTck, then the number of center nodes in B is at
least Ω(k logn).

Due to the above results, we do not investigate data-independent or
bi-criteria approximation algorithms for uncertain k-center.

4.2 k-Center Algorithms without an Oracle
In this section, we present uncertain k-center algorithms without

a connectivity oracle.

4.2.1 A Greedy Algorithm
A straightforward idea is that we can first generate a set of ran-

dom samples of G, and then follow the method in Section 4.1 to
transform the k-center problem into a traditional metric k-center
problem using these samples. This idea, however, does not work,
since the metric property no longer holds on random samples of
G. In other words, without a connectivity oracle, the uncertain
k-center problem is drastically different from the metric k-center
problem. More specifically, it is possible that

∃u, v, w ∈ V : “Pr[R, u ∼ w] < “Pr[R, u ∼ v] · “Pr[R, v ∼ w]

holds for any set R of random samples of G, which is to the con-
trary of Equation (17). For example, suppose that either u is con-
nected to v or v is connected to w in each random sample inR, but
u is never connected to w in these samples. In this case, we have“Pr[R, u ∼ w] = 0 and “Pr[R, u ∼ v] · “Pr[R, v ∼ w] > 0.

Fortunately, although our problem cannot be transformed into
a metric k-center problem without a connectivity oracle, we find
that a greedy algorithm SearchKC (shown by Algorithm 10) can
achieve an approximation ratio close to the one with a connectivity
oracle. The intuition of SearchKC is as follows. It first adds an
arbitrary node v∗ into the set C∗, and then greedily selects a node

Algorithm 10: SearchKC(G, k,R)

1 Select an arbitrary node v ∈ V and set C∗ = {v}
2 while |C∗| < k do
3 Find v∗ ∈ V \C∗ such that f̂v∗ (R, C∗) is minimized;
4 C∗ ← C∗ ∪ {v∗}
5 B∗ ← D(R, C∗)
6 return C∗, B∗

Algorithm 11: SearchKC+(G, k, ε, δ)

1 pmin =
∏
e∈E(p(e))2;R0 ← ∅;U0 ← ∅; i← 0

2 repeat
3 i← i+ 1; qi ← 2−i; δi ← 3δ

π2i2
; Ri ←Ri−1 ∪ Ui−1

4 `(i)← 4(6+ε)

3ε2(1−ε)qi
ln
n(n−1)
δi

;

5 if |Ri| < `(i) then
6 Add more random samples intoRi until |Ri| ≥ `(i)
7 (C∗i , B

∗
i )← SearchKC(G, k,Ri)

8 Generate another set Ui of random samples such that |Ui| = |Ri|
9 foreach (u, v) ∈ B∗i ∧ u 6= v do

10 γi ← ln(
(n

2

)
/δi)/|Ui|

11 z(u, v)←
(√“Pr[Ui, u ∼ v] + 2γi

9
−
√
γi
2

)2

− γi
18

12 li ← min{z(u, v)|(u, v) ∈ B∗i ∧ u 6= v}
13 until li ≥ (1− ε)qi ∨ qi ≤ pmin ;
14 return (C∗, B∗) = (C∗i , B

∗
i )

that is “most unlikely” to connect to the nodes in C∗ (according to
the observations on R, see Line 3). When |C∗| = k, SearchKC
returns B∗ = D(R, C∗) as the approximate solution.

We note that the SearchKC algorithm is similar in spirit to a
metric k-center algorithm proposed in [18]. However, as explained
above, we do not have a metric without a connectivity oracle,
and hence, the performance analysis in [18] cannot be applied for
SearchKC. Instead, we provide the following theorem on the ap-
proximation guarantee of SearchKC.

THEOREM 10. Given any ε, δ ∈ (0, 1) and any set R of ran-
dom samples of G satisfying

|R| ≥ 4(6 + ε)

3ε2(OPTck)2
ln
n(n− 1)

δ
, (21)

the SearchKC(G, k,R) can return a k-clustering B∗ satisfying
KC (B∗) ≥ (1− ε)(OPTck)2 with probability of at least 1− δ.

The intuition of Theorem 10 can be roughly explained as fol-
lows. When |C∗| increases, the value of f̂v(R, C∗) is non-
decreasing for any v ∈ V . Thus, when |C∗| = k, KC (B∗) =

minv∈V f̂v(R, C∗) should be sufficiently large. Indeed, as |R|
is also sufficiently large (according to Eqn. (21)), we can use the
greedy selection rule in Line 3 and some concentration bounds to
prove that minv∈V f̂v(R, C∗) ≥ (1 − ε/2)(OPTck)2 with high
probability. With this result, we then use the concentration bounds
again to prove that KC (B∗) ≥ (1− ε)(OPTck)2 w.h.p.

As OPTck is unknown, a possible way to implement SearchKC
using Theorem 10 is to find some trivial lower bound of (OPTck)2.
For example, it can be verified that pmin =

∏
e∈E(p(e))2 is a

lower bound of (OPTck)2. However, such lower bounds are ex-
cessively loose, and hence, could result in a prohibitive number of
random samples. In the sequel, we will study how to make further
optimizations to address this problem.
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4.2.2 Optimizations
One possible optimization idea is that we could leverage the

OPIM framework [55] to reduce the number of generated ran-
dom samples. Specifically, we could set a large upper bound of
|R| using pmin, and then progressively generate random sam-
ples until a satisfying solution is found. However, as described
in Sec. 3.2, the stopping rule of OPIM requires that we have a
provable approximation ratio in the “sampling space”, which im-
plies that minv∈V f̂v(R, C∗) should have a provable approxima-
tion guarantee with respect to minv∈V f̂v(R, Ĉo), where C∗ de-
notes the set of center nodes returned by SearchKC(G, k,R) and

Ĉo = arg maxC⊆V ∧|C|=k minv∈V f̂v(R, C).

Unfortunately, we do not have such an approximation assurance in
the sampling space, as we do not have a metric without the con-
nectivity oracle (see Sec. 4.2.1). Therefore, the OPIM framework
cannot be applied to the k-center problem.

Based on the above discussion, we design a new “trial and er-
ror” algorithm named SearchKC+. In each iteration i, SearchKC+
uses qi = 2−i as a guess of the lower bound of (OPTck)2, and
then generates `(i) random samples according to Theorem 10 to
find a solution B∗i using SearchKC (Lines 3-7). After that, the
SearchKC+ algorithm generates another set Ui of random samples
to derive a lower bound li of KC (B∗i ) (Lines 8-12), where li is de-
rived according to the concentration bounds. The algorithm returns
B∗i as an approximate solution when li ≥ (1− ε)qi or qi ≤ pmin
(Line 13). Note that SearchKC+ differs from SearchKM+ in both
the “trial phase” (i.e., how to find a approximate solution B∗i ) and
the “error phase” (i.e., how to judge whetherB∗i is a good solution).
The following theorem shows the correctness of SearchKC+:

THEOREM 11. With probability of at least 1 − δ, SearchKC+
returns a k-clusteringB∗ satisfying KC (B∗) ≥ (1−ε)(OPTck)2.

The correctness of SearchKC+ can be roughly explained as fol-
lows. Note that the stopping rule of SearchKC+ is li ≥ (1 −
ε)qi ∨ qi ≤ pmin (Line 13). If SearchKC+ stops with qi ≤ pmin,
then the set of generated random samples in SearchKC+ satisfies
Equation (21) due to pmin ≤ (OPTck)2, and hence SearchKC+
must return a satisfying solution according to Theorem 10. If
SearchKC+ stops with qi > pmin, then we must have li ≥
(1 − ε)qi and qi must satisfy one of the following cases: (case 1)
qi ≥ (OPTck)2: in this case, KC (B∗i ) ≥ (1 − ε)(OPTck)2 must
hold with high probability, as li can be proved to be a lower bound
of KC (B∗i ) with high probability; (case 2) qi < (OPTck)2: in this
case, the set of generated random samples in SearchKC+ must sat-
isfy Equation (21) due to Line 4, so we also have KC (B∗i ) ≥ (1−
ε)(OPTck)2 w.h.p. due to Theorem 10. In summary, SearchKC+
always returns a solution satisfying Theorem 11.

Finally, we ask whether SearchKC+ could generate too many
random samples of G. Intuitively, when qi < (OPTck)2, we must
have KC (B∗i ) ≥ (1 − ε)(OPTck)2 ≥ (1 − ε)qi with high prob-
ability, and hence, the probability that SearchKC+ does not stop
would decrease exponentially with (OPTck)2/qi according to the
concentration bounds. Therefore, we can prove that the expected
number of generated random samples in SearchKC+ is close to the
lower bound proposed in Equation (21).

THEOREM 12. When ε ≤ 1/2 and δ ≤ 1/3, the expected
number of generated random samples in Algorithm 11 is at most
O
(

1
ε2(OPTc

k
)2

(
ln n

δ
+ ln ln 1

OPTc
k

))
Based on Theorem 12, we also provide the time complexity of

the SearchKC+ algorithm.

THEOREM 13. The expected time complexity of SearchKC+ is
O
(

kn+m
ε2(OPTc

k
)2

(
ln n

δ
+ ln ln 1

OPTc
k

))
when ε ≤ 1

2
and δ ≤ 1

3
.

We roughly explain Theorem 13 as follows. The SearchKC al-
gorithm can be run in O(kn|R|) time and generating a random
sample causesO(n+m) time. The expected number of generated
random samples is upper-bounded by Theorem 12. So the time
complexity of SearchKC+ can be derived by using these results.

4.3 Comparison with Existing Work
Compared with the solutions in [11], our results for uncertain

k-center are considerably improved in the following aspects. First,
[11] only proves the hardness of uncertain k-center, where we fur-
ther establish the inapproximability of the problem.

Second, our k-center algorithms are much simpler than the solu-
tions in [11], and our approximation guarantees are strictly better
than the OPTck

1+γ
approximation ratio in [11], since setting γ = 0 in

their algorithm results in infinite running time.
Third, [11] does not provide a practical algorithm to achieve their

approximation ratio, since they require a known lower bound of
OPTck, which is impractical. In contrast, we present a practical al-
gorithm (i.e., Algorithm 11) to achieve our approximation guaran-
tee without prior knowledge of OPTck. In addition, we present an
upper bound of the expected number of random samples generated
in our algorithm, and also analyze our algorithm’s time complexity.

5. RELATED WORK
Recently, there has been growing interest on querying and min-

ing uncertain graphs. Studies in this area have investigated vari-
ous topics such as reliable queries, pattern matching and similarity
search [29,33,34,49], but there are relatively few studies on cluster-
ing uncertain graphs. Kollios et al. [36] aim to find a cluster graph
of an uncertain graph G, such that the expected graph edit distance
between the cluster graph and the input graph is minimized. How-
ever, the problem definition in [36] is very different from ours, as
the cluster graph in their work is defined as a clique-cover of the
nodes of the input graph, and the number of cliques in their problem
can be arbitrary. Gu et al. [20] re-investigate the problem in [36]
under a more general uncertain graph model with correlated edges.
Liu et al. [40] use entropy to measure “purity” and “size balance”
of a k-clustering, where “purity” reflects the adherence of the clus-
tering to the fragments of a random possible world of G, and “size
balance” reflects the distribution of node numbers in each cluster.
They propose algorithms to seek a k-clustering such that the differ-
ence of purity and size balance is minimized, but their algorithms
do not have guaranteed performance bounds and have scalability
issues [11]. To the best of our knowledge, the most close work to
our paper is [11], which is discussed extensively in Sec. 2.2.

The influence maximization (IM) [8, 55–58] problem is also de-
fined on uncertain graphs, where the goal is to find k “seed nodes”
to maximize the expected number of nodes reachable from the seed
nodes. Note that the IM problem is essentially different from our
problems, and none of the existing IM algorithms has proposed a
method to partition the graph nodes into k clusters to optimize the
objective values of k-median or k-center problems. Therefore, al-
though we have adapted the OPIM framework [55] for the IM prob-
lem to reduce the number of generated random samples in the k-
median problem, the focus of our approach is to reveal the submod-
ularity of the k-median problem and propose efficient and practical
algorithms for it with a provable performance ratio.

There also exist a lot of studies on submodular optimization tech-
niques, and a good survey can be found in [37]. In particular,
Leskovec et al. [38, 45] present some methods for speeding up the
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Table 3: Characteristics of the datasets
Dataset |V | |E|
FruitFly 3.8K 3.7K

Dartmouth 6.1K 1.8M
Biomine 8.7K 14.4K
Flixster 95.9K 484.8K
DBLP 636.7K 2.4M

greedy algorithm for submodular maximization. However, the al-
gorithms proposed in [45] are totally different from ours and only
has an expected approximation ratio. Besides, although the CELF
framework [38] is adopted by LazyGreedy in Sec. 3.2.2, the practi-
cal performance of LazyGreedy is far from satisfactory (see Sec. 6)
due to the reasons explained in Sec. 3.2.2. Therefore, the focus of
our Sec. 3.2.2 is to design a novel LazierGreedy procedure with
much better time efficiency. Due to the wide applications of sub-
modular functions, we believe that the idea of our LazierGreedy
procedure has the potential to be applied to other problems.

6. PERFORMANCE EVALUATION

6.1 Experimental Setting
Datasets: We use 5 datasets in our experiments. FruitFly [26] and
BioMine [26,34] are both real Protein-Protein Interaction networks
where the nodes represent proteins and the edges represent the
interactions between proteins. The probability associated with each
edge denotes the confidence that the interaction actually exists.
The Flixster dataset [34, 51] comes from a social movie website
(flixster.com), where each node represents a user and each edge
models the interactions between two nodes. Following [41,51], the
probability associated with each edge in Flixster is learned from the
users’ action logs using the method proposed in [19]. As Flixster
is a directed graph, we turn it into an undirected one by removing
the edge directions and selecting an edge uniformly at random if
there are two edges between any two nodes. Dartmouth [23] is
a real mobility trace dataset which uses the SNMP logs of WiFi
LAN in Dartmouth college to record the events that two mobile
devices appeared at the same location. Following [23], we model
each mobile device in Dartmouth as a node, and the probability
associated with each edge is the frequency that the two mobile
devices meet (i.e., appear in the same location) according to the
logs. DBLP is a collaboration network where each node represents
an author and co-authors are adjacent in the network. Following a
large body of work on uncertain graphs [7, 11, 26, 29, 40, 46, 49],
the probability associated with each edge (u, v) in DBLP is set to
1 − exp{−x/2}, where x is the number of papers co-authored
by u and v. Following [11], our experiments are conducted on a
connected component of each dataset, and the characteristics of
these connected components are listed in Table 3.
Implemented Algorithms: To the best of our knowledge,
only [11] has proposed k-median/k-center algorithms for uncer-
tain graphs. So we use their algorithms (i.e., ACP and MCP) as
baselines. The codes of ACP and MCP are provided by the authors
of [11] and can be downloaded from [2].

We also implement three of our algorithms, including
Lazy SearchKM+, Lazier SearchKM+ and SearchKC+. Both
Lazy SearchKM+ and Lazier SearchKM+ adopt the lazy sam-
pling framework SearchKM+ described in Sec. 3.2.2, with the
difference that Lazy SearchKM+ calls the lazyGreedy procedure
while Lazier SearchKM+ calls lazierGreedy. SearchKC+ is the
algorithm shown in Algorithm 11.

Parameters: Note that our k-median and k-center algorithms
achieve the 1 − 1/e − ε and (1 − ε)OPTck approximation ratios,
respectively, with probability of at least 1− δ. In the experiments,
we set ε = 0.1 and δ = 1/n for all our algorithms. The parameter
λ in SearchKM+ is set to 1000.

Recall that the approximation ratios of the ACP and MCP algo-
rithms are shown in Table 1, and achieving these approximation
ratios requires some lower bounds for OPTmk and OPTck. Fol-
lowing the suggestions in [11], we use k/n as the lower bound for
OPTmk in the ACP algorithm, and use pL = 10−4 as the lower
bound of (OPTck)2 in the MCP algorithm. We also follow [11]
to set γ = 0.1 in ACP and MCP. For fair comparison, we set
ε = 0.01 in MCP such that MCP achieves the same approxima-
tion ratio with SearchKC+ when pL ≤ (OPTck)2. However, the
ACP algorithm cannot achieve the same approximation ratio with
Lazy SearchKM+ or Lazier SearchKM+ no matter how we set
the value of ε in ACP, as its approximation ratio is much worse
than ours. Therefore, we follow [2] to set ε = 0.1 in ACP.

As described in Sec. 2.2, both ACP and MCP use the input pa-
rameter α to control the size of their searching space. Follow-
ing [11], we set α = 1 for MCP. However, we should set α = n
in ACP to achieve its approximation ratio shown in Table 1 [11],
which results in prohibitive running time of ACP. Indeed, ACP can-
not return a solution within 72 hours for the Dartmouth dataset, and
its running time is even longer for the Biomine, Flixster and DBLP
datasets with α = n. Therefore, we only set α = n in ACP for the
FruitFly dataset, and set α = 1 in ACP for the other datasets, such
that ACP can return a solution in reasonable time for comparison.

As explained in Sec. 2.2, the ACP algorithm presented in [11]
requires that the number r of random samples generated in each
iteration should satisfy Eqn. (1). However, in their implementation
code [2], they have replaced this equation by r = 1

10qε2
ln 100.

This replacement drastically reduce the random samples generated
in ACP (hence the running time) but cannot lead to any perfor-
mance guarantee. A similar problem also occurs in the implemen-
tation of MCP in [2]. In our experiments, we have fixed these prob-
lems by honestly setting r according to the equations presented
in [11], which reveals that the running time of ACP and MCP is
much larger than that reported in [11].

Other Settings: Following [11], we implement all the algorithms
using OpenMP [3], a multi-threaded coding interface, and the max-
imum number of threads used by each algorithm is set to 8 for fair
comparison. All our experiments are conducted on a Linux server
with Intel(R) Xeon(R) E5-2650 v2 2.6GHz CPU and 128GB mem-
ory. When any implemented algorithm exceeds the memory limit,
it returns the best solution found so far. For each solution returned
by any implemented algorithm, we use 10,000 times of monte-carlo
simulations to unbiasedly evaluate the solution’s objective function
value. All the reported data in our figures are the average of 5 runs.

All our algorithms are implemented using C++. To facilitate
the time efficiency of our algorithms, we have used the follow-
ing data structures to store the nodes and the generated random
samples. Each connected component C in the generated random
samples is stored as a dynamic array (i.e., a vector object in C++)
that contains pointers to all the vector objects storing the nodes in
C. Meanwhile, each node v ∈ V is stored as a vector object that
contains the pointers to all the vector objects storing the connected
components that v lies in. By such a double-linked structure as an
“index”, we can efficiently implement some key operations in our
algorithms. For example, when we compute the summation of the
sizes of connected components containing node v in Algorithm 7,
we can directly find the connected components containing v and
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Figure 1: Compare pavg and running time of the implemented algorithms for the k-median problem
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Figure 2: Compare pmin and running time of the implemented algorithms for the k-center problem

get the sizes of those components, without checking every gener-
ated random samples from scratch.

6.2 Experimental Results
6.2.1 Overall Performance

In Figs. 1(a)-1(e), we compare the running time of the imple-
mented k-median algorithms. As described in Sec. 6.1, we have
adopted a parameter setting favorable to ACP’s running time. Even
under this setting, Lazier SearchKM+ runs much faster than ACP,
as our algorithms generate fewer random samples and also leverage
the lazy evaluation methods described in Sec. 3.2.2 for acceleration.
Moreover, it can be seen that Lazy SearchKM+ runs much slower
than Lazier SearchKM+, and Lazy SearchKM+ even cannot fin-
ish within 72 hours for the largest dataset DBLP. This demon-
strates the effectiveness of the LazierGreedy algorithm described in
Sec. 3.2.2, as Lazier SearchKM+ leverages LazierGreedy to sig-
nificantly reduce the number of marginal gains to be evaluated.

In Figs. 1(f)-1(j), we study the performance of ACP,
Lazy SearchKM+ and Lazier SearchKM+ on the objective value
of the k-median problem, which is denoted by Pavg . We note
that ACP cannot achieve its claimed approximation ratio for the
Dartmouth, Biomine, Flixster and DBLP datasets due to its pro-
hibitive running time and memory overflow issues. In contrast,
Lazier SearchKM+ achieves the 1 − 1/e − ε approximation ra-
tio with high probability for all the 5 datasets. The results in
Figs. 1(f)-1(j) also show that the Pavg values of Lazy SearchKM+

and Lazier SearchKM+ are both larger than those of ACP, irre-
spective of whether ACP achieves its claimed approximation ra-
tio or not. Note that Pavg is the average connection probability
between each node v ∈ V and its center node. Therefore, even
a slight advantage on Pavg implies that there are a lot of nodes
in V whose connection probabilities to their center nodes are in-
creased. Moreover, Figs. 1(f)-1(j) reveal that Lazy SearchKM+
and Lazier SearchKM+ achieve almost identical performance on
Pavg , as these two algorithms are functionally equivalent.

In Figs. 2(a)-2(e), we compare the running time of the two imple-
mented k-center algorithms, and the experimental results show that
SearchKC+ runs much faster than MCP on all the five datasets.
This can be explained by the reason that SearchKC+ generates
much fewer random samples to achieve its approximation ratio, and
it also does not need to iteratively call a time-consuming “partial
clustering” procedure as that in MCP to seek the optimal solution.

In Figs. 2(f)-2(j), we compare the performance of SearchKC+
and MCP on the Pmin value, which denotes the objective func-
tion value of the k-center problem. We find that MCP cannot
achieve guaranteed performance ratio due to memory issues for all
the 5 datasets except FruitFly. In contrast, SearchKC+ achieves
the (1 − ε)OPTck approximation ratio with high probability for
all datasets except DBLP, as the value of (OPTck)2 is too small
in DBLP and hence cause memory overflow issue to SearchKC+.
Nevertheless, SearchKC+ outperforms MCP on the Pmin value
for all the 5 datasets.
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Figure 4: Comparisons on predicting protein complexes

In Fig. 3, we plot the numbers of Exact Marginal Gains
(EMGs) evaluated by Lazier SearchKM+ and Lazy SearchKM+
in their greedy searching process, using the Flixster and DBLP
datasets. As Lazy SearchKM+ has prohibitive running time on
the DBLP dataset, we limit its running time to 48 hours on DBLP,
so the true numbers of EMGs evaluated by Lazy SearchKM+
on DBLP are even larger than those plotted in Fig. 3. It can
be seen that Lazier SearchKM+ computes much fewer EMGs
than Lazy SearchKM+ does, which corroborates the analysis in
Sec. 3.2.2 that Lazier SearchKM+ achieves better time efficiency
by evaluating EMGs in a “lazier” way.

In summary, the experimental results show that our algorithms
greatly outperform the algorithms in [11] both on the running time
and on the quality of clustering results, and also corroborate the
effectiveness of the proposed optimization methods for clustering.

6.2.2 Case Study on Detecting Protein Complexes
In this section, we consider the scenario of detecting protein

complexes in Protein Protein Interaction (PPI) networks, and pro-
vide a ground-truth based performance evaluation of our algo-
rithms. We use a popular dataset named Gavin [17], which is
a real PPI network on yeast Saccharomyces cerevisiae consisting
of 1430 proteins and 6531 interactions among the proteins. We
also adopt the manually curated protein complexes published by
CYC2008 [50] as the ground truth, which has been widely used in
the literature as the golden standard for detecting protein complexes
in yeast [25, 39, 47, 61].

We adopt several widely-acknowledged metrics including Preci-
sion, Recall and F-Measure [9,13,39] to measure the quality of de-
tected protein complexes, as explained below. Suppose thatP is the
collection of detected complexes andB is the collection of ground-
truth complexes. For any p ∈ P and b ∈ B, the “precision-recall
product score” PR(p, b) = |p∩b|2

|p|×|b| measures how well p matches
b. Given a threshold ω, p and b are considered to be matched if
PR(p, b) ≥ ω. Following many related studies (e.g., [4, 24, 39]),
we set ω = 0.2. The Precision, Recall and F-measure with respect
to P and B are then defined as:

Precision = |{p|p ∈ P,∃b ∈ B,PR(p, b) > ω}|/|P | (22)
Recall = |{b|b ∈ B,∃p ∈ P, PR(p, b) > ω}|/|B| (23)

F-Measure =
2× Precision× Recall

Precision + Recall
(24)

Ceccarello et al. [11] have extended their ACP/MCP algorithms
to address the “d-hop constrained uncertain k-median and k-center
problems”, where the only discrepancy in problem definition is that
Pr[u ∼ v](∀u, v ∈ V ) is replaced by the probability that there is
a path with length no more than d between node u and node v.
They have proved some performance bounds for their extended al-
gorithms, and shown that these algorithms perform well on detect-
ing protein complexes. Following [11], we have also extended our

algorithms to the d-hop constrained problems mentioned above and
got better performance bounds than those in [11] (more details can
be found in [1]). In Fig. 4, we compare our extended algorithms
with those in [11] on detecting the complexes in Gavin dataset,
where we follow [17] to set k = 491 and scale d from 2 to 10. It
can be seen that our extended Lazier SearchKM+ and SearchKC+
algorithms outperform the extended ACP and MCP algorithms, re-
spectively, on all the considered metrics including Precision, Recall
and F-measure. This demonstrates the superiority of our approach.
Besides, Fig. 4 also shows that all the algorithms perform better
when d gets smaller. This phenomenon is similar to that reported
in [11], which demonstrates the benefit of holistically considering
topological distances and connection probabilities in the scenario
of detecting protein complexes with PPI networks.

6.2.3 Other Comparisons
We also use several metrics including DaviesBouldin index,

Dunn index and Silhouette coefficient [22] to compare our algo-
rithms with those in [11]. The experimental results show that the
overall performance of our algorithms are better than ACP/MCP,
and both the performance of our algorithms and ACP/MCP on these
metrics could be affected by the specific datasets used. Due to the
space constraints, the detailed experimental results on these metrics
can be found in our technical report [1].

7. CONCLUSION
We have studied the k-median and k-center problems in uncer-

tain graphs. We have thoroughly analyzed the hardness of these
problems and proposed several novel algorithms for them with
provable performance bounds. Compared to the existing work, our
algorithms achieve better approximation ratios and are also more
efficient. Finally, we conduct extensive experiments using public
datasets to compare our algorithms with the existing ones, and the
experimental results demonstrate the superiorities of our algorithms
both on the running time and on the quality of clustering results.

Following some related studies [6,11,26,29,30,46,49], we have
only considered edge uncertainty in this work. In our future work,
we plan to study more clustering problems in uncertain graphs with
node uncertainty or attribute uncertainty.
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